
© MCS Electronics , 1995-2021

BASCOM-8051 user manual
Introduction

by MCS Electronics

Dear reader.

Thank you for your interest in BASCOM.

BASCOM was "invented" in 1995. It was intended for personal usage only. I
decided to make it public as I found no other tool that was so simple to use.
Since that time, a lot of options and extensions were added. Without the help
and patience of the many users, BASCOM would not be what it is today :
"the best and most affordable tool for fast proto typing".

We hope that BASCOM will contribute in making your work with
microprocessors Easy and enjoyable.

The MCS Electronics Team

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: december 2021 in (whereever you are located)

BASCOM-8051

© 2021 MCS Electronics

Publisher
Special thanks to:

All the people who contributed to this document, all the forum
members that contributed in a positive way, all beta testers , and all
customers.

Managing Editor

Technical Editors

Cover Designer

MCS Electronics

M.C.Alberts

M.C.Alberts

B.F.de Graaff

BASCOM-80514

© 2021 MCS Electronics

Table of Contents

Foreword 0

Part I INDEX 13

... 141 Table of contents

... 172 Keyword Reference

Part II Installing BASCOM-8051 21

Part III Updates 27

Part IV BASCOM IDE 33

... 331 RUNNING BASCOM-8051

... 342 BASCOM IDE

... 353 File New

... 354 File Open

... 365 File Close

... 366 File Save

... 367 File Save As...

... 368 File Print Preview

... 379 File Print

... 3710 File Exit

... 3811 Edit Undo

... 3812 Edit Redo

... 3813 Edit Copy

... 3814 Edit Cut

... 3915 Edit Paste

... 3916 Edit Find

... 3917 Edit Find Next

... 4018 Edit Replace

... 4019 Edit Goto

... 4120 Edit Indent Block

... 4121 Edit Unindent Block

... 4222 Editor Keys

... 4323 Program Compile

... 4324 Program Syntax check

... 4425 Program Show Result

... 4526 Program Simulate

... 4827 Program Send to chip

... 4928 Tools Terminal Emulator

... 5029 Tools LCD designer

5Contents

© 2021 MCS Electronics

... 5030 Tools Graphic Converter

... 5131 Tools LIB Manager

... 5232 Tools Triscent Converter

... 5333 Tools Export to RTF

... 5334 Options Compiler Output

... 5435 Options Compiler Communication

... 5436 Options Compiler I2C

... 5537 Options Compiler LCD

... 5638 Options Compiler Misc

... 5639 Options Communication

... 5840 Options Environment

... 6041 Options hardware simulator

... 6042 Options Programmer

... 6143 Options Monitor

... 6244 Options Printer

... 6245 Window cascade

... 6346 Window Tile

... 6347 Window arrange icons

... 6348 Window minimize all

... 6349 Help About

... 6350 Help Index

... 6351 Help on help

... 6452 Help Shop

... 6453 Help Forum

... 6454 Help Support

... 6455 Help Credits

Part V Language fundamentals 66

... 661 Language fundamentals

Part VI BASCOM Language Reference 73

... 731 BASCOM Statements

... 762 #IF

... 773 #ELSE

... 784 #ENDIF

... 795 1WIRE

... 806 1WIRECOUNT

... 817 1WSEARCHFIRST

... 838 1WSEARCHNEXT

... 849 $ASM - $END ASM

... 8510 $BAUD

... 8511 $BGF

... 8712 $CRYSTAL

BASCOM-80516

© 2021 MCS Electronics

... 8813 $DEFAULT XRAM

... 8814 $EXTERNAL

... 8915 $INCLUDE

... 9016 $IRAMSTART

... 9017 $LARGE

... 9118 $LIB

... 9119 $LCD

... 9220 $LCDRS

... 9321 $MAP

... 9322 $NOBREAK

... 9423 $NOINIT

... 9424 $NONAN

... 9525 $NONULL

... 9526 $NORAMCLEAR

... 9627 $NOSP

... 9628 $OBJ

... 9729 $RAMSIZE

... 9730 $RAMTRON

... 9931 $RAMSTART

... 10032 $REGFILE

... 10033 $ROMSTART

... 10134 $SERIALINPUT

... 10135 $SERIALINPUT2LCD

... 10236 $SERIALOUTPUT

... 10337 $SIM

... 10338 $TIMEOUT

... 10439 $WAIT

... 10440 ALIAS

... 10541 ABS

... 10642 ASC

... 10643 AVG

... 10744 BAUD

... 10845 BCD

... 10846 BITWAIT

... 10947 BREAK

... 10948 CALL

... 11049 CHR

... 11150 CLS

... 11251 CONST

... 11252 CONFIG

... 11353 CONFIG 1WIRE

... 11354 CONFIG ADUC812

7Contents

© 2021 MCS Electronics

... 11555 CONFIG BAUD

... 11556 CONFIG BAUD1

... 11657 CONFIG DEBOUNCE

... 11658 CONFIG I2CDELAY

... 11759 CONFIG GETRC

... 11760 CONFIG GRAPHLCD

... 12161 CONFIG LCDPIN

... 12162 CONFIG LCD

... 12263 CONFIG LCDBUS

... 12364 CONFIG MICROWIRE

... 12365 CONFIG PRINT

... 12466 CONFIG SCL

... 12567 CONFIG SDA

... 12568 CONFIG SERVOS

... 12669 CONFIG SPI

... 12770 CONFIG TIMER0, TIMER1

... 12871 CONFIG WATCHDOG

... 12972 COUNTER

... 13073 CPEEK

... 13174 CURSOR

... 13275 DATA

... 13376 DEBOUNCE

... 13477 DECR

... 13578 DECLARE

... 13679 DEF

... 13680 DEFLCDCHAR

... 13781 DELAY

... 13782 DIM

... 13983 DISABLE

... 13984 DISPLAY

... 14085 DO

... 14086 ELSE

... 14187 ENABLE

... 14288 END

... 14289 END IF

... 14390 ERASE

... 14491 EXIT

... 14492 FOR

... 14593 FOURTHLINE

... 14694 FUSING

... 14795 GET

... 14896 GETAD

BASCOM-80518

© 2021 MCS Electronics

... 14997 GETAD2051

... 15498 GETRC

... 15699 GETRC5

... 158100 GOSUB

... 159101 GOTO

... 159102 HEX

... 160103 HEXVAL

... 160104 HIGH

... 161105 HIGHW

... 162106 HOME

... 162107 I2CRECEIVE

... 163108 I2CSEND

... 164109 I2C

... 165110 IDLE

... 165111 IF

... 167112 INCR

... 167113 INKEY

... 169114 INP

... 169115 INPUT

... 171116 INPUTBIN

... 172117 INPUTHEX

... 173118 INSTR

... 174119 LCASE

... 174120 LCD

... 177121 LCDINIT

... 178122 LCDHEX

... 179123 LEFT

... 179124 LEN

... 180125 LOAD

... 181126 LOCATE

... 181127 LOOKUP

... 182128 LOOKUPSTR

... 183129 LOW

... 184130 LOWW

... 184131 LOWERLINE

... 185132 MAKEBCD

... 185133 MAKEDEC

... 186134 MAKEINT

... 186135 MAX

... 187136 MID

... 188137 MIN

... 188138 MOD

9Contents

© 2021 MCS Electronics

... 189139 MWINIT

... 189140 MWREAD

... 190141 MWWOPCODE

... 191142 MWWRITE

... 192143 NEXT

... 192144 ON interrupt

... 193145 ON value

... 194146 OPEN

... 196147 OUT

... 197148 PORT

... 198149 PEEK

... 198150 POKE

... 199151 POWERDOWN

... 199152 PRINT

... 200153 PRINTBIN

... 201154 PRINTHEX

... 202155 PRIORITY

... 203156 PSET

... 203157 PUT

... 204158 READ

... 205159 READMAGCARD

... 207160 REM

... 207161 REPLACE

... 208162 RESET

... 208163 RESTORE

... 209164 RETURN

... 210165 RIGHT

... 210166 RND

... 211167 ROTATE

... 212168 SELECT

... 212169 SET

... 213170 SHIFTCURSOR

... 213171 SHIFT

... 214172 SHIFTIN

... 215173 SHIFTLCD

... 216174 SHOWPIC

... 216175 SOUND

... 217176 SOUNDEXT

... 218177 SPACE

... 219178 SPC

... 220179 SPIIN

... 220180 SPIINIT

BASCOM-805110

© 2021 MCS Electronics

... 221181 SPIOUT

... 221182 START

... 222183 STOP

... 222184 STOP Timer

... 224185 STR

... 224186 STRING

... 225187 SUB

... 226188 SWAP

... 226189 THIRDLINE

... 227190 UCASE

... 228191 UPPERLINE

... 228192 VAL

... 229193 VARPTR

... 229194 WAIT

... 230195 WAITKEY

... 230196 WAITMS

... 231197 WAITMSE

... 231198 WATCHDOG

... 232199 WHILE .. WEND

Part VII Using assembly 235

... 2351 Using assemly

... 2422 Internal registers

... 2443 Initialization

Part VIII Additional Hardware 247

... 2471 Additional Hardware

... 2522 Alternative port-pin functions

... 2533 Hardware - LCD display

... 2544 Hardware - I2C

... 2545 1WIRE INFO

Part IX Supported Programmers 260

... 2601 MCS Flash programmer

... 2622 MCS SPI programmer

... 2633 Blow IT Flashprogrammer

... 2634 PG2051 flash programmer

... 2645 PG302 programmer

... 2656 SE512 or SE514 programmer

... 2667 SE-812

... 2668 Sample Electronics ISP programmer

... 2689 CYGNAL JTAG Programmer

... 26810 Futurelec

11Contents

© 2021 MCS Electronics

... 26811 JPK Systems X-programmer

... 26912 Peter Averill's TAFE programmer

... 27013 STK200/300 ISP Programmer

... 27114 Rhombus SCE-51

... 27215 SE511-SE516 programmer

... 27316 MCS USBISP Programmer

Part X BASCOM Misc 278

... 2781 Error messages

... 2812 Compiler Limits

... 2823 Reserved Words

Part XI Microprocessor support 287

... 2871 Microprocessor support

... 2882 TIMER2

... 2913 DATA EEPROM

... 2914 AT898252 WATCHDOG

... 2925 WATCHDOG 80515

... 2926 INTERRUPTS and PRIORITY 80515

... 2937 INTERRUPTS and PRIORITY 80537

... 2938 ADUC 812

... 2969 89C51

Part XII International Resellers 299

... 2991 International Resellers

Part XIII Third party hardware 301

... 3011 Third party Hardware

... 301Grifo

... 308Rhombus

Index 310

Part

I

13INDEX

© 2021 MCS Electronics

1 INDEX

© 1995-2021 MCS Electronics

Help Version 2.0.18.0

See Installing BASCOM-8051 for the installation procedure

MCS Electronics may update this documentation without notice.
Products specification and usage may change accordingly.

MCS Electronics will not be liable for any miss-information or errors found in this
document.

All software provided with this product package is provided 'AS IS' without any
warranty expressed or implied.

MCS Electronics will not be liable for any damages, costs or loss of profits arising
from the usage of this product package.

No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying and recording, for any
purpose, without written permission of MCS Electronics.

© MCS Electronics. All rights reserved.

21

14 BASCOM-8051

© 2021 MCS Electronics

1.1 Table of contents

Installing BASCOM-8051

BASCOM IDE

Running BASCOM 8051

Updates

File

File New , File Open , File Close , File Save , File Save

As...

File Print , File Print Preview , File Exit

Edit

Edit Undo , Edit Redo , Edit Copy , Edit Cut , Edit Paste

Edit Find , Edit Find Next , Edit Replace , Editor Keys , Edit
Goto , Edit Indent , Edit Unindent

Program

Compile , Syntax check , Show Result , Simulate , Send

to chip

Tools
Terminal Emulator , LCD designer , Graphic Converter , LIB Manager
, Export to RTF

Options
 Compiler Output , Compiler Communication , Compiler I2C , Compiler
LCD

Compiler Misc. , Communication , Environment

Hardware Simulator , Programmer , Monitor , Printer

Window
Cascade , Tile , Arrange Icons , Minimize all

Help
About , Index , Help on Help , Credits , Forum , Shop , Support

BASCOM Statements

Language Fundamentals

Internal Registers

Initialization

21

34

33

27

35 35 36 36

36

37 36 37

38 38 38 38

39

39 39 40 42

40 41 41

43 43 44 45

48

49 50 50 51

53

53 54 54

55

56 56 58

60 60 61 62

62 63 63 63

63 63 63 64 64 64

64

73

66

242

244

15INDEX

© 2021 MCS Electronics

Microprocessor support

Reserved Words

Errors

Programmers

Additional hardware

Compiler limits

ASM programming

International Resellers

Available third party hardware

Language Reference

-1-
1WRESET, 1WREAD, 1WWRITE , 1WSEARCHFIRST , 1WSEARCHNEXT ,
1WIRECOUNT

-COMPILER DIRECTIVES-
#IF , #ELSE , #ENDIF , $ASM - $END ASM ,$INCLUDE , $BAUD ,
$BGF , $CRYSTAL , $DEFAULT XRAM , $IRAMSTART , $LARGE , $LCD

 , $MAP , $NOBREAK , $NOINIT , $NONAN , $NONULL ,
$NORAMCLEAR , $NOSP , $OBJ , $RAMSIZE , $RAMSTART , $REGFILE

 , $ROMSTART , $SERIALINPUT , $SERIALINPUT2LCD , $SERIALOUTPUT
 , $SIM

-A-
ABS , ALIAS , ASC , AVG

-B-
BITWAIT , BCD , BREAK

-C-
CALL , CLOSE , CLS , CHR , CONFIG , CONST ,COUNTER ,
CPEEK , CURSOR

-D-
DATA , DEBOUNCE , DECR , DECLARE , DEFINT , DEFBIT ,
DEFBYTE , DEFLCDCHAR , DEFWORD , DELAY , DIM , DISABLE ,
DISPLAY , DO

-E-
ELSE , ENABLE , END , END IF , ERASE , EXIT

-F-
FOR , FOURTHLINE , FUSING

287

282

278

48

247

281

235

299

301

79 81 83

80

76 77 78 84 89 85

85 87 88 90 90

91 93 93 94 94 95

95 96 96 97 99

100 100 101 101

102 103

105 104 106 106

108 108 109

109 194 111 110 112 112 129

130 131

132 133 134 135 136 136

136 136 136 137 137 139

139 140

140 141 142 142 143 144

144 145 146

16 BASCOM-8051

© 2021 MCS Electronics

-G-
GET , GETAD , GETAD2051 , GETRC , GETRC5 , GOSUB , GOTO

-H-
HEX , HEXVAL , HIGH , HIGHW , HOME

-I-
I2CRECEIVE , I2CSEND , I2CSTART , I2CSTOP , I2CRBYTE ,
I2CWBYTE , IDLE , IF , INCR , INKEY , INP , INPUT , INPUTBIN

 , INPUTHEX , INSTR

-L-
LCASE , LCD , LCDINIT , LCDHEX , LEFT , LEN , LOAD , LOCATE

 , LOOKUP , LOOKUPSTR , LOOP , LOW , LOWW , LOWERLINE

-M-
MAKEDEC , MAKEBCD , MAKEINT , MAX , MID , MIN , MOD

-N-
NEXT

-O-
ON Interrupt , ON Value , OPEN , OUT

-P-
P1,P3 , PEEK , POKE , PSET , POWERDOWN , PRINT , PRINTBIN
, PRINTHEX , PRIORITY , PUT

-R-
READ , READMAGCARD , REM , REPLACE , RESET , RESTORE ,
RETURN , RIGHT , RND , ROTATE

-S-
SELECT , SET , SHIFT , SHIFTCURSOR , SHIFTIN , SHIFTOUT ,
SHIFTLCD , SHOWPIC , SOUND , SOUNDEXT , SPACE , SPC , SPIIN

 , SPIOUT , START , STOP , STOP TIMER , STR , STRING , SUB
 , SWAP

-T-
THEN , THIRDLINE , TO

-U-
UCASE , UPPERLINE

-V-
VAL , VARPTR

147 148 149 154 156 158 159

159 160 160 161 162

162 163 164 164 164

164 165 165 167 167 169 169

171 172 173

174 174 177 178 179 179 180

181 181 182 140 183 184 184

185 185 186 186 187 188 188

192

192 193 194 196

197 198 198 203 199 199 200

201 202 203

204 205 207 207 208 208

209 210 210 211

212 212 213 213 214 214

215 216 216 217 218 219

220 221 221 222 222 224 224

225 226

165 226 144

227 228

228 229

17INDEX

© 2021 MCS Electronics

-W-
WAIT , WAITKEY , WAITMS , WAITMSE , WHILE .. WEND

1.2 Keyword Reference

1WIRE
1Wire routines allow you to communicate with Dallas 1wire chips.
1WRESET, 1WREAD, 1WWRITE , 1WSEARCHFIRST , 1WSEARCHNEXT ,
1WIRECOUNT

Conditions
Conditions execute a part of the program depending on the condition
IF , ELSE , END IF , EXIT , DO , LOOP , SELECT , FOR , NEXT

 , TO , THEN , WHILE .. WEND

Configuration
Configuration command initialize the hardware to the desired state.
CONFIG

Conversion
A conversion routine is a function that converts a number or string.
ASC , BCD , CHR , FUSING , HEX , HEXVAL , HIGH , HIGHW ,
MAKEDEC , MAKEBCD , MAKEINT , STR , VAL

Delay
Delay routines delay the program for the specified time.
DELAY , WAIT , WAITMS

Directives
Directives are special instructions for the compiler. They can override a setting from
the IDE.
#IF , #ELSE , #ENDIF , $ASM - $END ASM ,$INCLUDE , $BAUD ,
$BGF , $CRYSTAL , $DEFAULT XRAM , $IRAMSTART , $LARGE , $LCD

 , $MAP , $NOBREAK , $NOINIT , $NONAN , $NONULL ,
$NORAMCLEAR , $NOSP , $OBJ , $RAMSIZE , $RAMSTART , $REGFILE

 , $ROMSTART , $SERIALINPUT , $SERIALINPUT2LCD , $SERIALOUTPUT
 , $SIM

Graphical LCD
Graphical LCD commands extend the normal text LCD commands.
PSET , SHOWPIC

I2C

229 230 230 231 232

79 81 83

80

165 140 142 144 140 140 212 144

192 144 165 232

112

106 108 110 146 159 160 160 161

185 185 186 224 228

137 229 230

76 77 78 84 89 85

85 87 88 90 90

91 93 93 94 94 95

95 96 96 97 99

100 100 101 101

102 103

203 216

18 BASCOM-8051

© 2021 MCS Electronics

I2C commands allow you to communicate with I2C chips with the TWI hardware or
with emulated I2C hardware.
I2CRECEIVE , I2CSEND , I2CSTART , I2CSTOP , I2CRBYTE ,
I2CWBYTE

Interrups
Interrupt related routines.
ON Interrupt , ENABLE , DISABLE , PRIORITY

IO
I/O commands are related to the I/O pins of the processor.
ALIAS , BITWAIT , DEBOUNCE , SET , RESET

Math
Math functions
ABS , AVG , MAX , MIN , MOD

Micro
Micro statements are highly related to the micro processor.
BREAK , P1,P3 , IDLE , END , POWERDOWN , START , STOP ,
STOP TIMER

Memory
Memory functions set or read RAM , EEPROM or flash memory.
CPEEK , ERASE , INP , OUT , PEEK , POKE , DIM , READ ,
RESTORE , DATA , VARPTR

Remote control
Remote control statements send or receive IR commands for remote control.

GETRC5

RS-232
RS-232 are serial routines that use the UART or emulate a UART.

WAITKEY , PRINT , PRINTBIN , PRINTHEX , PUT , OPEN ,SPC ,
INKEY , INPUT , INPUTBIN , INPUTHEX , GET , CLOSE

SPI
SPI routines communicate according to the SPI protocol with either hardware SPI or
software emulated SPI.
SPIIN , SPIOUT , SPIINIT

String
String routines are used to manipulate strings.

162 163 164 164 164

164

192 141 139 202

104 108 133 212 208

105 106 186 188 188

109 197 165 142 199 221 222

222

130 143 169 196 198 198 137 204

208 132 229

156

230 199 200 201 203 194 219

167 169 171 172 147 194

220 221 220

19INDEX

© 2021 MCS Electronics

MID , LCASE , INSTR , LEFT , LEN , RIGHT , STRING , REPLACE
 , SPACE , UCASE

Text LCD
Text LCD routines work with the normal text based LCD displays.

CLS , CURSOR , FOURTHLINE , HOME , LCD , LCDINIT , LCDHEX
 , LOCATE , SHIFTLCD , SHIFTCURSOR ,DISPLAY , LOWERLINE ,

UPPERLINE , THIRDLINE

Various
This section contains all statements that were hard to put into another group
CALL , CONST , COUNTER , DECR , DECLARE , DEFINT , DEFBIT

 ,DEFBYTE , DEFLCDCHAR , DEFWORD , GETAD , GETAD2051 ,
GETRC , , GOSUB , GOTO , INCR , LOAD , LOOKUP , LOOKUPSTR

 , LOW , LOWW , ON Value , READMAGCARD , REM , RETURN ,
RND , ROTATE , SHIFT , SHIFTIN , SHIFTOUT , SOUND , SUB ,
SWAP

187 174 173 179 179 210 224

207 218 227

111 131 145 162 174 177

178 181 215 213 139 184

228 226

109 112 129 134 135 136

136 136 136 136 148 149

154 158 159 167 180 181

182 183 184 193 205 207 209

210 211 213 214 214 216 225

226

Part

II

21Installing BASCOM-8051

© 2021 MCS Electronics

2 Installing BASCOM-8051

After you have downloaded the software you need to UNZIP the downloaded file.
There is only one file named setup.exe
You may run this setup.exe from within the Windows Shell but it is important to
notice that when you use the commercial version, you MUST UNZIP the setup.exe
since you need to copy the license file to the same directory as setup.exe.

You must have Administrator rights in order to be able to run setup.

The opening screen looks like :

You need to click the Next-button to continue.

A license agreement will be shown. You need to read it and accept the agreement.
This is a no-nonsense agreement where you are allowed to install/copy on as many
computers as you want, providing that you use only one computer at the same
time.

22 BASCOM-8051

© 2021 MCS Electronics

After clicking the 'I accept the agreeement' option, you need to click the Next-
button again to continue.

The readme.txt file is shown. Basicly it tells you to contact support@mcselec.com in
case of a problem.

Click the Next-button again to continue with the setup.

23Installing BASCOM-8051

© 2021 MCS Electronics

You can now select where you want to Install BASCOM-8051.
The default is shown below.

Click the Next-button again to continue.

You can now select/enter the Program Group name. The default is shown below.

Click the Next-button again to continue.

24 BASCOM-8051

© 2021 MCS Electronics

The files will now be installed.
A screenshot is shown below :

When the files are installed, the installer will install some addiitonal files :

Press the Next-Button to install the additional files. This will go quick in most cases.
When you install from CD-ROM the setup will also copy PDF datasheets. The
installation will take longer then.

25Installing BASCOM-8051

© 2021 MCS Electronics

When setup is completely finished it will show the last screen :

You MUST reboot your PC since it will install a driver needed for the programming.

Part

III

27Updates

© 2021 MCS Electronics

3 Updates

The update process is simple.
· Go to the main MCS website at http://www.mcselec.com
· In the left pane under 'Main Menu' you will find a link named 'Registration/

Updates'

Notice that the website uses two different accounts : one for the forum/shop and
one for the registration/updates. You will see the following screen:

http://www.mcselec.com

28 BASCOM-8051

© 2021 MCS Electronics

· Click the link and select 'Create new account'

You need to provide a username, password, email and full name. Company name is
optional. When you want to receive notifications when updates are available, select
this option.
When you filled in the information, click 'Submit Registration'.

· After you click submit, you can get various error messages. For example that a
username already exists. Press the Back-button in your browser, and correct the
error, then try again

· If the registration is successful you will get a message that the registration
succeeded.

· Now you can login. You will see the following screen :

http://register.mcselec.com/register.php

29Updates

© 2021 MCS Electronics

· You need to chose 'Product registration'.
· The following screen will be shown:

· Select a product from the list. (BASCOM-8051)
· Enter the serial number

It is important that you enter a valid serial number. Do not try to enter serial
numbers from cracked versions. When you enter invalid serial numbers, you will
loose support and the ability to update.
The valid serial number is shown in the Help, About box.

30 BASCOM-8051

© 2021 MCS Electronics

When the product is selected, the serial number is entered, and you press 'Register
product' you will see the following message :

· This does mean that you registered successfully.
· MCS Electronics will validate all registrations once in a few days. When the

product is validated you will receive an email. After you receive the email, you can
login to the register again.

· Now you need to select 'Download LIC files'. The following screen will be shown:

31Updates

© 2021 MCS Electronics

At the top you can see which products are registered, and which status they have.
When you want to do a FULL SETUP, you need to download the full version.
You do not need to uninstall a previous version. You can install an update into the
same directory or a new directory.

The ZIP file you download contains only one setup.exe. You need to run this
executable.
It is also important that you put the license DLL into the same directory as setup.
exe
Setup will copy this file to the bascom application directory. You can also manual
copy this file.
The license file is on CD-ROM, diskette, or the media (email) you received it on. It is
only supplied once.
Without the file, bascom will not run.

The file is named bsc5132L.DLL for BASCOM-8051.
When you got the license by email, it was zipped and probably had a different
extension. Consult the original installation instructions.
The file is only provided once, we can not, and do not provide it again.

See Installing BASCOM on how to do a full install.

Partial updates are no longer supported. You always need to download and install
the full setup!

21

Part

IV

33BASCOM IDE

© 2021 MCS Electronics

4 BASCOM IDE

4.1 RUNNING BASCOM-8051

When you run BASCOM-8051 the following window will appear.

The last saved/closed program will be loaded automatic.
When reformatting is enabled, the loaded program will be reformatted too.
This is only meaningful for programs written with another editor.

The BASCOM IDE is a so-called multi document application. This means that you can
open more than one source file. The operations that you perform are always done
on the current document, that is, the window with the focus.

The filename is shown in the caption of the window.

The status bar is separated in four panels.
· line, character position indicator
· modified indicator, to indicate that text has changed
· insert/overwrite indicator
· message panel

Some actions such as programming will make a progress indicator visible.

34 BASCOM-8051

© 2021 MCS Electronics

4.2 BASCOM IDE

Running BASCOM 8051

File

File New

File Open

File Close

File Save

File Save As...

File Print

File Print Preview

File Exit

Edit

Edit Undo

Edit Redo

Edit Copy

Edit Cut

Edit Paste

Edit Find

Edit Find Next

Edit Replace

Editor Keys

Program

Compile

Syntax check

Show Result

Simulate

Send to chip

Tools
Terminal Emulator

LCD designer

Graphic Converter

LIB Manager

Options

33

35

35

36

36

36

37

36

37

38

38

38

38

39

39

39

40

42

43

43

44

45

48

49

50

50

51

35BASCOM IDE

© 2021 MCS Electronics

Compiler Output

Compiler Communication

Compiler I2C

Compiler LCD

Compiler Misc.

Communication

Environment

Hardware Simulator

Programmer

Monitor

Printer

Window
Cascade

Tile

Arrange Icons

Minimize all

Help
About

Index

Forum

Shop

Support

Credits

4.3 File New

Action
This option creates a new window in which you can write your program.
The focus is set to the new window. Depending on the environment settings, the
window is normal sized or maximized.

Note that you must save your program before you can compile it. Newly created
files will have the name [nonameX] in the window caption. Where X is a number
starting with 1 for the first editor window.
Before you can compile your program, you must give it a valid name.

4.4 File Open

Action
With this option, you can load an existing program from disk.
BASCOM saves files in ASCII format. Therefore, if you want to load a file, which is
made with another editor, be sure that it is saved as an ASCII file.

You can specify that BASCOM must reformat the file when it opens the file.
See Options Environment options.

53

54

54

55

56

56

58

60

60

61

62

62

63

63

63

63

63

64

64

64

64

58

36 BASCOM-8051

© 2021 MCS Electronics

This should only be necessary when loading files made with another editor.
Since saved/closed files are put in a so called 'recent file list' , you can also open a
file by selecting it from the File menu.

4.5 File Close

Action
Close current editor window. When changes are made, and they are not saved yet,
you will be asked to save your program.

4.6 File Save

Action
With this option, you can quick save your current program to disk.
If the program was created with the File New option, you will be asked for a
filename first.
Use the File Save As option to save the file with another name.
Note that the file is saved as an ASCII file.

4.7 File Save As...

Action
With this option, you can save your current program to disk.
You can enter a filename before your program is saved.
Note that the file is saved as an ASCII file.

4.8 File Print Preview

Action
This will display the print preview window.

35

36

37BASCOM IDE

© 2021 MCS Electronics

By clicking the Setup-button, you can change some printer properties. For margin
settings, you must use the Options Printer settings . For a hardcopy, click the
Print-button.

See also
Print

4.9 File Print

Action
With this option, you can print the current program.
Note that the current program is the editor window, which has the focus.

See also
Print preview

4.10 File Exit

Action
With this option, you can leave BASCOM.
If you have made changes to your program, you can save them upon leaving
BASCOM.

62

37

36

38 BASCOM-8051

© 2021 MCS Electronics

4.11 Edit Undo

Action
With this option you can undo the last change you made to your program.
By selecting this option again, you can undo the previous change to your program.

See also
Edit Redo

Shortcut
CTRL+Z

4.12 Edit Redo

Action
With this option you can redo the last undo action.

See also
Edit Undo

Shortcut
SHIFT+CTRL+Z

4.13 Edit Copy

Action
With this option, you can copy selected text into the clipboard. You can select text
by dragging the mouse cursor over the text or by Double clicking on a word.
Another possibility is to hold the shift key down and pressing the cursor keys.
Selected text is shown inverted.

Shortcut
CTRL+C and CTRL+INS

4.14 Edit Cut

Action
With this option, you can cut selected text into the clipboard.
The selected text is copied into the clipboard, and deleted from your program.

Shortcut
CTRL+T

38

38

39BASCOM IDE

© 2021 MCS Electronics

4.15 Edit Paste

Action
With this option, you can paste text from the clipboard into the current cursor
position.

Shortcut
CTRL+ V and SHIFT + INS

4.16 Edit Find

Action
With this option, you can search for text in your program. The following dialog
window will appear:

You can choose to search forward or backward. Optional you can search case
sensitive and for whole words.
Regular expressions are also supported.

Shortcut
CTRL+F

4.17 Edit Find Next

Action
With this option you can search for the next occurrence of the specified text.
When you didn't specify a search text, you will be asked for the text to find, with the
windows find-dialog.

See Also

40 BASCOM-8051

© 2021 MCS Electronics

Edit Find

Shortcut
F3

4.18 Edit Replace

Action
With this option, you can replace text in your program.
The following replace dialog will appear:

Enter the text to search for and the text to replace with, and press return.

Shortcut
CTRL+R

4.19 Edit Goto

Action
With this option you can type the line number of the line you want to go to.
The following screen will be shown :

The current line number will be shown. You can edit this and press RETURN to jump

39

41BASCOM IDE

© 2021 MCS Electronics

to the line number of your choice.

4.20 Edit Indent Block

Action
Indents a block of selected text.

You need to select at least one line in order to use this option.
When you have a structure like :

Do
a=a+1
b=b+1
Loop

It is hard to see the structure. You can best indent your code.

Do
 a=a+1
 b=b+1
Loop

When you have code that is not indented you can indent it by selecting the two line
within the structure and choose 'Edit Indent Block'.

4.21 Edit Unindent Block

Action
UnIndents a block of selected text.

You need to select at least one line in order to use this option.
When you have a structure like :

Do
a=a+1
b=b+1
Loop

It is hard to see the structure. You can best indent your code.

Do
 a=a+1
 b=b+1
Loop

When you have code that is not indented you can indent it by selecting the two line
within the structure and choose 'Edit Indent Block'. The Unindent option can be used
when the code is too much indented :

Do
 a=a+1
 b=b+1
Loop

42 BASCOM-8051

© 2021 MCS Electronics

The sample above show that too much indention does not make the program
readable.

4.22 Editor Keys

The following table lists all editor shortcuts.
Key Action

LEFT ARROW One character to the left

RIGHT ARROW One character to the right

UP ARROW One line up

DOWN ARROW One line down

HOME To the beginning of the line

END To the end of the line

PAGE UP Up one window

PAGE DOWN Down one window

CTRL+LEFT One word to the left

CTRL+RIGHT One word to the right

CTRL+HOME To the start of the text

CTRL+END To the end of the text

CTRL+ Y Delete current line

INS Toggles insert/overstrike mode

F1 Help (context sensitive)

F2 File Simulation

F3 Find next text

F4 Send program to chip or run programmer

F5 Run program (simulator)

F7 Compile File

CTRL+F7 Syntax check

F8 Step through program (simulator)

SHIFT + F8 Step over code (simulator)

F9 Toggle breakpoint (simulator)

F10 Run to cursor (simulator)

CTRL+J Pop up code template

CTRL+G Goto line

CTRL+O Load File

CTRL+S Save File

CTRL+P Print File

CTRL+T Terminal emulator

43BASCOM IDE

© 2021 MCS Electronics

CTRL+F Find text

CTRL+W Show result of compilation

CTRL+L LCD designer

CTRL+X Cut selected text into clipboard

CTRL+C Copy selected text into clipboard

CTRL+V Copy text from clipboard into editor

CTRL+Z Undo

CTRL+SHIFT+Z Redo

CTRL+SHIFT+I Indent block

CTRL+SHIFT+U Unindent block

To select text: Hold the SHIFT key down and use the cursor keys to select text. or
keep the left mouse key pressed and tag the cursor over the text to select.

To select a word, double click on it.

4.23 Program Compile

Action
With this option you can compile your current program. Your program will be saved
automatically before it will be compiled.
So if you didn't give it a name, you will be asked for it.
The following files will be created depending on the Option Compiler Settings.

File Description

xxx.BIN Binary file which can be burned into EPROM.

xxx.DBG Debug file which is needed by the simulator.

xxx.HEX Intel hexadecimal file.

xxx.ERR Error file. (only when errors are found)

xxx.RPT Report file.

xxx.SIM

xxx.PRJ

Generated by the simulator to store the variable names of the watch
window and the breakpoints.

If an error occurs, you will receive an error message and the compilation will end.
The cursor will be set to the line in which the error occurred. The line will be marked
with a red color too. The red marking color will disappear when you compile the
program again.

Shortcut
F7

4.24 Program Syntax check

Action
With this option you can check the syntax of your program.
No files are generated with this option.

44 BASCOM-8051

© 2021 MCS Electronics

Shortcut
CTRL+F7

4.25 Program Show Result

Action
Use this option to view the result of the compilation.

See the Options Compiler Output for specifying which files must be created.
The files that can be viewed are report and error.
Click the Print button to print the selected file.
Click the Ok button to return to the editor.

Shortcut
 or CTRL+W

Information provided in the report:

Info Description

Compiler Shows the version of the library (the compiler).

Processor The type of microprocessor the file is compiled for.

Report The name of the source file.

Date and time The compilation date and time.

Comp.time The start and end time needed for compilation.

Baud timer The timer used for the generation of the baud rate.

Baud rate and
frequency

The baud rate selected for the uP and the used crystal. This
info is used for RS232 related statements such as PRINT and
INPUT. Note that when you use the $crystal and $baud
statements the exact baud rate is shown.

53

45BASCOM IDE

© 2021 MCS Electronics

ROM start The starting location of ROM memory.

RAM start The starting location of RAM memory.

LCD mode 4 bit or 8 bit LCD mode.

Stack start The starting location of the stack. The space below the stack
is used for internal variables. The stack grows when calls are
made by the machine language routines.

Used ROM Displays the length of the binary file.

Variable The name, type and the location in memory of the used
variables

4.26 Program Simulate

This option displays the Simulator window in which you can simulate a compiled
program. When the source code is saved without compiling, you will be warned that
the debug file differs from the source code. You have the option to compile it before
you simulate or continue without recompiling.

The simulator window is divided in a few sections.
· Toolbar with speed buttons
· Variable watch/modify window
· Source code window
· Terminal (input/output) window
· Register window
· Status bar

The margin
On the left side a margin is visible. This margin can display the following icons:

 a yellow dot, indicating that the line holds executable code

46 BASCOM-8051

© 2021 MCS Electronics

 a read dot, indicating that a break line is set. You can only set a breakpoint
on a line that has a
 yellow dot.

 a yellow arrow. This arrow shows the line currently executing.

The register window
On the right side the register window is visible. You can change the value of a
register by entering a new value.

The variable watch section
The section below the toolbar is the variable watch section.
You can add a variable by entering one in an empty cell. You can also add a new
variable by selecting it from the source window, and pressing return.
You can insert a new variable watch line by pressing the INS-key.
You can delete a variable watch line by pressing the CTRL+DEL keys.
You can change the value of a variable by setting the focus to the cell with the
variables value and then by entering the new value.
The variable names are saved and loaded after each simulation session.

The terminal section
The blue window emulates the serial port. So serial output (the PRINT statement for
example), is displayed in this window.
When serial input is required, you must set the focus to the serial window, before
you enter text. The INPUT statement for example, requires serial input.

The source code window
The source code windows shows the source file being simulated.

You can start a simulation by pressing F5 or by clicking the run button .

When your program runs, you can pause it by clicking the pause button .

You can stop the simulation by clicking the stop button.
You can also step through the code line by line, by pressing F8, or by clicking the

step button .

By pressing SHIFT+F8 , you can step over code, like GOSUB and CALL.

To pause execution at a certain line, you can set a breakpoint. Just set the cursor on
that line and press F9. By pressing F9 again, you can remove the breakpoint.
Note that a breakpoint can only be set on a line that contains executable code.
This is visible by the yellow dot. Statements like $romstart don't contain executable
code and won't have a corresponding yellow dot.

You can also run to a specified line by clicking the run to button .

The status bar
The status bar is also divided into a few sections. These sections from left to right
display the following information:

· The value of a variable in the source code window. You can select a variable by
moving the mouse cursor over the variable name.

· The status of the simulator (stopped, running or paused)
· The number of clock cycles and the execution time of the executed code.

You can reset the value by clicking on this section.
· The stack depth of the program. The stack depth is the deepest level the stack

has reached during execution. If it exceeds the available internal memory (128
or 256 bytes), the program will not run correctly in the chip.

47BASCOM IDE

© 2021 MCS Electronics

The interrupt buttons

The INT0, INT1, T0, T1 and SER buttons can be clicked to generate an interrupt.
Because this is a software emulator, no hardware interrupts can be generated. You
have to do this yourself by clicking these buttons. TIMER 0 and TIMER 1 are
simulated by software. Therefore, they will generate an interrupt automatically if the
software enables this. The external gate however isn't simulated so for this occasion
you must click the corresponding button.
Depending on the chip used, other interrupt buttons can be visible. They have the
same purpose as the default interrupt buttons.

Hardware simulator button
By clicking the hardware simulator button a special window will become visible.
This window has a LCD simulator, which can simulate custom characters, LED
simulation for port 0-3, and a 7-digit LED display simulation.
The LCD type can be selected from the menu. Note that the display isn't as fast as it
could be, but to assign/display all the dots costs a lot of processor time. The
advantage however is that custom characters can be displayed too.
The LED's can be switched on or off by clicking on it.
The LED type can be set with the CG checkboxes. To select common ground you
must set the marker. This will have the effect that all common cathodes are
connected to ground and so the LED will be on when the port value will be high.
The 7-digit display can be connected to individual port pins.
To change the setting you must press the right mouse button to bring up the digit
properties window.

Each segment is named with a letter. To change a port pin, select the segment from
the list and press the spacebar. Now you can enter the desired port pin.
After you are done with assigning/changing, press the Ok button.

Real hardware simulation
Press the real hardware simulation button to enable the hardware simulation.
You need additional hardware to use this feature. You can use the MCS flash
programmer to simulate one port.
An application note can be downloaded that describes the needed hardware.
The hardware simulator can simulate port 1 and 3.
This way you can test your program in circuit without programming the device.
Now only the status reading and setting of the ports is supported.
This means that interrupts are not yet supported in hardware simulation.

Update source
The displaying of the variables and the arrow costs a lot of processor time. To

simulate faster, you can disable the update of these items. Click the button to
enable/disable the update.

48 BASCOM-8051

© 2021 MCS Electronics

Display memory window

To display the memory of the internal RAM, you can click the button. By clicking
again, you can hide the window.

Refresh variables
Normally, variables are only refreshed in step mode (F8), because depending on the
used statements, the value would be hard to watch. You can also choose to display

the value during program execution. The default is on.

The sections can be made larger or smaller by using the splitters.
When you press the right mouse button, a popup menu will be visible.
Depending on the place the mouse cursor was at the time you pressed the right-
mouse button, different options will be showed.

Extra options that will be come available are:
· Clear breakpoints
· Hide register window
· Hide watch window

To end a session close the windows or just set the focus to an editor window.

4.27 Program Send to chip

After you have tested your program you can run one of the supported programmers.

You can also press F4 or click on the button.

Some programmers support the auto flash option from the programmers options.
When you select this option, the programmer window will not be visible, but the
chip will be erased, programmed and verified automatically. The progress will be
visible in the IDE-menu bar.

Different serial comport and parallel printer port based programmers are supported.
You must select one first with the Options Programmers menu.

MCS Flashprogrammer
Blow IT Flashprogrammer
PG2051
MCS SPI programmer
PG302
JPK Systems X-programmer
Peter Averill's TAFE programmer
SE512 or SE514
SE-812
STK200/STK300 ISP programmer
Sample Electronics simple cable ISP programmer
RHOMBUS SCE-51 Emulator
CYGNAL JTAG programmer

60

260

263

263

262

264

268

269

265

266

270

266

271

268

49BASCOM IDE

© 2021 MCS Electronics

4.28 Tools Terminal Emulator

With this option you can start the built in terminal emulator.
The following window will appear:

The terminal emulator supports ANSI, TTY, VT100 and VT220 terminal emulation.
Information you type and information that the computer board sends,
are displayed in the same window.

You must use the same baud rate for the terminal emulator and the program you
compile. If you compiled your program with the Compiler Settings at 4800 baud,
you must set the Communication Settings also to 4800 baud. The setting for the
baud rate is reported in the report file.

The terminal menu has a few options.

File upload
This will upload the current program in HEX format to a monitor program.
With the Options Monitor settings, you can specify an optional header to be sent
before the actual hex file is sent to the monitor.
Also a delay in mS can be specified for a optional delays after each line sent.

When an ALTAIR ROM is selected from the Monitor Options, a binary file will be sent
to the monitor. The baud rate of the terminal emulator will be used.
For an 552 ALTAIR ROM, the terminal baud rate must be set to 115200 baud.

While sending the hex file to the monitor, an extra menu option will be available:

File Escape
This will abort the upload to the monitor program.

File Exit
This will close the terminal emulator window.

50 BASCOM-8051

© 2021 MCS Electronics

4.29 Tools LCD designer

With this option, you can design special characters for LCD displays.
The following window will appear:

The LCD matrix has 7x5 points.
The bottom row is reserved for the cursor but can be used.
You can select a point by clicking the left mouse button.
If a cell was selected it will be de selected.

By clicking, the Clear All button you can clear all points.
By clicking the Set All button you can set all points.

With the Options Compiler LCD settings you can choose if the 3 most significant
bits must be set high. Some LCD displays require this.

When you are finished you can press the Ok button:
a statement will be inserted in your active program editor window at the current
cursor position.
The statement looks like this :

Deflcdchar ?,1,2,3,4,5,6,7,8

You must replace the ?-sign with a number ranging from 0 to7.
When you want to display the custom character you can use the chr() function.
LCD chr(0) 'will display custom character 0.

The numbers after the custom character are representing the row values.
An empty row is converted to 32 (space) since a zero is used to terminate the bytes.

4.30 Tools Graphic Converter

The Graphic converter is intended to convert BMP files into BASCOM Graphic Files
(BGF) that can be used with Graphic LCD displays.

The following dialog box will be shown :

55

136

51BASCOM IDE

© 2021 MCS Electronics

To load a picture click the Load button.
The picture may be 64 pixels high and 240 pixels width.
When the picture is larger it will be adjusted.

You can use your favorite graphic tool to create the bitmaps and use the Graphic
converter to convert them into black and white images.

When you click the Save-button the picture will be converted into black and white.
Any non-white color will be converted into black.

The resulting file will have the BGF extension.
Press the Ok-button to return to the editor.

The picture can be shown with the ShowPic statement.

4.31 Tools LIB Manager

With this option you can add and remove ASM routines to the libraries.
The following windows will be displayed:

216

52 BASCOM-8051

© 2021 MCS Electronics

Select a library first by clicking on it.
The Routines list will be refreshed with the contents of the selected library.

By clicking the Add button a dialog box will be shown to select the ASM file that
contains the ASM routine(s).

By clicking on the Delete button the selected Routine will be removed from the
selected library.

A library is an ASCII file that contains ASM routines.

Each routine must be preceded by the name of the routine between brackets.
Each routine must be ended with the [END] line.

A sample routine is shown here :

[_DEC76]
;decrease the register pair r6 and r7 with one
; return zero in ACC when r6r7 is zero
_Dec76:
Dec r6 ; dec LSB
Cjne r6,#255,*+4 ; if it was zero
Dec r7 ; we need to decrease r7 to
Mov a,r7 ; result into a
Orl a,r6 ; OR with r6 to see if it is zero
Ret
[END]

The library can be included with the $LIB directive.
A routine can be imported with the $EXTERNAL directive.

$lib "mylib.lib"
$external _dec76

4.32 Tools Triscent Converter

The Triscent Converter will convert a .H file generated by the Triscend program into
a triscend.DAT file that can be used by BASCOM.

The triscend.DAT file has an additional section named XBYTE.

[XBYTE]

CMAP0_TAR = ff00

CMAP0_ALT = ff01

The 3 lines above show the section and 2 entries. The triscend chips are configured
by writing to locations where normally XRAM is located.

BASCOM handles this automatic for you. So when you assign a value to
CMAP0_TAR, the value is written to location &HFF00 where the CMAP0_TAR register
is located.

Reading this XRAM SFR will do the reverse.

91

88

53BASCOM IDE

© 2021 MCS Electronics

At www.triscend.com you can find all info you need. Look for the E5 line of chips.
These are 8051 compatible chips which can be configured with the Triscend
software. You can for example create 3 UARTS, add I2C, SPI, TIMERS etc.

So the E5 chip is hardware configurable by software!

After you created your ‘chip’ , you create the .H file and this file must be imported

with the Tools Triscend Convert option.

There is an evaluation KIT available from triscend. Another pro is that the chips
have many pins. So when your design needs a lot of I/O pins, I advise to look at
these chips.

4.33 Tools Export to RTF

Action
Exports the current file to an RTF file.

Remarks
RTF files can be used in documents such as Word files. RTF files can also be used to
show code with colors on a web page. When your file has the name test.bas , a file
with the name test.rtf will be created in the same directory.

4.34 Options Compiler Output

With this option you can specify which files must be created.

Binary file This will generate a ROM-image of the program. Of course you can

54 BASCOM-8051

© 2021 MCS Electronics

also store it in a flashrom.

Debug file This option will generate a DBG-file. It is used by the simulator.
When you don't use the simulator, you don't need to generate it.

Hex file This is an Intel hex-file that is used by most programmers and
monitor programs.

Old Intel hex
file

This option will generate an old style Intel hex file and is used by the
Elektor monitor. If you choose this option, you must unselect the
Hex File option.

Report file This file contains info about the program, such as the baudrate, used
variables etc.

Error file This file is generated when an error occurs. It holds the error
descriptions.

When there is no error, the file will not be created.

4.35 Options Compiler Communication

With this options you can select the used crystal and the baud rate that must be
used with serial communications.

We advise to use the $BAUD and $CRYSTAL compiler directives in your
program.
This way the settings are stored in your source code.

4.36 Options Compiler I2C

With this option you can select the port pins that serve as the SDA and SCL line for
the I2C statements.

85 87

55BASCOM IDE

© 2021 MCS Electronics

You can also use the CONFIG SDA and CONFIG SCL statements.

4.37 Options Compiler LCD

With this option you can select the port pins for the LCD display.
This only applies to the LCD statements when used in 4-bit mode and if the LCD
display is connected to the port pins.
You can also choose the port pins with the CONFIG LCDPIN statement.

In the 4-bit mode, only the highest nibble of the data lines is used.
To spare a pin for the R/W pin, reading from the LCD is not supported and you must
connect the R/W line to ground. See additional hardware for more info.

You can also use the LCD statements in the data bus mode.

125 124

121

253

56 BASCOM-8051

© 2021 MCS Electronics

Some LCD displays needs the upper 3 bits to be set high. So when you have this
kind of display you must select this option. When you select this option the LCD
designer will set the upper 3 bits high when the DEFLCDCHAR statement is
generated.

4.38 Options Compiler Misc

With the miscellaneous options you can change the following

Remarks
register file Select the register file which is suitable for your target uP. The

reg51.DAT file is the common file that works for every uP, but

doesn’t have hardware specific registers. You can use this file as a

base for your own DAT file.

byte end Specifies the last location of internal memory that can be used by
the compiler for storing variables. For uP's with 128 bytes of RAM
set it to 70 for example. All space after this value is used for the
stack. With the simulator you can test if you run out of stack
space. For uP's with 256 bytes of internal RAM, you can use a
higher value, F0 for example.

size warning Select this option to enable the compiler to give a warning
message when the code size exceeds the specified size.(decimal)

4.39 Options Communication

With this option you can modify the communication settings for the BASCOM
terminal emulator.

The following window will appear:

136

57BASCOM IDE

© 2021 MCS Electronics

Option Remark

Comport The comport of you computer to use.

Baud rate The baud rate to use.

Parity The parity to use.

Data bits The number of data bits to use.

Stop bits The number of stop bits to use.

Handshake The handshake to use.

Emulation The terminal emulation to use.

Font Click the button to select the font and font color to use.

Backcolor The background color to use (default blue)

Run emulator modal Runs the terminal emulator in modal mode so you can use all
key combinations that are normally reserved to the IDE.

Note that the baud rate of the terminal emulator and the baud rate setting of the
compiler options, must be the same in order to work correctly.

58 BASCOM-8051

© 2021 MCS Electronics

4.40 Options Environment

With this option you can modify the environment options.

OPTION DESCRIPTION

Auto indent With auto indent, the cursor will be set to the same left
margin as the current line when you press return.

Don't change case This option will not change the case of your line when you
enabled 'Reformat code'. By default each first characters case
is set to uppercase.

Reformat BAS files Reformat files when loading them into the editor. This is only
necessary when you are loading files that were created with
another editor. Normally you don't need to set this option.

Reformat code Reformat code when entered in the editor. This will reformat
the line after you have set focus to a new line.

Smart tabs Will look at the previous line for non spaces to position the
cursor.

Syntax highlight Enables/disables syntax highlighting

Show margin Shows a margin at position 80.

Comment position The right position of the comment.

Tab size The number of spaces equivalent to one tab.

Key mapping Selects the behavior of the editor. Default behaves like
Delphi.

No reformat
extension

Specifies file extensions separated by a space where the
reformatting is disabled. (for text files or dat files)

Size of new edit
window

Selects the size of the edit window when a file is opened.

59BASCOM IDE

© 2021 MCS Electronics

OPTION DESCRIPTION

Background color Background color of the editor

Keyword color Color used to highlight keywords(statements)

Comment color Color used to highlight comment

ASM color Color used to highlight assembly

HW register color Color used to highlight special function registers

Editor font Font name of the editor

Bold Check to display keywords in bold

Italic Check to display comment in Italic

60 BASCOM-8051

© 2021 MCS Electronics

OPTION DESCRIPTION

Tool tips Will enable/disable tool tips.

Show Toolbar Will display/hide the toolbar of the IDE.

Save File As… for
new files

When you enable this option you will be prompted to give new
files a name before they will be saved with their default
name.

File location The path to the location of your BAS files. Normally Windows
will use My documents as a default.

4.41 Options hardware simulator

This option let you select the address of the LPT connected to the optional hardware
simulator.

4.42 Options Programmer

This option let you select the target programmer.
The supported programmers are :

· MCS Flashprogrammer
· Blow IT programmer
· PG2051
· MCS SPI programmer
· PG302
· JPK Systems X-programmer
· Peter Averill's TAFE programmer
· SE512 or SE514
· SE-812
· CYGNAL
· FutureLec
· SE511-SE516

260

263

263

262

264

268

269

265

266

268

268

272

61BASCOM IDE

© 2021 MCS Electronics

The auto flash options will automatic program a chip without displaying the
programmer window.
The auto verify option will verify automatically after each programming.
Selecting 'Code + Data' will program both the flash and the EEPROM.

You can select various programmers. On the Parallel-TAB you can select the LPT-
address.
You can also Add or Remove an LPT-address. It is only possible to remove address
that you added yourself.

The port delay can best be set to 0. In some cases you might want to increase the
value.
Some programmers have I2C chips on them. For example the MCS Flash
programmer. Since different I2C chips exist for the PCF8574, you need to select the
checkbox when you use the PCF8574A.

4.43 Options Monitor

With the monitor options you can select the monitor you use.

There are only a few monitor programs supported.
· Altair 535/537
· Altair 552
· Monitor hex upload

The Altair monitor needs special instructions and uses binary files.
The hex upload feature is meant for monitor programs that work with hex files.

You can upload a file to the target uP from the terminal emulator with the Upload
file option.

For hex file based monitors there are 3 additional options:

62 BASCOM-8051

© 2021 MCS Electronics

o monitor prefix, is sent before the hex file

o monitor suffix, is sent after the hex file upload is completed

The prefix and suffix can contain returns or any ASCII character.
Use {asc} , to imbed an ASCII character. asc=0-255.

For example @{13} for the prefix, will send @ followed by a return.

o monitor delay, must be specified in msec's, and is the delay time for each

line sent.

4.44 Options Printer

These options let you select the printer margins.

Left Margin The left printer margin in mm

Top Margin The top printer margin in mm

Right Margin The right printer margin in mm

Bottom Margin The bottom printer margin in mm

Color Check to print in color.

Wrap Lines Check when you want long lines to be wrapped. This is
convenient when you have long lines of source code that
would otherwise would not fit on the paper.

Print Header Check to print a header with file name and page number

Line Numbers Check to print line numbers

Syntax Check to use syntax highlighting options and colors

4.45 Window cascade

Will cascade all editor windows so they will all be visible.

63BASCOM IDE

© 2021 MCS Electronics

4.46 Window Tile

Window Tile will tile all editor windows.

4.47 Window arrange icons

Will arrange all iconized windows.

4.48 Window minimize all

Will minimize all editor windows.

4.49 Help About

This option shows an about box as displayed below.

Your serial number is shown in the about box.
You will need this when you have questions about the product.
The library version is also shown.
You can compare it with the one from our web site in case you need an update.

Click on the Ok-button to return to the editor.

4.50 Help Index

Will show the help index of BASCOM.

4.51 Help on help

Will bring up help about the Windows help system.

64 BASCOM-8051

© 2021 MCS Electronics

4.52 Help Shop

Action
This option will launch your default web browser and will open the MCS Electronics
Shop.
We have a number of BASCOM-8051 KIT's and affordable 89Cx051 programmers
from Sample Electronics

4.53 Help Forum

Action
This option will launch your default web browser and will open the MCS Forum.
The forum can be used to talk to other BASCOM users. You can get idea's there,
discuss your problems and questions, and you can help other members.

4.54 Help Support

Action
This option will launch your default web browser and will open the MCS Support
system.
The support system can be used to search the knowledge base.

4.55 Help Credits

Will launch this help file and show this topic.

MCS would like to thank the following people who have contributed to BASCOM
development :

· Peter Averill from the Victoria University TAFE. Peter designed both the TAFE
AT89C2051 programmer and the software to support it.

· Antti from Silicon Studio Ltd. Antti designed the BlowIT ATA89C2051
programmer and software to support it.

· Jakub Jiricek, he designed the SPI-programmer and software to support it.
· Francois du Plessis, he wrote a Windows version of Jacub's SPI-programmer

software.
· Henry Arndt (DL2TM) , he provided me with the source for his popular Atmel

Programmer.

Part

V

66 BASCOM-8051

© 2021 MCS Electronics

5 Language fundamentals

5.1 Language fundamentals

Characters from the BASCOM character set are put together to form labels,
keywords, variables and operators.
These in turn combine to form statements that make up a program.
This chapter describes the character set and the format of BASCOM program lines.
In particular, it discusses:

· The specific characters in the character set and the special meanings of some
characters.

· The format of a line in a BASCOM program.
· Line labels.
· Program line length.

Character Set
The BASCOM BASIC character set consists of alphabetic characters, numeric
characters, and special characters.
The alphabetic characters in BASCOM are the uppercase letters (A-Z) and lowercase
letters (az) of the alphabet.
The BASCOM numeric characters are the digits 0-9.
The letters can be used as parts of hexadecimal numbers.
The following characters have special meanings in BASCOM statements and
expressions:

Character Description

ENTER Terminates input of a line

Blank (or space)

' Single quotation mark (apostrophe)

* Asterisks (multiplication symbol)

+ Plus sign

, Comma

- Minus sign

. Period (decimal point)

/ Slash (division symbol) will be handled as \

: Colon

" Double quotation mark

; Semicolon

< Less than

= Equal sign (assignment symbol or relational operator)

> Greater than

\ Backslash (integer/word division symbol)

The BASCOM program line
BASCOM program lines have the following syntax:
[[line-identifier]] [[statement]] [[:statement]] ... [[comment]]

67Language fundamentals

© 2021 MCS Electronics

Using Line Identifiers
BASCOM support one type of line-identifier; alphanumeric line labels:
An alphanumeric line label may be any combination of from 1 to 32 letters and
digits, starting with a letter and ending with a colon.
BASCOM keywords are not permitted. The following are valid alphanumeric line
labels:
Alpha:
ScreenSUB:
Test3A:
Case is not significant. The following line labels are equivalent:
alpha:
Alpha:
ALPHA:
Line labels may begin in any column, as long as they are the first characters other
than blanks on the line.
Blanks are not allowed between an alphabetic label and the colon following it.
A line can have only one label.

BASCOM Statements
A BASCOM statement is either " executable" or " nonexecutable" .
An executable statement advances the flow of a programs logic by telling the
program what tot do next.
Non executable statement perform tasks such as allocating storage for variables,
declaring and defining variable types.
The following BASCOM statements are examples of non executable statements:

· REM or (starts a comment)
· DIM

A " comment" is a nonexecutable statement used to clarify a programs operation
and purpose.
A comment is introduced by the REM statement or a single quote character(').
The following lines are equivalent:
PRINT " Quantity remaining" : REM Print report label.
PRINT " Quantity remaining" ' Print report label.
More than one BASCOM statement can be placed on a line, but colons(:) must
separate statements, as illustrated below.
FOR I = 1 TO 5 : PRINT " Gday, mate." : NEXT I

BASCOM LineLength
If you enter your programs using the built-in editor, you are not limited to any line
length, although it is advised to shorten your lines to 80 characters for clarity.

Data Types
Every variable in BASCOM has a data type that determines what can be stored in
the variable. The next section summarizes the elementary data types.

Elementary Data Types
· Bit (1/8 byte)
· Byte (1 byte)

Bytes are stores as unsigned 8-bit binary numbers ranging in value from 0 to
255.

· Integer (two bytes).

68 BASCOM-8051

© 2021 MCS Electronics

Integers are stored as signed sixteen-bit binary numbers ranging in value from
-32,768 to +32,767.

· Word (two bytes).
Words are stored as unsigned sixteen-bit binary numbers ranging in value from
0 to 65535.

· Long (four bytes).
Longs are stored as signed 32-bit binary numbers ranging in value from -
2147483648 to 2147483647.

· Single
Singles are stored as signed 32 bit binary numbers.

· String (up to 254 bytes).
Strings are stored as bytes and are terminated with a 0-byte.
A string dimensioned with a length of 10 bytes will occupy 11 bytes.

Variables can be stored internal (default) or external.

Variables
A variable is a name that refers to an object--a particular number.
A numeric variable can be assigned only a numeric value (either integer, word, byte
long, single or bit).
The following list shows some examples of variable assignments:

· A constant value:
 A = 5
 C = 1.1

· The value of another numeric variable:
 abc = def
 k = g

· The value obtained by combining other variables, constants, and
operators:

 Temp = a + 5
 Temp = C + 5

Variable Names
A BASCOM variable name may contain up to 32 characters.
The characters allowed in a variable name are letters and numbers.
The first character in a variable name must be a letter.
A variable name cannot be a reserved word, but embedded reserved words are
allowed.
For example, the following statement is illegal because AND is a reserved word.
AND = 8
However, the following statement is legal:
ToAND = 8
Reserved words include all BASCOM commands, statements, function names,
internal registers and operator names.
(see BASCOM Reserved Words , for a complete list of reserved words).
You can specify a hexadecimal or binary number with the prefix &H or &B.
a = &HA , a = &B1010 and a = 10 are all the same.
Before assigning a variable you must tell the compiler about it with the DIM
statement.
Dim b1 As Bit, I as Integer, k as Byte , s As String * 10
You can also use DEFINT , DEFBIT , DEFBYTE and/or DEFWORD .
For example DEFINT c tells the compiler that all variables that are not dimensioned
and that are beginning with the character c are of the Integer type.

Expressions and Operators

282

136 136 136 136

69Language fundamentals

© 2021 MCS Electronics

This chapter discusses how to combine, modify, compare, or get information about
expressions by using the operators available in BASCOM.
Anytime you do a calculation you are using expressions and operators.
This chapter describes how expressions are formed and concludes by describing the
following kind of operators:

· Arithmetic operators, used to perform calculations.
· Relational operators, used to compare numeric values.
· Logical operators, used to test conditions or manipulate individual bits.
· Functional operators, used to supplement simple operators.

Expressions and Operators
An expression can be a numeric constant, a variable, or a single value obtained by
combining constants, variables, and other expressions with operators.

Operators perform mathematical or logical operations on values. The operators
provides by BASCOM can be divided into four categories, as follows:
1. Arithmetic
2. Relational
3. Logical
4. Functional

Arithmetic

Arithmetic operators are +, - , * and \.
· Integer

 Integer division is denoted by the backslash (\).
 Example: Z = X \ Y

· Modulo Arithmetic
 Modulo arithmetic is denoted by the modulus operator MOD.
 Modulo arithmetic provides the remainder, rather than the quotient, of an
integer division.
 Example: X = 10 \ 4 : remainder = 10 MOD 4

· Overflow and division by zero
Division by zero, produces an error.
At this moment there is no message, so you have to insure yourself that such
wont happen.

Relational Operators
Relational operators are used to compare two values as shown in the table below.
The result can be used to make a decision regarding program flow.

Operator Relation Tested Expression

= Equality X = Y

<> Inequality X <> Y

< Less than X < Y

> Greater than X > Y

<= Less than or equal to X <= Y

>= Greater than or equal to X >= Y

70 BASCOM-8051

© 2021 MCS Electronics

Logical Operators
Logical operators perform tests on relations, bit manipulations, or Boolean
operators.
There are four operators in BASCOM, they are :

Operator Meaning

NOT Logical complement

AND Conjunction

OR Disjunction

XOR Exclusive or

It is possible to use logical operators to test bytes for a particular bit pattern.
For example the AND operator can be used to mask all but one of the bits
of a status byte, while OR can be used to merge two bytes to create a particular
binary value.
Example
A = 63 And 19
PRINT A
A = 10 Or 9
PRINT A

Output
16
11

Floating point
Single numbers conform to the IEEE binary floating point standard.
An eight-bit exponent and 24 bit mantissa are supported.
Using four bytes, the format is shown below:

31 30________23 22______________________________0
s exponent mantissa

The exponent is biased by 128. Above 128 are positive exponents and below are
negative. The sign bit is 0 for positive numbers and 1 for negative. The mantissa is
stored in hidden bit normalized format so that 24 bits of precision can be obtained.

All mathematical operations are supported by the single.
You can also convert a single to an integer or word or vise versa:

Dim I as Integer, S as Single
S = 100.1 'assign the single
I = S 'will convert the single to an integer
Take a look at the single.bas example for more information.

Arrays
An array is a set of sequentially indexed elements having the same type. Each
element of an array has a unique index number that identifies it. Changes made to
an element of an array do not affect the other elements.
The index must be a numeric constant, a byte, an integer or a word. This means
that an array can hold 65535 elements as a maximum. The minimum value is 1 and
not zero as in QB.

71Language fundamentals

© 2021 MCS Electronics

Arrays can be used on each place where a 'normal' variable is expected but there
are a few exceptions.
These exceptions are shown in the help topics.
Note that there are no BIT arrays in BASCOM-8051.
Example:
Dim a(10) as byte 'make an array named a, with 10 elements (1 to 10)
Dim c as Integer
For C = 1 To 10
 a(c) = c 'assign array element
 Print a(c) 'print it
Next

Strings
Strings can be up to 254 characters long in BASCOM.
To save memory you must specify how long each string must be with the DIM
statement.

Dim S As String * 10
This will reserve space for the string S with a length of 10 bytes. The actual length
is 11 bytes because a nul(0) is used to terminate the string.

You can concatenate string with the + sign.
Dim S As String * 10 , Z As String * 10
S = "test"
Z = S + "abc" + var

In QB you can assign a string with a value and add the original string (or a part of
it) too :
S = "test"
S = "a" + s

This will result in the string "atest"
In BASCOM-8051 this is NOT possible because this would require a copy of the
string.
In BASCOM the string S is assigned with "a" and on that moment the original string
S is destroyed. So you must make a copy of the string yourself in the event you
need this functionality.

Part

VI

73BASCOM Language Reference

© 2021 MCS Electronics

6 BASCOM Language Reference

6.1 BASCOM Statements

-1-

1WRESET, 1WREAD, 1WWRITE
1WSEARCHFIRST , 1WSEARCHNEXT , 1WIRECOUNT

-COMPILER DIRECTIVES-

#IF
#ELSE
#ENDIF
$ASM - $END ASM
$INCLUDE
$BAUD
$BGF
$CRYSTAL
$DEFAULT XRAM
$IRAMSTART
$LARGE
$LCD
$MAP
$NOBREAK
$NOINIT
$NONAN
$NONULL
$NORAMCLEAR
$NOSP
$OBJ
$RAMSIZE
$RAMSTART
$REGFILE
$ROMSTART
$SERIALINPUT
$SERIALINPUT2LCD
$SERIALOUTPUT
$SIM

-A-

ABS
ALIAS
ASC
AVG

-B-

BITWAIT
BCD
BREAK

-C-
CALL
CLOSE

79

81 83 80

76

77

78

84

89

85

85

87

88

90

90

91

93

93

94

94

95

95

96

96

97

99

100

100

101

101

102

103

105

104

106

106

108

108

109

109

194

74 BASCOM-8051

© 2021 MCS Electronics

CLS
CHR
CONFIG
CONST
COUNTER
CPEEK
CURSOR

-D-
DATA
DEBOUNCE
DECR
DECLARE
DEFINT
DEFBIT
DEFBYTE
DEFLCDCHAR
DEFWORD
DELAY
DIM
DISABLE
DISPLAY
DO

-E-
ELSE
ENABLE
END
END IF
ERASE
EXIT

-F-
FOR
FOURTHLINE
FUSING

-G-
GET
GETAD
GETAD2051
GETRC
GETRC5
GOSUB
GOTO

-H-

HEX
HEXVAL
HIGH
HIGHW
HOME

-I-
I2CRECEIVE
I2CSEND
I2CSTART
I2CSTOP
I2CRBYTE

111

110

112

112

129

130

131

132

133

134

135

136

136

136

136

136

137

137

139

139

140

140

141

142

142

143

144

144

145

146

147

148

149

154

156

158

159

159

160

160

161

162

162

163

164

164

164

75BASCOM Language Reference

© 2021 MCS Electronics

I2CWBYTE
IDLE
IF
INCR
INKEY
INP
INPUT
INPUTBIN
INPUTHEX
INSTR

-L-
LCASE
LCD
LCDINIT
LCDHEX
LEFT
LEN
LOAD
LOCATE
LOOKUP
LOOKUPSTR
LOOP
LOW
LOWW
LOWERLINE

-M-
MAKEDEC
MAKEBCD
MAKEINT
MAX
MID
MIN
MOD

-N-
NEXT

-O-
ON Interrupt
ON Value
OPEN
OUT

-P-

P1,P3
PEEK
POKE
PSET
POWERDOWN
PRINT
PRINTBIN
PRINTHEX
PRIORITY
PUT

-R-
READ
READMAGCARD
REM
REPLACE

164

165

165

167

167

169

169

171

172

173

174

174

177

178

179

179

180

181

181

182

140

183

184

184

185

185

186

186

187

188

188

192

192

193

194

196

197

198

198

203

199

199

200

201

202

203

204

205

207

207

76 BASCOM-8051

© 2021 MCS Electronics

RESET
RESTORE
RETURN
RIGHT
RND
ROTATE

-S-
SELECT
SET
SHIFT
SHIFTCURSOR
SHIFTIN
SHIFTOUT
SHIFTLCD
SHOWPIC
SOUND
SPACE
SPC
SPIIN
SPIOUT
START
STOP
STOP TIMER
STR
STRING
SUB
SWAP

-T-
THEN
THIRDLINE
TIMEOUT
TO

-U-
UCASE
UPPERLINE

-V-
VAL
VARPTR

-W-
WAIT
WAITKEY
WAITMS
WHILE .. WEND

6.2 #IF

Action
Conditional compilation directive that tests for a condition.

Syntax
#IF test
[#ELSE]

208

208

209

210

210

211

212

212

213

213

214

214

215

216

216

218

219

220

221

221

222

222

224

224

225

226

165

226

103

144

227

228

228

229

229

230

230

232

77BASCOM Language Reference

© 2021 MCS Electronics

#ENDIF

Remarks
test An expression to test for. The expression may contain defined

constants.

Conditional compilation is used to include parts of your program. This is a
convenient way to build different files depending on some constant values.
Note that unlike the IF statement, the #IF directive does not expect a THEN.
You may nest conditions to 25 levels.
The use of #ELSE is optional.

See Also
#ELSE , #ENDIF

Example
Const DEMO = 1 ' 0 = normal , 1= demo
#If Demo
 Print "Demo program"
#Else
 Print "Full version"
#Endif

Since the constant DEMO is assigned with the value 1, the compiler will compile only
the line : Print "Demo program".
Code between #else and #endif is not compiled!
When you change the constant DEMO to 0, the other line will be compiled.

6.3 #ELSE

Action
Conditional compilation directive that tests for a NOT condition.

Syntax
#IF test
#ELSE
#ENDIF

Remarks
test An expression to test for. The expression may contain defined constants.

Conditional compilation is used to include parts of your program. This is a
convenient way to build different files depending on some constant values.
Note that unlike the IF statement, the #IF directive does not expect a THEN.
You may nest conditions to 25 levels.
The use of #ELSE is optional. The code between #ELSE and #ENDIF will be
compiled when the expression is not true.

77 78

78 BASCOM-8051

© 2021 MCS Electronics

See Also
#IF , #ENDIF

Example
CONST DEMO = 1 ' 0 = normal , 1= demo
#IF Demo
 Print "Demo program"
#ELSE
 Print "Full version"
#ENDIF

Since the constant DEMO is assigned with the value 1, the compiler will compile only
the line : Print "Demo program" . Code between #else and #endif is not compiled!
When you change the constant DEMO to 0, the other line will be compiled.

6.4 #ENDIF

Action
Conditional compilation directive that ends a test.

Syntax
#IF test
[#ELSE]
#ENDIF

Remarks
Test An expression to test for. The expression may contain defined constants.

Conditional compilation is used to include parts of your program. This is a
convenient way to build different files depending on some constant values.
Note that unlike the IF statement, the #IF directive does not expect a THEN.
You may nest conditions to 25 levels.
The use of #ELSE is optional.
Note that #ENDIF must be written as #ENDIF, not as #END IF

See Also
#IF , #ELSE

Example
CONST DEMO = 1 ' 0 = normal , 1= demo
#IF Demo
 Print "Demo program"
#ELSE
 Print "Full version"
#ENDIF
Since the constant DEMO is assigned with the value 1, the compiler will compile only
the line : Print "Demo program" . Code between #else and #endif is not compiled!

When you change the constant DEMO to 0, the other line will be compiled.

76 78

76 78

79BASCOM Language Reference

© 2021 MCS Electronics

6.5 1WIRE

Action
These routines can be used to communicate with Dallas Semiconductors 1Wire-
devices.

Syntax 1 for use with the CONFIG 1WIRE statement
1WRESET
1WWRITE var1 [, bytes]
var2 = 1WREAD([bytes])

Syntax 2 for use with multiple devices/pins
1WRESET pin
1WWRITE var1 [, bytes] pin
var2 = 1WREAD([bytes] [, pin])
var2 = 1WREAD([pin])

Pin is the port pin to use with the device such as P1.1

Remarks
1WRESET Reset the 1WIRE bus. The error variable ERR will return 1 if an

error occurred.

1WWRITE var1 Sends the value of var1 to the bus.

Optional is the number of bytes that mist be sent. var1 is a
numeric variable or constant.

var2 = 1WREAD
()

Reads a byte from the bus and places it into var2.

Optional is the number of bytes that must be read. var2 is a
number variable.

Example
'--
' 1WIRE.BAS
' demonstrates 1wreset, 1wwrite and 1wread()
' pull-up of 4K7 required to VCC from P.1
' DS2401 serial button connected to P1.1
'--
Config 1wire = P1.1 'use this pin
Dim Ar(8) As Byte , A As Byte , I As Byte

1wreset 'reset the device
Print Err 'print error 1 if error
1wwrite &H33 'read ROM command
For I = 1 To 8
 Ar(i) = 1wread() 'place into array
Next
For I = 1 To 8
 Printhex Ar(i); 'print output
Next
Print
'linefeed

'You can also use multiple pins

80 BASCOM-8051

© 2021 MCS Electronics

'alias the pin first
Tsensor Alias P1.2

'the optional argument specifies the pin to use
1wreset Tsensor 'reset

1wwrite &H33 Tsensor 'write
value to Tsensor
1wwrite Ar(1) , 2 Tsensor 'write 2
bytes to Tsensor
A = 1wread(tsensor) 'return
byte from Tsensor
Ar(1) = 1wread(2 , P1.2) 'read 2
bytes from Tsensor
End

6.6 1WIRECOUNT

Action
This statement returns the number of 1wire devices found on the bus.

Syntax
var2 = 1WIRECOUNT(array)

Remarks

var2 A word variable that is assigned with the number if found 1wire devices
on the bus.

Array A variable or array that should be at least 8 bytes long. It is used to

store the 1wire ID’s while counting.

The 1wireCount function uses the 1wSearchFirst() and 1wSearchNexy functions
internally.

See also
1WIRE , 1WSEARCHFIRST , 1WSEARCHNEXT

Example
'---

' 1wirecount.bas
' (c)1995-2006 MCS Electronics
' demonstration of using multiple devices
'---

'chip we use
$regfile = "89s8252.dat"
'crystal attached
$crystal = 12000000

'baud rate
$baud = 4800

'wait for 500 mili secs
Waitms 500

'the pins we use

79 81 83

81BASCOM Language Reference

© 2021 MCS Electronics

'connect a 4K7 resistor from the data pin to VCC
Config 1wire = P1.0

'we need an array of 8 bytes to hold the result
Dim Ar(8) As Byte
'we also need a counter variable and a word variable
Dim I As Byte , W As Word

'some ids of 1wire chips I tested
' 01 51 B5 8D 01 00 00 56
' 01 84 B3 8D 01 00 00 E5

Print "start"
'get the number of connected 1wire device
W = 1wirecount(ar(1))
'print if there was an error and how many sensors are available
Print "ERR " ; Err ; " count " ; W

'now get the data from the first 1wire device on the bus

Ar(1) = 1wsearchfirst()
'print the ID
For I = 1 To 8
 Printhex Ar(i);
Next
Print

'I assume that there are more than 1 1wire devices
Do
 'get the next device
 Ar(1) = 1wsearchnext()
 For I = 1 To 8
 Printhex Ar(i);
 Next
 Print
Loop Until Err = 1
'when ERR is 1 it means there are no more devices
' IMPORTANT : 1wsearchfirst and next functions do require that you use
the SAME array
'In this example this is ar(1)

'once you know the ID, you can address a specific device
End

6.7 1WSEARCHFIRST

Action
This statement reads the first ID from the 1wire bus into a variable array.

Syntax
var2 = 1WSEARCHFIRST()

Remarks
var2 A variable or array that should be at least 8 bytes long and that will be

assigned with the 8 byte ID from the first 1wire device on the bus.

The 1wireSearchFirst() function must be called once to initiate the ID retrieval
process. After the 1wireSearchFirst() function is used you should use successive

82 BASCOM-8051

© 2021 MCS Electronics

function calls to the 1wireSearchNext function to retrieve other ID's on the bus.

A string can not be assigned to get the values from the bus. This because a null may
be returned as a value and the null is also used as a string terminator.
We advice to use a byte array as shown in the example.

The ERR bit is set when there are no 1wire devices found.

See also
1WIRE , 1WIRECOUNT , 1WSEARCHNEXT

Example
' -
' 1wirecount.bas
' (c) 1995-2006 MCS Electronics
' demonstration of using multiple devices
' -
- - - -
'chip we use
$ r e g f i l e = "89s8252 .da t "
'crystal attached
$ c r y s t a l = 12000000

'baud rate
$baud = 4800

'wait for 500 mili secs
Waitms 500

'the pins we use
'connect a 4K7 resistor from the data pin to VCC
Config 1wire = P1. 0

'we need an array of 8 bytes to hold the result
Dim Ar(8) As Byte
'we also need a counter variable and a word variable
Dim I As Byte , W As Word

'some ids of 1wire chips I tested
' 01 51 B5 8D 01 00 00 56
' 01 84 B3 8D 01 00 00 E5

P r i n t " s t a r t "
'get the number of connected 1wire device
W = 1wirecount(ar(1))
'print if there was an error and how many sensors are available
P r i n t "ERR " ; E r r ; " count " ; W

'now get the data from the first 1wire device on the bus

Ar(1) = 1wsearchfirst()
'print the ID
For I = 1 To 8
 Printhex Ar(i);
Next
P r i n t

'I assume that there are more than 1 1wire devices
Do
 'get the next device
 Ar(1) = 1wsearchnext()
 For I = 1 To 8
 Printhex Ar(i);

79 80 83

83BASCOM Language Reference

© 2021 MCS Electronics

 Next
 P r i n t
Loop U n t i l E r r = 1
'when ERR is 1 it means there are no more devices
' IMPORTANT : 1wsearchfirst and next functions do require that you use
the SAME array
'In this example this is ar(1)

'once you know the ID, you can address a specific device

End

6.8 1WSEARCHNEXT

Action
This statement reads the next ID from the 1wire bus into a variable array.

Syntax
var2 = 1WSEARCHNEXT()

Remarks
var2 A variable or array that should be at least 8 bytes long that will be

assigned with the 8 byte ID from the next 1wire device on the bus.

The 1wireSearchFirst() function must be called once to initiate the ID retrieval
process. After the 1wireSearchFirst() function is used you should use successive
function calls to the 1wireSearchNext function to retrieve other ID's on the bus.

A string can not be assigned to get the values from the bus. This because a null may
be returned as a value and the null is also used as a string terminator.
I would advice to use a byte array as shown in the example.

The ERR variable is set when there are no more devices found.

See also
1WIRE , 1WSEARCHFIRST , 1WIRECOUNT

Example
'--

' 1wirecount.bas
' (c) 1995-2006 MCS Electronics
' demonstration of using multiple devices
'--

'chip we use
$regfile = "89s8252.dat"
'crystal attached
$crystal = 12000000

'baud rate
$baud = 4800

79 81 80

84 BASCOM-8051

© 2021 MCS Electronics

'wait for 500 mili secs
Waitms 500

'the pins we use
'connect a 4K7 resistor from the data pin to VCC
Config 1wire = P1.0

'we need an array of 8 bytes to hold the result
Dim Ar(8) As Byte
'we also need a counter variable and a word variable
Dim I As Byte , W As Word

'some ids of 1wire chips I tested
' 01 51 B5 8D 01 00 00 56
' 01 84 B3 8D 01 00 00 E5

Print "start"
'get the number of connected 1wire device
W = 1wirecount(ar(1))
'print if there was an error and how many sensors are available
Print "ERR " ; Err ; " count " ; W

'now get the data from the first 1wire device on the bus

Ar(1) = 1wsearchfirst()
'print the ID
For I = 1 To 8
 Printhex Ar(i);
Next
Print

'I assume that there are more than 1 1wire devices
Do
 'get the next device
 Ar(1) = 1wsearchnext()
 For I = 1 To 8
 Printhex Ar(i);
 Next
 Print
Loop Until Err = 1
'when ERR is 1 it means there are no more devices
' IMPORTANT : 1wsearchfirst and next functions do require that you use
the SAME array
'In this example this is ar(1)

'once you know the ID, you can address a specific device
End

6.9 $ASM - $END ASM

Action
Start of inline assembly code block.

Syntax
$ASM

Remarks
Use $ASM together with $END ASM to insert a block of assembler code in your
BASIC code.
You can also insert ASM code by preceding the line with the ! sign.

85BASCOM Language Reference

© 2021 MCS Electronics

See also
ASM programming

Example
Dim c as Byte
$ASM
 Mov r0,#{C} ;address of c
 Mov a,#1
 Mov @r0,a ;store 1 into var c
$END ASM
Print c
End

6.10 $BAUD

Action
Instruct the compiler to override the baud rate setting from the options menu.

Syntax
$BAUD = var

Remarks
Var The baud rate that you want to use. Var must be a numeric

constant.

When you want to use a crystal/baud rate that can't be selected from the options,
you can use this compiler directive.
You must also use the $CRYSTAL directive.
These statements always work together.

In the generated report you can view which baud rate is actually generated.
But the baud rate is only shown when RS-232 statements are used like PRINT,
INPUT etc.

See also
$CRYSTAL

Example
$baud = 2400
$crystal = 14000000 ' 14 MHz crystal
Print "Hello"
End

6.11 $BGF

Action
Binds a BASCOM Graphic File into the program for use with Graphic LCD displays.

235

87

87

86 BASCOM-8051

© 2021 MCS Electronics

Syntax
$BGF "file"

Remarks
"file" is the name of the BGF file that is included in the program,
BMP files can be converted with the Tools Graphic Converter .

See also
SHOWPIC

Example
'---

' (c) 1995-2006 MCS Electronics
' GLCD.BAS
' Sample to show support for T6963C based graphic display
' Only 240*64 display is supported with 30 columns(yet)
' At the moment the display can only be used in PORT mode
' Connection :
' P1.0 - P1.7 to DB0-DB7 of LCD
' P3.2 to FS, font select of LCD can be hard wired too
' P3.5 to CE, chip enable of LCD
' P3.4 to CD, code/data select of LCD
' P3.6 to WR of LCD
' P3.7 to RD of LCD
'A future version will allow external data access too which also uses
RD and WR
'The display from www.conrad.com needs a negative voltage for the
contrast.
'I used two 9 V batteries
'---

'configure the LCD display
Config Graphlcd = 240 * 64 , Port = P1 , Ce = P3.5 , Cd = P3.4 , Cols
= 30

'dimension some variables used by the DEMO
Dim X As Byte , Y As Byte

'
Reset P3.2 '8 bit
wide char is 30 columns

'The following statements are supported:
Cls 'will
clear graphic and text
'cls TEXT will clear only the text
'cls GRAPH will clear only the graphic part

'To init the display manual you can use:
'Lcdinit
'But this should not be needed as it is initilised at start up.

'Locate is supported and you can use 1-8 for the row and 1-30 for the
column
Locate 1 , 1

50

216

87BASCOM Language Reference

© 2021 MCS Electronics

'cursor control is the same as for normal LCD
Cursor On Blink

'And to show some text you can use LCD
Lcd "Hello world"
'Note that the cursor position is not adjusted. You can set it with
locate

'Now comes the fun part for using a graphic LCD
'We can display a BMP file. You may use MSPAINT or any other tool that
can create
'a BMP file. With the Graphic converter from the Tools Menu you can
convert the file
'into a BGF file. (BASCOM GRAPHICS FILE). The conversion will convert
all non white
'pixels to BLACK.

'To display the BGF file you use the SHOWPIC statement that needs an X
and Y parameter
'the third param is the label where the data is stored.
'The position must be divideble by 8 because this is the way the
display handles the data

Showpic 0 , 0 , Picture1

'And we use the PSET known from QB to set or reset a single pixel
'A value of 0 means clear the pixel and 1 means set the pixel

'create a block
For X = 0 To 10
 For Y = 0 To 10
 Pset X , Y , 1
 Next
Next

'You could remove it too
For X = 0 To 10
 For Y = 0 To 10 Step 2
 Pset X , Y , 0
 Next
Next

'A simple scope or data logger could be made with PSET !
'We hope to get an AN from an inspired user :-)
End

'label for the picture
Picture1:
'$BGF includes the data from the specified file
$bgf "samples\mcs.bgf"

6.12 $CRYSTAL

Action
Instruct the compiler to override the crystal frequency options setting.

Syntax
$CRYSTAL = var

88 BASCOM-8051

© 2021 MCS Electronics

Remarks
var Frequency of the crystal.

var : Constant.

When you want to use an unsupported crystal/baud rate you can use this compiler
directive.
When you do, you must also use the corresponding $BAUD directive.
These statements always work together.

See also
$BAUD

Example
$baud = 2400
$crystal = 14000000 ' 14 MHz crystal
Print "Hello"
End

6.13 $DEFAULT XRAM

Action
Compiler directive to handle each dimensioned variable as XRAM variable.

Syntax
$DEFAULT XRAM | IRAM

Remarks
When you are using many XRAM variables it make sense to set this option, so you
don't have to type XRAM each time.
To dimension a variable to be stored into IRAM, specify IRAM in that case.

See Also
DIM

Example
$default Xram
Dim X As Integer 'will go to XRAM
Dim Z As Iram Integer 'will be stored in IRAM

6.14 $EXTERNAL

Action
Compiler directive that instructs the compiler to include the specified assembler
routines.

85

85

137

89BASCOM Language Reference

© 2021 MCS Electronics

Syntax
$EXTERNAL myrout [, other]

Remarks
The $EXTERNAL directive is used internally by the compiler in order to enable the
customizing of the assembler routines by the user.
You can use it to include your own assembler routines. At the moment
using $EXTERNAL will always include the routine no matter if it is used or not.

See also
$LIB , LIB Manager

Example
$LIB "mylib.lib"
$EXTERNAL _dec76

6.15 $INCLUDE

Action
Includes an ASCII file in the program at the current position.

Syntax
$INCLUDE "file"

Remarks
file Name of the ASCII file which must contain valid BASCOM statements.

This option can be used if you make use of the same routines in

many programs. You can write modules and include them into your
program.

If there are changes to make you only have to change the module file,
not all your BASCOM programs.

You can only include ASCII files!

Example
'--
' (c) 1995-2006 MCS Electronics
'--
' file: INCLUDE.BAS
' demo: $INCLUDE
'--
Print "INCLUDE.BAS"
$include "123.bas" 'include file that prints
Hello
Print "Back in INCLUDE.BAS"
End

91 51

90 BASCOM-8051

© 2021 MCS Electronics

6.16 $IRAMSTART

Action
Compiler directive to specify starting internal memory location.

Syntax
$IRAMSTART = constant

Remarks
Constant A constant with the starting value (0-255)

See also
$NOINIT , $RAMSTART

Example
$NOINIT
$NOSP
$IRAMSTART = &H60 'first usable memory location
SP = 80
DIM I As Integer

6.17 $LARGE

Action
Instructs the compiler that LCALL statements must be used.

Syntax
$LARGE

Remarks
Internally when a subroutine is called the ACALL statement is used.
The ACALL instruction needs only 2 bytes (the LCALL needs 3 bytes)
The ACALL statement however can only address routines with a maximal offset of
2048 within the page. AT89C2051 chips will have no problems with that.

When code is generated for another uP, the subroutine being called can be further
away and you will receive an error. With the $LARGE statement you instruct the
compiler to use the LCALL statement which can address the full 64K address space.

Example
$LARGE 'I received an error 148 so I need this option

94 99

91BASCOM Language Reference

© 2021 MCS Electronics

6.18 $LIB

Action
Compiler directive that instructs the compiler to look for assembler routines in the
specified LIB file.

Syntax
$LIB "myrout.LIB"

Remarks
The $LIB directive is used internally by the compiler in order to enable the
customizing of the assembler routines by the user.
You can use it to specify your own libraries. You can for example copy the mcs.lib
file to a new file named mylib.lib and delete the content of the mcs.lib file. This way
the compiler will use your routines. The mcs.lib file must exist in the \LIB
subdirectory and that is why you may not delete it.
Always make a backup of the mcs.lib file before you change it.
It is not encouraged to change the mcs.lib file itself other than making a dummy
because updates will contain more asm routines and you have to change everything
for each update.

See also
$EXTERNAL

Example
$LIB "mylib.lib"
$EXTERNAL _dec76

6.19 $LCD

Action
Instruct the compiler to generate code for 8-bit LCD displays attached to the data
bus.

Syntax
$LCD = [&H]address

Remarks
address The address where must be written to, to enable the LCD display.

The db0-db7 lines of the LCD must be connected to the datelines D0-
D7.

The RS line of the LCD must be connected to the address line A0.

On systems with external RAM/ROM it makes more sense to attach the
LCD to the data bus. With an address decoder you can select the LCD
display.

88

92 BASCOM-8051

© 2021 MCS Electronics

See Also
$LCDRS

Example
$lcd = &HA000 'writing to this address will make the E line of
the LCD high.
Cls
Lcd "Hello world"
End

6.20 $LCDRS

Action
Instruct the compiler to generate code for 8-bit LCD displays attached to the data
bus.

Syntax
$LCDRS = [&H]address

Remarks
Address The address where must be written to, to enable the LCD display and

the RS of the LCD.

The db0-db7 lines of the LCD must be connected to the data lines D0-
D7.

The RS line of the LCD must be connected to the address line A0 by
default.

When it is connected to another address line you can specify $LCDRS

On systems with external RAM/ROM it makes more sense to attach the
LCD to the data bus. With an address decoder you can select the LCD
display.

See Also
$LCD

Example
$lcd = &H8000 'writing to this address will make the E line of
the LCD high.

$lcdrs = &H8002 'writing to this address will make the RS line of
the LCD high.

Cls

Lcd "Elektor"

End

92

91

93BASCOM Language Reference

© 2021 MCS Electronics

6.21 $MAP

Action
Generates info in the report file with hexadecimal address of each source line.

Syntax
$MAP

Remarks
For debugging it can be useful to know at which address a source line begins.

See also
NONE

Example
$MAP
Print "Hello"
Print "Test"

Will generate the following section in the report file :

Code map

Line Address(hex)

2 52
3 69
5 80

6.22 $NOBREAK

Action
Instruct the compiler that BREAK statements must not be compiled.

Syntax
$NOBREAK

Remarks
With the BREAK statement, you can generate a reserved opcode that is used by the
simulator to pause the simulation.
When you want to compile without these opcode's you don't have to remove the
BREAK statement: you can use the $NOBREAK statement to achieve the same.

See also
BREAK 109

94 BASCOM-8051

© 2021 MCS Electronics

Example
$nobreak
Break ' this isn't compiled into code so the simulator will
not pause
End

6.23 $NOINIT

Action
Instruct the compiler that no initialization must be performed.

Syntax
$NOINIT

Remarks
BASCOM initializes the processor depending on the used statements.
When you want to handle this by yourself you can specify this with the compiler
directive $NOINIT.
The only initialization that is always done is the setting of the stack pointer and the
initialization of the LCD display (if LCD statements are used).

When you have selected the Altair as a monitor in the Monitor options, the following
code will be generated:

Mov IE,#255

Mov scon,#82
This because the Altair monitor needs this code despite of the $NOINIT. When you
do not want that, you have to select HEX Monitor for example.

See also
$NOSP , $NORAMCLEAR

Example
$NONIT
$NORAMCLEAR
'your program goes here
End

6.24 $NONAN

Action
Compiler directive for changing NAN (not a number) into 0.0

Syntax
$NONAN

96 95

95

95BASCOM Language Reference

© 2021 MCS Electronics

Remarks
A single can return a NAN when it is not considered to be a number.
With the $NONAN directive 0.0 will be returned.

See also
NONE

Example
NONE

6.25 $NONULL

Action
Compiler directive for changing the behavior of the DATA statements.

Syntax
$NONULL = value

Remarks
value 0 for default behavior. And -1 for special behavior

When a string is stored with a DATA statement, a null is added to indicate the string
end. In some situations you might not want this. When you write a custom routine
to work with a long string for example. With $NONULL = -1 , the additional null byte
is not added. To switch back to normal mode use a value of 0.

See also
NONE

Example
$nonull = -1
Lbl:
Data "test" , "this"
Lbl2:
$nonull = 0 'normal mode
Data "test" , "this"

6.26 $NORAMCLEAR

Action
Instruct the compiler that the internal RAM should not be cleared at start up.

Syntax
$NORAMCLEAR

96 BASCOM-8051

© 2021 MCS Electronics

Remarks
BASCOM clears the internal memory after a reset. When you don’t want this

behavior you can use the $NORAMCLEAR compiler directive.

See also
NONE

Example
$NORAMCLEAR
‘your code goes here
End

6.27 $NOSP

Action
Instruct the compiler that the stack pointer must not be set.

Syntax
$NOSP

Remarks
BASCOM initializes the processor depending on the used statements.
When you want to handle this by yourself you can specify this with the compiler
directive $NOINIT.
The only initialization that is always done is the setting of the stack pointer and the
initialization of the LCD display (if LCD statements are used).
With the $NOSP directive the stack will not be initialized either.

See also
$NOINIT

Example
$NOSP
$NOINIT
End

6.28 $OBJ

Action
Includes Intel object code.

Syntax

94

97BASCOM Language Reference

© 2021 MCS Electronics

$OBJ obj

Remarks
obj is the object code to include.
In some cases it can be useful to include object code. This object code can be
generated with other tools.

Example
$OBJ D291 'this is equivalent to SET P1.1

6.29 $RAMSIZE

Action
Specifies the size of the external RAM memory.

Syntax
$RAMSIZE = [&H] size

Remarks
Size Size of external RAM memory chip.

 size : Constant.

See also
$RAMSTART

Example
$ROMSTART = &H4000
$RAMSTART = 0
$RAMSIZE = &H1000
DIM x AS XRAM Byte 'specify XRAM to store variable in XRAM

6.30 $RAMTRON

Action
Tell the compiler to use SPI memory as XRAM.

Syntax
$RAMTRON

Remarks
address The (hex)-address where the data is stored.

Or the lowest address which enables the RAM chip.

99

98 BASCOM-8051

© 2021 MCS Electronics

You can use this option when you want to run your code in systems
with external RAM memory.

Ramtron (www.ramtron.com) sell EEPROM's that are as fast as normal RAM chips.
They can be written billions of times. The $ramtron directive will use such as
ramtron device as xram device. This only works for the AT89S8252. You only add a
ramtron EEPROM to the hardware SPI lines and when you dim a variable as XRAM,
the EEPROM will be used to store and retrieve the data.

This is a convenient way to add more memory without adding an address decoder
and a RAM chip. Since the EEPROM is housed in a 8 pins chip it will make your
design simple.
Note however that it is best practice that writing to such a XRAM variable must not
be excessive. The data sheet of the Ramtron chips show that you can write it many
times and in effect it will take years until you reach the limit.

Note that $RAMTRON does not need a parameter.

ASM
When XRAM is written with Movx @dptr,a , a call will be made to _WriteRamtron.
Nothing is destroyed or returned.
When XRAM is read with Movx a,@dptr , a call will be made to _ReadRamtron. Value
is returned in ACC as movx a,@dptr would do too.
Both routines are in the mcs.lib file. Both routines call _Wait_Spif to wait for the
SPI, SPIF bit.

Example
'---

' (c) 1995-2006 MCS Electronics

' RAMTRON.BAS

' This example shos how to use the www.ramtron.com eeprom

' to be used a XRAM

'---

'it works only for the 8252

$regfile = "89s8252.dat"

'tell the compiler about ramtron

'THIS SAMPLE WILL NOT SIMULATE beause of the $RAMTON directive

'Suggestion is to add the directive when you simulated your program

$ramtron

'dim some variables

Dim X As Byte , X1 As Byte

'Now dim XRAM. This will be stored in the Ramtron devic

Dim Z(10) As Xram Byte

99BASCOM Language Reference

© 2021 MCS Electronics

Wait 1

'I used P1.3 for the CS so the mcs.lib also uses this pin

'P1.4 could be used too but it needs a change in the mcs.lib

'This sample works actually!

'But since I also have code like *+4 it will not work always

'I need to rewrite that code. Let me know when some routines dont work

'with the $ramtron directive

'fill the data

For X = 1 To 10

 Z(x) = X

Next

'print the data

For X = 1 To 10

 Print Z(x)

Next

End

6.31 $RAMSTART

Action
Specifies the location of the external RAM memory.

Syntax
$RAMSTART = [&H]address

Remarks
address The (hex)-address where the data is stored.

Or the lowest address which enables the RAM chip.

You can use this option when you want to run your code in systems
with external RAM memory.

Address must be a numeric constant.

See also
$RAMSIZE

Example
$ROMSTART = &H4000
$RAMSTART = 0
$RAMSIZE = &H1000

97

100 BASCOM-8051

© 2021 MCS Electronics

6.32 $REGFILE

Action
Instructs the compiler to use the specified register file.

Syntax
$REGFILE = "file"

Remarks
File The name of the register file to use.

The $REGFILE statement must be placed before any other executable statements or
compiler directives.

See also
NONE

Example
'comment is no problem before the $REGFILE statement
$REGFILE = "8052.DAT" 'use the 8052.DAT file

6.33 $ROMSTART

Action
Specifies the location of the ROM memory.

Syntax
$ROMSTART = [&H] address

Remarks
address The (hex)-address where the code must start.

Default is 0. This value will be used when $ROMSTART is not
specified.

You can use this option when you want to test the code in RAM.

The code must be uploaded and placed into the specified address and
can be called from a monitor program.

The monitor program must relocate the interrupts to the correct
address! When $ROMSTART = &H4000 is specified the monitor
program must perform a LJMP instruction. For address 3 this must be
&H4003. Otherwise interrupts can not be handled correctly. But that
is up to the monitor program.

101BASCOM Language Reference

© 2021 MCS Electronics

See also
$RAMSTART

Example
$ROMSTART = &H4000 'ROM enabled at 4000 hex

6.34 $SERIALINPUT

Action
Specifies that serial input must be redirected.

Syntax
$SERIALINPUT = label

Remarks
Label The name of the assembler routine that must be called when an

character is needed from the INPUT routine. The character must be
returned in ACC.

With the redirection of the INPUT command, you can use your own routines.
This way you can use other devices as input devices.
Note that the INPUT statement is terminated when a RETURN code (13) is received.

See also
$SERIALOUTPUT

Example
$SERIALINPUT = Myinput
'here goes your program
END
!myinput:
;perform the needed actions here
 mov a, sbuf ;serial input buffer to acc
ret

6.35 $SERIALINPUT2LCD

Action
This compiler directive will redirect all serial input to the LCD display instead of
echoing to the serial port.

Syntax
$SERIALINPUT2LCD

Remarks

99

102

102 BASCOM-8051

© 2021 MCS Electronics

You can also write your own custom input or output driver with the $SERIALINPUT
and $SERIALOUTPUT statements, but the $SERIALINPUT2LCD is handy when you
use a LCD display.

See also
$SERIALINPUT , $SERIALOUTPUT

Example
$serialinput2lcd
Dim V As Byte
Cls
Input "Number " , V 'this will go to the LCD
display

6.36 $SERIALOUTPUT

Action
Specifies that serial output must be redirected.

Syntax
$SERIALOUTPUT = label

Remarks
label The name of the assembler routine that must be called when a

character is sent to the serial buffer (SBUF).

The character is placed into ACC.

With the redirection of the PRINT and other serial output related commands, you
can use your own routines.
This way you can use other devices as output devices.

See Also
$SERIALINPUT

Example
$SERIALOUTPUT = MyOutput
'here goes your program
END
!myoutput:
;perform the needed actions here
 mov sbuf, a ;serial output buffer (default)
ret

101 102

101

103BASCOM Language Reference

© 2021 MCS Electronics

6.37 $SIM

Action
Generates code without the actual waiting loops in order to speed up the simulator.

Syntax
$SIM

Remarks
When simulating the WAIT statement, you will experience that it takes a long time
to execute. You can also switch off the updating of variables/source which costs
time, but an alternative is the $SIM directive.

You must remove the $SIM statement when you want to place your program into a
chip/EPROM.

See also
BREAK

Example
$SIM 'don't make code for WAIT and WAITMS
WAIT 2 'the simulator is faster now

6.38 $TIMEOUT

Action
Compiler directive to specify that the TIMEOUT option is used with serial input.

Syntax
$TIMEOUT

Remarks
$TIMEOUT will modify the serial input routine so that it enables you to use the
TIMEOUT with the INPUT, INPUTBIN, INPUTHEX etc. statements.

See also
INPUT , GET

Example
$TIMEOUT
DIM Name as string * 10
REM Now we can use theTIMEOUT option
INPUT "Name " , name TIMEOUT = 100000 'enable time out
INPUT "Name ", name 'wait until <13> pressed.

109

169 203

104 BASCOM-8051

© 2021 MCS Electronics

6.39 $WAIT

Action
Will insert a one second delay in the startup code.

Syntax
$WAIT

Remarks
When using the AT89C8252 ISP facility it is needed that the chip waits 1 second
after reset. Otherwise it can occur that the chip can not be programmed serial
anymore.
Do not confuse $WAIT with the WAIT statement.
$WAIT is only needed for the AT89C8252 !

See also
NONE

Example
$WAIT 'for at89c8252 only

6.40 ALIAS

Action
Indicates that the variable can be referenced with another name.

Syntax
newvar ALIAS oldvar

Remarks
Oldvar Name of the variable such as P1.1

Newvar New name of the variable such as direction

Aliasing port pins can give the pin names a more meaningful name.
You can also ALIAS a variable: M ALIAS var.0 for example.

See also
CONST 112

105BASCOM Language Reference

© 2021 MCS Electronics

Example
Direction Alias P1.1 'now you can refer to P1.1
with the variable direction
Set Direction 'has the same effect as SET
P1.1

Dim A As Byte
M Alias A.0
N Alias A.1
Set M
Set N
If M = N Then
 Print "Both bits are set"
End If
End

6.41 ABS

Action
Returns the absolute value of a numeric variable.

Syntax
var = ABS(var2)

Remarks
var Variable that is assigned the absolute value of var2. Var must be a

numeric variable.

Var2 The source variable to retrieve the absolute value from. Var2 must be
an integer or long.

The absolute value of a number is always positive.

See also
NONE

Example
Dim a as Integer, c as Integer
a = -1000
c = Abs(a)
Print c
End

Output
1000

106 BASCOM-8051

© 2021 MCS Electronics

6.42 ASC

Action
Convert a string into its ASCII value.

Syntax
var = ASC(string)

Remarks
var Target variable that is assigned.

String String variable or constant to retrieve the ASCII value from.

var : Byte, Integer, Word, Long.
string : String, Constant.

Note that only the first character of the string will be used.
When the string is empty, a zero will be returned.

See also
CHR

Example
Dim A As Byte , S As String * 10
S = "Abc"
A = Asc(s)
Print A
End

Output
65

6.43 AVG

Action
Returns the average value of a byte array.

Syntax
var = AVG(ar(1))

Remarks
Var Numeric variable that will be assigned with the lowest value of the

array.

ar() The first array element of the array to return the lowest value of.

110

107BASCOM Language Reference

© 2021 MCS Electronics

At the moment AVG() works only with BYTE arrays.
Support for other data types will be added too.

See also
MAX , MIN

Example
Dim ar(10) As Byte
Dim bP as Byte
For bP = 1 to 10
 ar(bP) = bP
Next
bP = Avg(ar(1))
Print bP
End

6.44 BAUD

Action
Instruct the compiler to set a new baud rate at run time.

Syntax
BAUD = var

Remarks
Var The baud rate that you want to use.

var : Constant.

When you want to use a crystal/baud rate that can't be selected from the options,
you can assign this special variable.
Do not confuse it with the $BAUD directive!

See also
$CRYSTAL , $BAUD

Example
$BAUD = 2400
$CRYSTAL = 14000000 ' 14 MHz crystal
PRINT "Hello"
BAUD = 9600
Print "Hello"
END

186 188

85

87 85

108 BASCOM-8051

© 2021 MCS Electronics

6.45 BCD

Action
Converts a variable into its BCD value.

Syntax
PRINT BCD(var)
LCD BCD(var)

Remarks
Var Variable to convert. This must be a numeric variable or constant.

When you want to use a I2C clock device which stores its values as BCD values you
can use this function to print the value correctly.
BCD() will displays values with a trailing zero.

The BCD() function is intended for the PRINT/LCD statements.
Use the MAKEBCD function to convert variables.

See also
MAKEBCD , MAKEDEC

Example
Dim A As Byte
A = 65
Lcd A
Lowerline
Lcd Bcd(a)
End

6.46 BITWAIT

Action
Wait until a bit is set or reset.

Syntax
BITWAIT x SET | RESET

Remarks
x Bit variable or internal register like P1.x , where x ranges form 0-7.

When using bit variables be sure that they are set/reset by software.
When you use internal registers that can be set/reset by hardware such as P1.0 this
doesn't apply.

185 185

109BASCOM Language Reference

© 2021 MCS Electronics

See also
NONE

Example
Dim A As Bit
Bitwait A , Set 'wait until bit a is set
Bitwait P1.7 , Reset 'wait until bit 7 of Port 1
is 0.
End

ASM
BITWAIT P1.0 , SET will generate :
Jnb h'91,*+0

BITWAIT P1.0 , RESET will generate :
Jb h'91,*+0

6.47 BREAK

Action
Generates a reserved opcode to pause the simulator.

Syntax
BREAK

Remarks
You can set a breakpoint in the simulator but you can also set a breakpoint from
code using the BREAK statement.
Be sure to remove the BREAK statements when you debugged your program or use
the $NOBREAK directive.

The reserved opcode used is A5.

See also
$NOBREAK

Example
PRINT "Hello"
BREAK 'the simulator will pause now
End

6.48 CALL

Action
Call and execute a subroutine.

93

110 BASCOM-8051

© 2021 MCS Electronics

Syntax
CALL Test [(var1, var-n)]

Remarks
var1 Any BASCOM variable or constant.

var-n Any BASCOM variable or constant.

Test Name of the subroutine. In this case Test

With the CALL statement you can call a procedure or subroutine.
As much as 10 parameters can be passed but you can also call a subroutine without
parameters.
For example : Call Test2

The call statement enables you to implement your own statements.

You don't have to use the CALL statement:
Test2 will also call subroutine test2

When you don't supply the CALL statement, you must leave out the parenthesis.
So Call Routine(x,y,z) must be written as Routine x,y,z

See also
DECLARE , SUB

Example
Dim A As Byte , Bb As Byte
Declare Sub Test(bb As Byte)
A = 65
Call Test(a) 'call test with parameter A
Test A 'alternative call
End

Sub Test(bb As Byte) 'use the same variable as the
declared one
 Lcd Bb 'put it on the LCD
 Lowerline
 Lcd Bcd(bb)
End Sub

6.49 CHR

Action
Convert a byte, Integer/Word variable or a constant to a character.

Syntax
PRINT CHR(var)
s = CHR(var)

135 225

111BASCOM Language Reference

© 2021 MCS Electronics

Remarks
Var Byte, Integer/Word variable or numeric constant.

S A string variable.

When you want to print a character to the screen or the LCD display,
you must convert it with the CHR() function.

See also
ASC

Example
Dim A As Byte
A = 65
Lcd A
Lowerline
Lcdhex A
Lcd Chr(a)
End

6.50 CLS

Action
Clear the LCD display and set the cursor home.

Syntax
CLS

Syntax for graphic LCD
CLS TEXT
CLS GRAPH
CLS BOTH

Remarks
Clearing the LCD display does not clear the CG-RAM in which the custom characters
are stored.

See also
$LCD , LCD

Example
Cls
Lcd "Hello"
Wait 5
Cls
End

106

91 174

112 BASCOM-8051

© 2021 MCS Electronics

6.51 CONST

Action
Declares a symbolic constant.

Syntax
CONST symbol = value

Remarks
symbol The name of the symbol.

Value The value to assign to the symbol.

Assigned constants consume no program memory.
The compiler will replace all occurrences of the symbol with the assigned value.
Value may also be an expression that uses other defined constants.
The functions that may be used for the expressions are : ASC , ABS, ATN, COS , EXP
, FIX, INT , LOG, RND , SGN , SIN ,SQR , TAN.
Operators are : AND, OR ,XOR +, - , / , \ , ^ , * , NOT , > , < , = , >= , <=,<> ,
(,)

See also
DIM

Example
'--
' (c) 1995-2006 MCS Electronics
' CONST.BAS
'--
Dim A As Const 5 'declare a as a constant
Dim B1 As Const &B1001
Dim S As Single
'Or use the new preferred syntax
Const Cbyte = &HF
Const Cint = -1000
Const Csingle = 1.1
Const Cstring = "test"

S = Csingle
Print S ; " " ; Cstring
Waitms A 'wait for 5 milliseconds
Print A
Print B1
End

6.52 CONFIG

The config statement configures all kind of hardware related statements.
Select one of the following topics to learn more about a specific config statement.

CONFIG TIMER0, TIMER1

137

127

113BASCOM Language Reference

© 2021 MCS Electronics

CONFIG TIMER2 (for 8052 compatible chips)
CONFIG LCD
CONFIG LCDBUS
CONFIG LCDPIN
CONFIG BAUD
CONFIG 1WIRE
CONFIG SDA
CONFIG SCL
CONFIG DEBOUNCE
CONFIG WATCHDOG
CONFIG SPI
CONFIG I2CDELAY
CONFIG MICROWIRE
CONFIG SERVOS
CONFIG ADUC812
CONFIG GETRC
CONFIG PRINT
CONFIG GRAPHLCD

6.53 CONFIG 1WIRE

Action
Configure the pin to use for 1WIRE statements.

Syntax
CONFIG 1WIRE = pin

Remarks
pin The port pin to use such as P1.0

See also
1WRESET , 1WREAD , 1WWRITE

Example
Config 1WIRE = P1.0 'P1.0 is used for the 1-wire bus
1WRESET 'reset the bus

6.54 CONFIG ADUC812

Action
Configures the ADUC812 microprocessor.

Syntax for ADC
Config ADUC812 = ADCON , MODE = mode, CLOCK = clock , AQUISITION =
aq , TIMER2 = tm , EXTRIG = value

Syntax for DAC

288

121

122

121

115

113

125

124

116

128

126

116

123

125

113

117

123

117

79 79 79

114 BASCOM-8051

© 2021 MCS Electronics

Config ADUC812 = DAC , MODE = mode, RANGE0 = r0 , RANGE1 = r1 ,
CLEAR0 = clr0 , CLEAR1 = clr1 , SYNC = sync, POWER0 = pwr0, POWER1 =
pwr1

Remarks ADC
mode POWERDOWN, NORMAL, PDNE, STANDBY.

PDNE means POWERDOWN if not executing a conversion cycle.

clock This is a constant that specifies the clock division of the master
clock. It may be 1,2,4 or 8.

An ADC conversion will require 16 ADC clocks in addition to the
selected number of acquisition clocks.

aq This is a constant that specifies the time available for the input/track
hold amplifier to acquire the input signal.

It may be in range from 1-4. 1 Acquisition clock is enough for an
impedance up to 8K

tm2 The TIMER2 can be ENABLED or DISABLED. When enabled the
timer2 overflow serves as a trigger for the AD conversion.

value The external trigger may be ENABLED or DISABLED. When enabled
the external pin 23 (CONVST) can start the conversion while it is
low.

Remarks DAC
Mode The DAC can be in 8 bit mode or 12 bit mode. So the parameter may

be 8 or 12. Both DACS are set with this parameter.

r0 The DAC0 range can be set to VDD or VREF. With VDD the range is
from 0-VDD. For VREF it is 0-VREF.

r1 The DAC1 range can be set to VDD or VREF. With VDD the range is
from 0-VDD. For VREF it is 0-VREF

clr0 This parameter when TRUE will clear the DAC0. This will set the
output voltage to 0 V.

clr1 This parameter when TRUE will clear the DAC1. This will set the
output voltage to 0 V

Sync May be ENABLED or DISABLED. While enabled the DAC outputs as
soon as the DACxL SFR's are written. The user can simutaneously
update both DAC's by first updating the DACxL/H SFR's while SYNC
is disabled. Both DACs will then update when the SYNC is enabled.

pwr0 This parameter when ON will power ON the DAC0. When OFF the
DAC0 is powered OFF.

pwr1 This parameter when ON will power ON the DAC1. When OFF the
DAC1 is powered OFF

115BASCOM Language Reference

© 2021 MCS Electronics

6.55 CONFIG BAUD

Action
Configure the uP to select the intern baud rate generator.
This baud rate generator is only available in the 80515, 80517, 80535, 80537 and
compatible chips.

Syntax
CONFIG BAUD = baud rate

Remarks
Baud rate Baud rate to use : 4800 or 9600

Example
CONFIG BAUD = 9600 'use internal baud generator
Print "Hello"
End

6.56 CONFIG BAUD1

Action
Configure the uP to select the internal baud rate generator for serial channel 1.
This baud rate generator is only available in the 80517 and 80537.

Syntax
CONFIG BAUD1 = baudrate

Remarks
Baudrate Baud rate to use : 2048 - 37500

The 80517 and 80537 have 2 serial ports on board.

See also
CONFIG BAUD

Example
CONFIG BAUD1 = 9600 'use internal baud generator

OPEN "Com2:" for Binary as #1
Print #1, "Hello"
Close #1
End

115

116 BASCOM-8051

© 2021 MCS Electronics

6.57 CONFIG DEBOUNCE

Action
Configures the delay time for the DEBOUNCE statement.

Syntax
CONFIG DEBOUNCE = time

Remarks
time A numeric constant which specifies the delay time in mS.

When the debounce time is not configured, 25 mS will be used as a default.
Note that the delay time is based on a 12 MHz clock frequency.

See also
DEBOUNCE

Example
Config Debounce = 25 mS '25 mS is the default

6.58 CONFIG I2CDELAY

Action
Configures the delay for the I2C clock.

Syntax
CONFIG I2CDELAY = value

Remarks
Value A numeric constant.

1 will generate the default clock.

0 will generate a higher clock and >=2 will generate a lower clock
frequency.

By default the following delay routine is called with an ACALL :

Delay5:
 Nop
Ret

For 12 MHz, there is a 1 MHz system clock. So not counting the other statement, the
minimal delay is 4 * 2 = 8 cycles.
The I2Cdelay value will insert the number of specified NOP instructions.
By default the settings are right for all I2C devices and when working with a 12 MHz
crystal.

133

117BASCOM Language Reference

© 2021 MCS Electronics

See also
CONFIG SCL , CONFIG SDA

Example
CONFIG I2CDELAY = 0 'we need a higher clock

6.59 CONFIG GETRC

Action
Configures the GETRC() charge time.

Syntax
Config GETRC = time

Remarks
Time The time in milli seconds to charge the capacitor

See also
GETRC

6.60 CONFIG GRAPHLCD

Action
Configures the Graphical LCD display.

Syntax
Config GRAPHLCD = type , PORT = mode, CE = pin , CD = cd , COLS = 30

Remarks
Type This must be one of the following :

· 240 * 64

· 240 * 128

mode This is the name of the port that is used to put the data on the LCD
data pins db0-db7.

P1 for example.

Ce The name of the pin that is used to enable the chip on the LCD.

Cd The name of the pin that is used to control the CD pin of the display.

Cols The number of columns for use as text display. The current code is
written for 30 columns only.

In the sample the following connections were used:

124 125

154

118 BASCOM-8051

© 2021 MCS Electronics

P1.0 to P1.7 to DB0-DB7 of the LCD

P3.2 to FS, font select of LCD can be hard wired too

P3.5 to CE, chip enable of LCD

P3.4 to CD, code/data select of LCD

P3.6 to WR of LCD, write

P3.7 to RD of LCD, read

The LCD used from www.conrad.de needs a negative voltage for the
contrast.

Two 9V batteries were used with a pot meter.

The FS (font select) must be set low to use 30 columns and 8x8 fonts.

It may be connected to ground. This pin is not used by the software
routines.

The current asm code only support 30 columns. You can change it however
to use 40 columns.

The T6963C displays have both a graphical area and a text area. They can
be used together. The routines use the XOR mode to display both text and
graphics layered over each other.

The statements that can be used with the graphical LCD are :

CLS , will clear the graphic display and the text display

CLS GRAPH will clear only the graphic part of the display

CLS TEXT will only clear the text part of the display

CLS BOTH is the same as CLS and will clear both text and graphics.

LOCATE row,column Will place the cursor at the specified row and
column

The row may vary from 1 to 8 and the column from 1 to 30.

CURSOR ON/OFF BLINK/NOBLINK can be used the same way as for
text displays.

LCD can also be the same way as for text displays.

LCDHEX can also be used the same way as for text display

New are:

SHOWPIC X, Y , Label where X and Y are the column and row and Label
is the label where the picture info is placed.

PSET X, Y , color Will set or reset a pixel. X can range from 0-239 and Y
from 9-63. When color is 0 the pixel will turned off. When it is 1 the pixel
will be set on.

$BGF "file.bgf" 'inserts a BGF file at the current location

$TIFF is removed from the Help but it still supported this version. $BGF
should be used however.

111

181

131

174

178

216

203

85

119BASCOM Language Reference

© 2021 MCS Electronics

Example
'--

' (c) 1995-2006 MCS Electronics

' GLCD.BAS

' Sample to show support for T6963C based graphic display

' Only 240*64 display is supported with 30 columns(yet)

' At the moment the display can only be used in PORT mode

' Connection :

' P1.0 - P1.7 to DB0-DB7 of LCD

' P3.2 to FS, font select of LCD can be hard wired too

' P3.5 to CE, chip enable of LCD

' P3.4 to CD, code/data select of LCD

' P3.6 to WR of LCD

' P3.7 to RD of LCD

'A future version will allow external data access too which also uses RD and WR

'The display from www.conrad.com needs a negative voltage for the contrast.

'I used two 9 V batteries

'--

'configure the LCD display

Config Graphlcd = 240 * 64 , Port = P1 , Ce = P3.5 , Cd = P3.4 , Cols = 30

'dimension some variables used by the DEMO

Dim X As Byte , Y As Byte

'

Reset P3.2 '8 bit wide char is 30 columns

'The following statements are supported:

Cls 'will clear graphic and text

'cls TEXT will clear only the text

'cls GRAPH will clear only the graphic part

'To init the display manual you can use:

'Lcdinit

'But this should not be needed as it is initilised at start up.

'Locate is supported and you can use 1-8 for the row and 1-30 for the column

Locate 1 , 1

'cursor control is the same as for normal LCD

Cursor On Blink

120 BASCOM-8051

© 2021 MCS Electronics

'And to show some text you can use LCD

Lcd "Hello world"

'Note that the cursor position is not adjusted. You can set it with locate

'Now comes the fun part for using a graphic LCD

'We can display a BMP file. You may use MSPAINT or any other tool that can create

'a BMP file. With the Graphic converter from the Tools Menu you can convert the file

'into a BGF file. (BASCOM GRAPHICS FILE). The conversion will convert all non white

'pixels to BLACK.

'To display the BGF file you use the SHOWPIC statement that needs an X and Y
parameter

'the third param is the label where the data is stored.

'The position must be dividable by 8 because this is the way the display handles the
data

Showpic 0 , 0 , Picture1

'And we use the PSET known from QB to set or reset a single pixel

'A value of 0 means clear the pixel and 1 means set the pixel

'create a block

For X = 0 To 10

 For Y = 0 To 10

 Pset X , Y , 1

 Next

Next

'You could remove it too

For X = 0 To 10

 For Y = 0 To 10 Step 2

 Pset X , Y , 0

 Next

Next

'A simple scope or data logger could be made with PSET !

'We hope to get an AN from an inspired user :-)

End

'label for the picture

Picture1:

'$BGF includes the data from the specified file

$bgf "samples\mcs.bgf"

121BASCOM Language Reference

© 2021 MCS Electronics

6.61 CONFIG LCDPIN

Action
Override the LCD-options to store the settings in your program.

Syntax
CONFIG LCDPIN = PIN, DB4= P1.1,DB5=P1.2,DB6=P1.3,DB7=P1.4,E=P1.5,
RS=P1.6

Remarks
P1.1 etc. are just an example in the syntax. The pins of the LCD display that must
be connected in PIN mode are :

Name LCD Display

DB4 DB4

DB5 DB5

DB6 DB6

DB7 DB7

E E

RS RS

The WR line of the display must be connected to GND.

See also
CONFIG LCD

Example
CONFIG LCDPIN = PIN ,DB4= P1.1,DB5=P1.2,DB6=P1.3,DB7=P1.4,E=P1.5,
RS=P1.6

6.62 CONFIG LCD

Action
Configure the LCD display.

Syntax
CONFIG LCD = LCDtype

Remarks
LCDtype The type of LCD display used. This can be :

40 * 4, 40 * 2, 16 * 1, 16 * 1a, 16 * 2, 16 * 4, 16 * 4, 20 * 2 or 20
* 4 , 40 * 4a or NHD0420

Default 16 * 2 is assumed.

The 16 * 1a LCD display is a special one. It is intended for the display that has the
memory organized as 2 lines of 8 characters.

121

122 BASCOM-8051

© 2021 MCS Electronics

The 40 * 4a LCD display is also a special one. It has two ENABLE lines.
The CONFIG LCDPIN directive must be used to configure the second E line:

CONFIG LCDPIN = PIN , E1 = Pin, E2 = pin, etc.

To select between E1 and E2 you need to set the B register.

Mov b,#0 'selects E1

Mov b,#1 'selects E2

LCD with a constant will work and also with strings.

To call the low level routines :

Mov a,#2 ; code into acc

Mov B,#0 ; or use Mov b,#1

Acall LCD_CONTROL ; call routine

To send data use the low level routine WRITE_LCD instead of LCD_CONTROL

Most LCD routines will work with the 40*4a display but some will fail. In that case
you need to use the low level ASM routines as shown above.

The NHD0420 is added in version 218. It is an I2C based LCD. See also the provided
sample 89c51rd2-lcd-i2c.BAS.

Example
REM Sample for normal displays
CONFIG LCD = 40 * 4
LCD "Hello" 'display on LCD
FOURTHLINE 'select line 4
LCD "4" 'display 4
END

6.63 CONFIG LCDBUS

Action
Configures the LCD databus.

Syntax
CONFIG LCDBUS = constant

Remarks
constant 4 for 4-bit operation, 8 for 8-bit mode (default)

Use this statement together with the $LCD = address statement.
When you use the LCD display in the bus mode the default is to connect all the data
lines. With the 4-bit mode you only have to connect data lines d7-d4.

123BASCOM Language Reference

© 2021 MCS Electronics

See also
CONFIG LCD

Example
$LCD = &H8000 'address of enable signal
Config LCDBUS = 4 '4 bit mode
LCD "hello"

6.64 CONFIG MICROWIRE

Action
Configures the micro wire pins.

Syntax
Config Microwire = Pin , Cs = P1.1 , Din = P1.2 , Dout = P1.4 , Clock = P1.5 , Al
= 7

Remarks
CS Chip select

DIN Data input

DOUT Data output

CLOCK Pin that generates the Clock

AL Address lines. See table below.

It depends if you work with bytes or words. In our example we will
use the 93C46 and work with bytes. AL will be 7 in this case.

Chip 93C46 93C56 93C57 93C66

Data bits 8 16 8 16 8 16 8 16

AL 7 6 9 8 8 7 9 8

See also
MWINIT , MWWOPCODE , MWWRITE , MWREAD

Example
NONE

6.65 CONFIG PRINT

Action
Configures the PRINT statement.

121

189 190 191 189

124 BASCOM-8051

© 2021 MCS Electronics

Syntax
Config PRINT = pin
Config PRINTMODE = mode

Remarks
Pin The pin to use for the output control such as P3.0

Mode The mode of the control pin. SET or RESET.

When you want to control a RS-485 device you need an additional pin to control the
buffer direction. When the pin must be high during printing use SET. When it must
be low during print use RESET.

Example
Config Print = P3.0 'this pin controls the buffer
Config mode = SET 'during PRINT this pin goes high.
Print "Hello"

6.66 CONFIG SCL

Action
Overrides the SCL pin assignment from the Option Settings .

Syntax
CONFIG SCL = pin

Remarks
Pin The port pin to which the I2C-SCL line is connected.

When you use different pins in different projects, you can use this statement to
override the Options Compiler setting for the SCL pin. This way you will remember
which pin you used because it is in your code and you do not have to change the
settings from the options.
This statement can not be used to change the pin dynamically during runtime.

See also
CONFIG SDA , CONFIG I2CDELAY

Example
CONFIG SCL = P3.5 'P3.5 is the SCL line

54

125 116

125BASCOM Language Reference

© 2021 MCS Electronics

6.67 CONFIG SDA

Action
Overrides the SDA pin assignment from the Option Settings .

Syntax
CONFIG SDA = pin

Remarks
pin The port pin to which the I2C-SDA line is connected.

When you use different pins in different projects, you can use this statement to
override the Options Compiler setting for the SDA pin. This way you will remember
which pin you used because it is in your code and you do not have to change the
settings from the options.

See also
CONFIG SCL , CONFIG I2CDELAY

Example
CONFIG SDA = P3.7 'P3.7 is the SDA line

6.68 CONFIG SERVOS

Action
Configures the number of servos and their pins.

Syntax
Config SERVOS = number , SERVO1 = P1.1 , SERVO2 = P1.2 , SERVO3 = P1.4 ,
SERVO4 = P1.5 , RELOAD = value

Remarks
number The number of servos you want to use.

When you specify 2, you must also add the SERVO1 and SERVO2
parameters.

servo1 The pin that is attached to servo 1.

servo2 The pin that is attached to servo 2.

servo3 The pin that is attached to servo 3.

servo4 The pin that is attached to servo 4.

RELOAD The reload value in uS. Default 100 uS

The CONFIG SERVOS compiler directive will include an interrupt that will execute
every 100 uS. The TIMER0 interrupt is enabled and the TIMER0 is started.

54

124 116

126 BASCOM-8051

© 2021 MCS Electronics

The number of bytes used by the use of SERVO's is 1 + number of servos.

When you use 2 servo's , it will take 3 bytes of internal memory.
TIMER0 can not be used by your program anymore.
To change the pulse duration you assign the special reserved variables the number
of 100 uS steps:
SERVO1 = 8 '800 uS pulse
SERVO2 = 12 '1200 uS duration
After 20 mS the pulses will be sent again to the port pins.

The maximum number of servo's is 14. The example shows how to set it up for 4
servo's only.
When you specify RELOAD = 50 , 50 uS steps will be used!
When you have a lot of servo's the RELOAD must be higher than when you have
less servos. When you have a reload of 10 uS for example it will be impossible for
the 8051 to handle more than 1 servo without losing time.
For 2 servo's 20 or 25 should be used for best results.

6.69 CONFIG SPI

Action
Configures the SPI related statements.

Syntax
CONFIG SPI = SOFT, DIN = PIN, DOUT = PIN , CS = PIN, CLK = PIN ,DATA
ORDER = DO, NOCS =
CONFIG SPI = ON
CONFIG SPI = OFF
CONFIG SPI = HARD, INTERRUPT = ON|OFF, DATA ORDER = LSB|MSB,
MASTER=YES|NO,POLARITY=HIGH|LOW,PHASE=0|1,CLOCKRATE=4|16|64|128

Remarks
When you use the software SPI mode you must specify the following information:

DIN Data input. Pin is the pin number to use such as p1.0

DOUT Data output. Pin is the pin number to use such as p1.1

CS Chip select. Pin is the pin number to use such as p1.2

CLK Clock. Pin is the pin number to use such as p1.3

NOCS Option without parameter. Use it to disable the resetting and
setting of the CS pin.

DATA ORDER Use MSB or LSB. With MSB, MS bit will be sent first. LSB option
will send the LS bit first.

SPIOUTEDGE Falling or Rising. Falling is the default. The edge specifies if the
the data will be clocked with a low to high or a high to low edge.

When the NOCS option is used you must reset and set the CS pin yourself.
The option is intended when you want to do large transfers between the micro and
the SPI device. With the little internal memory you can do that in steps but of
course you don't want the CS pin to change after each use of the SPIIN or SPIOUT

127BASCOM Language Reference

© 2021 MCS Electronics

routine.

When you want to use the hardware SPI that is available in the 89S8252, you must
specify the following information:

INTERRUPT ON or OFF to enable or disable that the SPI interrupt is set.

DATA ORDER LSB or MSB. Determines which bit is sent first.

MASTER Yes or No. Set it to Yes for usage with the BASCOM SPI routines.

POLARITY High or Low. See the Atmel datasheet

PHASE 0 or 1.

CLOCKRATE 4, 16, 64 or 128. This is a division that determines the clock rate.
The oscillator clock is divided by the number you specify.

ON You can turn on/enable SPI by using this option. It sets the enable
bit.

OFF You an turn off the SPI by using this option. It resets the enable
bit.

See also
SPIIN SPIOUT

Example
Config SPI = SOFT, DIN = P1.0 , DOUT = P1.1, CS = P1.2, CLK = P1.3
SPIINIT ‘ init pins
SPIOUT var , 1 'send 1 byte

6.70 CONFIG TIMER0, TIMER1

Action
Configure TIMER0 or TIMER1.

Syntax
CONFIG TIMERx = COUNTER/TIMER , GATE=INTERNAL/EXTERNAL , MODE=0/3

Remarks
TIMERx TIMER0 or TIMER1.

COUNTER will configure TIMERx as a COUNTER and TIMER will
configure TIMERx as a TIMER.

A TIMER has built in clock input and a COUNTER has external clock
input.

GATE INTERNAL or EXTERNAL. Specify EXTERNAL to enable gate control
with the INT input.

MODE Time/counter mode 0-3. See Hardware for more details.

So CONFIG TIMER0 = COUNTER, GATE = INTERNAL, MODE=2 will configure
TIMER0 as a COUNTER with no external gate control , in mode 2 (auto reload)

When the timer/counter is configured the timer/counter is stopped so you must start
it afterwards with the START TIMERx statement.

220 221

128 BASCOM-8051

© 2021 MCS Electronics

See the additional statements for other microprocessors that use the CONFIG
statement.

Example
CONFIG TIMER0=COUNTER, MODE=1, GATE=INTERNAL
COUNTER0 = 0 'reset counter 0
START COUNTER0 'enable the counter to run
DELAY 'wait a while
PRINT COUNTER0 'print it
END

6.71 CONFIG WATCHDOG

Action
Configures the watchdog timer from the AT89C8252

Syntax
CONFIG WATCHDOG = time

Remarks
Time The interval constant in mS the watchdog timer will count to.

Possible settings:

16 , 32, 64 , 128 , 256 , 512 , 1024 and 2048.

When the WD is started, a reset will occur after the specified number of mS.
With 2048, a reset will occur after 2 seconds, so you need to reset the WD in your
programs periodically.

See also
START WATCHDOG , STOP WATCHDOG , RESET WATCHDOG

Example
'---
' (c) 1995-2006 MCS Electronics
' WATCHD.BAS demonstrates the AT89S8252 watchdog timer
' select 89s8252.dat !!!
'---
Config Watchdog = 2048 'reset after 2048 mSec
Start Watchdog 'start the watchdog timer
Dim I As Word
For I = 1 To 10000
 Print I 'print value
 ' Reset Watchdog
 'you will notice that the for next doesnt finish because of the reset
 'when you unmark the RESET WATCHDOG statement it will finish because
the
 'wd-timer is reset before it reaches 2048 msec
Next

291 291 291

129BASCOM Language Reference

© 2021 MCS Electronics

End

6.72 COUNTER

Action
Set or retrieve the COUNTER0 or COUNTER1 variable.
For 8052 TIMER2 compatible chips, COUNTER2 can be used too.

Syntax
COUNTERX = var
var = COUNTERX

Remarks
Var A byte, Integer/Word variable or constant that is assigned to the

counter.

counterX COUNTER0 , COUNTER1 or COUNTER2.

Use counterX = 0 to reset the counter.
The counter can count from 0 to 255 in mode 2 (8-bit auto reload).
And to 65535 in mode 1(16-bit).
In mode 0 the counter can count to 8192. The MSB and 5 bits of the LSB are used in
that case. When you assign a constant to a TIMER/COUNTER in mode 0, the bits will
be placed in the right place :
COUNTER0 = &B1_1111_1111_1111_1111 '13 bits
Will be translated for mode 0 into 1111_1111_0001_1111

The counterx variables are intended to set/retrieve the TIMER/COUNTER registers
from BASCOM. COUNTER0 = TL0 and TH0.
So the COUNTERx reserved variable is a 16 bit variable.

To set TLx or THx, you can use : TL0 = 5 for example.

Note that the COUNTERx variable operates on both the TIMERS and COUNTER
because the TIMERS and COUNTERS are the same thing except for the mode they
are working in. To load a reload value, use the LOAD statement.

After access to the counter, the timer/counter is stopped. So when it was
running, start it with the statement START COUNTERx

Example
'--
' (c) 1995-2006 MCS Electronics
'--
' file: COUNTER.BAS
' demo: COUNTER
'--
' Connect the timer input P3.4 to a frequency generator
' *TIMER/COUNTER 1 is used for RS-232 baud rate generator
'--
Dim A As Byte , C As Integer
Config Timer0 = Counter , Gate = Internal , Mode = 1
'Timer0 = counter : timer0 operates as a counter

180

130 BASCOM-8051

© 2021 MCS Electronics

'Gate = Internal : no external gate control
'Mode = 1 : 16-bit counter

Counter0 = 0 'clear counter
Start Counter0 'enable the counter to count
Do 'set up a loop
 A = Inkey 'check for input
 C = Counter0 'get counter value
 Print C 'print it
 Start Counter0 're-start it because it was stopped by accessing the
COUNTER
Loop Until A = 27 'until escape is pressed

End

For the next example the ASM code is shown:
COUNTER0 = 1000

Generated code :
Clr TCON.4
Mov tl0,#232
Mov th0,#3

6.73 CPEEK

Action
Returns a byte stored in code memory.

Syntax
var = CPEEK(address)

Remarks
var Numeric variable that is assigned with the content of the program

memory at address

address Numeric variable or constant with the address location

There is no CPOKE statement because you cannot write into program memory.

See also
PEEK , POKE , INP , OUT

Example
'---

' (c) 1995-2006 MCS Electronics

' PEEK.BAS

' demonstrates PEEk, POKE, CPEEK, INP and OUT

'

198 198 169 196

131BASCOM Language Reference

© 2021 MCS Electronics

'---

Dim I As Integer , B1 As Byte

'dump internal memory

For I = 0 To 127 'for a 8052 225 could be used

' Break

 B1 = Peek(i) 'get byte from internal
memory

 Printhex B1 ; " ";

 'Poke I , 1 'write a value into memory

Next

Print 'new line

'be careful when writing into internal memory !!

'now dump a part ofthe code-memory(program)

For I = 0 To 255

 B1 = Cpeek(i) 'get byte from internal
memory

 Printhex B1 ; " ";

Next

'note that you can not write into codememory!!

Out &H8000 , 1 'write 1 into XRAM at address
8000

B1 = INP(&H8000) 'return value from XRAM

Print B1

End

6.74 CURSOR

Action
Set the LCD cursor state.

Syntax
CURSOR ON / OFF BLINK / NOBLINK

Remarks
You can use both the ON or OFF and BLINK or NOBLINK parameters.
At power up the cursor state is ON and NOBLINK.
For Graphic LCD displays the state is ON BLINK

See also
DISPLAY

Example
Dim a as byte
A = 255
LCD a

117

139

132 BASCOM-8051

© 2021 MCS Electronics

Cursor Off 'hide cursor
Wait 1 'wait 1 second
Cursor Blink 'blink cursor
End

6.75 DATA

Action
Specifies values to be read by subsequent READ statements.

Syntax
DATA var [, varn]

Remarks
Var Numeric or string constant.

To specify a character that cannot be written in the editor such as " you can
use $34. The number is the ASCII value of the string. A null will be added so it will
be a string of one character!

When you want to store the string data without the ending null you can use the
$NONULL directive as shown below:
DATA "abcd" 'stored with and ending 0
$NONULL = -1 'from now on store the data without the extra 0
DATA "abcd" , "edgh"
$NONULL = 0 'and go back to the normal default operation

Version 2.09 supports expressions. You must use either expressions or normal
constant data on the DATA lines. You may not mix them.

DATA INTEGER(15 * constval + x)
Where constval is a declare constant (CONST) and x is a CONST too.
The INTEGER() funtion must be used to indicate that the resulting constant is of the
integer type.
Use WORD(), INTEGER(), LONG() or SINGLE() to specify the resulting constant.

Difference with QB
Integer and Word constants must end with the % -sign.
Long constants must end with the &-sign.
Single constants must end with the !-sign.

See also
READ , RESTORE

Example
Dim A As Byte , I As Byte , L As Long , S As Xram String * 15
Restore Dta1 'point to data
For A = 1 To 3

204 208

133BASCOM Language Reference

© 2021 MCS Electronics

 Read I : Print I 'read data and print it
Next

Restore Dta2 'point to data
Read I : Print I ' integer data
Read I : Print I

Restore Dta3
Read L : Print L ' long data

Restore Dta4
Read S : Print S ' string data
END

DTA1:
Data 5 , 10 , 100

DTA2:
Data -1% , 1000%
'Integer and Word constants must end with the %-sign.
' (Integer : <0 or >255)

DTA3:
Data 1235678&
'long constants must end with the &-sign

DTA4:
Data "Hello world" , $34

REM You can also mix different constant types on one line
Data "TEST" , 5 , 1000% , -1& , 1.1!

6.76 DEBOUNCE

Action
Debounces a port pin connected to a switch.

Syntax
DEBOUNCE Px.y , state , label [, SUB]

Remarks
Px.y A port pin like P1.0 , to examine.

State 0 for jumping when Px.y is low , 1 for jumping when Px.y is high

Label The label to GOTO when the specified state is detected

SUB The label to GOSUB when the specified state is detected

When you specify the optional parameter SUB, a GOSUB to label is performed
instead of a GOTO.
The DEBOUNCE statements wait for a port pin to get high(1) or low(0).
When it does it will wait 25 mS and checks again (eliminating bounce of a switch)
When the condition is still true and there was no branch before, it branches to the
label.
When DEBOUNCE is executed again, the state of the switch must have gone back in

134 BASCOM-8051

© 2021 MCS Electronics

the original position before it can perform another branch.
Each DEBOUNCE statement which uses a different port uses 1 BIT of the internal
memory to hold it's state.

What also should be mentioned is that P2.2-P2.7 and P3 have internal pull up
resistors. This can affect the debounce statement. With these port pins, debounce is
best to be used as: Debounce P1.1, 0, Pr [, sub] , as it will not require an
external pull up resistor.

See also
CONFIG DEBOUNCE

Example
'---

' DEBOUN.BAS

' Demonstrates DEBOUNCE

'---

Config Debounce = 30 'when the config statement
is not used a default of 25mS will be used

 'Debounce P1.1 , 1 , Pr 'try this for branching when high(1)

 Debounce P1.0 , 0 , Pr , Sub

 Debounce P1.0 , 0 , Pr , Sub

 ' ^----- label to branch to

 ' ^---------- Branch when P1.0 goes low(0)

 ' ^---------------- Examine P1.0

 'When P1.0 goes low jump to subroutine Pr

 'P1.0 must go high again before it jumps again

 'to the label Pr when P1.0 is low

 Debounce P1.0 , 1 'no branch

 Debounce P1.0 , 1 , Pr 'will result in a return
without gosub

End

Pr:

 Print "P1.0 was/is low"

Return

6.77 DECR

Action
Decrements a variable by one.

Syntax
DECR var

116

135BASCOM Language Reference

© 2021 MCS Electronics

Remarks
Var Variable to be decremented.

var : Byte, Integer, Word, Long, Single.

There are often situations where you want a number to be decreased by 1.
The DECR statement is faster then var = var - 1.

See also
INCR

Example
'--

' (c) 1995-2006 MCS Electronics

'--

' file: DECR.BAS

' Demo: DECR

'--

Dim A As Byte

A = 5 'assign value to a

Decr A 'decrease (by one)

Print A 'print it

End

6.78 DECLARE

Action
Declares a subroutine.

Syntax
DECLARE SUB TEST[(var as type)]

Remarks
test Name of the procedure.

Var Name of the variable(s). Maximum 10 allowed.

Type Type of the variable(s). Bit, Byte,Word, Integer, Long or String.

You must declare each sub before writing or using the sub procedure.

See also
CALL , SUB

Example

167

109 225

136 BASCOM-8051

© 2021 MCS Electronics

Dim A As Byte , B1 As Byte , C As Byte

Declare Sub Test(a As Byte)

A = 1 : B1 = 2 : C = 3

Print A ; B1 ; C

Call Test(b1)

Print A ; B1 ; C

End

Sub Test(a As Byte)

 Print A ; B1 ; C

End Sub

6.79 DEF

Action
Declares all variables that are not dimensioned of the DefXXX type.

Syntax
DEFBIT b
DEFBYTE c
DEFINT I
DEFWORD x

Difference with QB
QB allows you to specify a range like DEFINT A - D. BASCOM doesn't support this.

Example
Defbit b : DefInt c 'default type for bit and integers
Set b1 'set bit to 1
c = 10 'let c = 10

6.80 DEFLCDCHAR

Action
Define a custom LCD character.

Syntax
DEFLCDCHAR char,r1,r2,r3,r4,r5,r6,r7,r8

Remarks
char Variable representing the character (0-7).

137BASCOM Language Reference

© 2021 MCS Electronics

r1-r8 The row values for the character.

char : Byte, Integer, Word, Long, Constant.
r1-r8 : Constant.

You can use the LCD designer to build the characters.

It is important that after the DEFLCDCHAR statement(s), a CLS follows.

The special characters can be printed with the Chr() function.

See also
Edit LCD designer , LCD

Example
DefLCDchar 0,1,2,3,4,5,6,7,8 'define special character
Cls 'select LCD DATA RAM
LCD Chr(0) 'show the character
End

6.81 DELAY

Action
Delay program execution for a short time.

Syntax
DELAY

Remarks
Use DELAY to wait for a short time.
The delay time is 100 microseconds based on a system frequency of 12 MHz.

See also
WAIT , WAITMS

Example
P1 = 5 'write 5 to port 1
DELAY 'wait for hardware to be ready

6.82 DIM

Action
Dimension a variable.

Syntax
DIM var AS [XRAM/IRAM] type

50 174

229 230

138 BASCOM-8051

© 2021 MCS Electronics

Remarks
Var Any valid variable name such as b1, i or longname. var can also be an

array : ar(10) for example.

Type Bit/Boolean, Byte, Word, Integer, Long, Single or String

XRAM Specify XRAM to store variable in external memory

IRAM Specify IRAM to store variable in internal memory (default)

A string variable needs an additional parameter that specifies the length of the
string:
Dim s As XRAM String * 10
In this case, the string can have a length of 10 characters.

Note that BITS can only be stored in internal memory.

Difference with QB
In QB you don't need to dimension each variable before you use it. In BASCOM you
must dimension each variable before you use it.
Also the XRAM/IRAM options are not available in QB.

See Also
CONST , ERASE

Example
'--

' (c) 1995-2006 MCS Electronics

'--

' file: DIM.BAS

' demo: DIM

'--

Dim B1 As Bit 'bit can be 0 or 1

Dim A As Byte 'byte range from 0-255

Dim C As Integer 'integer range from -32767 -
+32768

Dim L As Long

Dim S As Single

'Assign bits

B1 = 1 'or

Set B1 'use set

'Assign bytes

A = 12

A = A + 1

'Assign integer

C = -12

C = C + 100

112 143

139BASCOM Language Reference

© 2021 MCS Electronics

Print C

'Assign long

L = 12345678

Print L

'Assign single

S = 1234.567

Print S

End

6.83 DISABLE

Action
Disable specified interrupt.

Syntax
DISABLE interrupt

Remarks
Interrupt INT0, INT1, SERIAL, TIMER0, TIMER1 or TIMER2.

For other chips : INT2, INT3, INT4, INT5, INT6, INT7 , INT8, CAN

By default all interrupts are disabled.
To disable all interrupts specify INTERRUPTS.
To enable the enabling and disabling of individual interrupts use ENABLE
INTERRUPTS.

Depending on the chip used, there can be more interrupts.
Look at microprocessor support for more details.

See also
ENABLE

Example
Enable Interrupts 'enable the setting of
interrupts
Enable Timer0 'enable TIMER0
Disable Serial 'disables the serial
interrupt.
Disable Interrupts 'disable all interrupts

6.84 DISPLAY

Action
Turn LCD display on or off.

Syntax

287

141

140 BASCOM-8051

© 2021 MCS Electronics

DISPLAY ON / OFF

Remarks
The display is turned on at power up.

See also
CURSOR , LCD

Example
Dim a as byte
a = 255
LCD a
DISPLAY OFF
Wait 1
DISPLAY ON
End

6.85 DO

Action
Repeat a block of statements until condition is true.

Syntax
DO
 statements
LOOP [UNTIL expression]

Remarks
You can exit a DO..LOOP with the EXIT DO statement.

See also
EXIT , WHILE WEND , FOR , NEXT

Example
Dim A As Byte
Do 'start the loop
 A = A + 1 'increment A
 Print A 'print it
Loop Until A = 10 'Repeat loop until A = 10
Print A 'A is still 10 here

6.86 ELSE

Action
Executed if the IF-THEN expression is false.

131 174

144

144 232 232 144 192

141BASCOM Language Reference

© 2021 MCS Electronics

Syntax
ELSE

Remarks
You don't have to use the ELSE statement in an IF THEN .. END IF structure.
You can use the ELSEIF statement to test for another condition.

IF a = 1 THEN
...
ELSEIF a = 2 THEN
..
ELSEIF b1 > a THEN
...
ELSE
...
END IF

See also
IF , END IF SELECT CASE

Example
Dim A As Byte
A = 10 'let a = 10
If A > 10 Then 'make a decision
 Print "A >10" 'this will not be printed
Else 'alternative
 Print "A not greater than 10" 'this will be printed
END IF

6.87 ENABLE

Action
Enable specified interrupt.

Syntax
ENABLE interrupt

Remarks
Interrupt INT0, INT1, SERIAL, TIMER0, TIMER1 or TIMER2

For other chips also : INT2, INT3, INT4, INT5, INT6, INT7, INT8 , CAN

By default all interrupts are disabled.
To enable the enabling and disabling of interrupts use ENABLE INTERRUPTS.

Other microprocessors can have more interrupts than the 8051/8052.
Look at specific microprocessor support for more details.

165 142 212

287

142 BASCOM-8051

© 2021 MCS Electronics

See also
DISABLE

Example
ENABLE INTERRUPTS 'allow interrupts to be set
ENABLE TIMER1 'enables the TIMER1 interrupt

6.88 END

Action
Terminate program execution.

Syntax
END

Remarks
STOP can also be used to terminate a program.

When an END or STOP statement is encountered, a never ending loop is generated.

See also
STOP

Example
PRINT " Hello" 'print this
END 'end program execution

6.89 END IF

Action
End an IF .. THEN structure.

Syntax
END IF

Remarks
You must always end an IF .. THEN structure with an END IF statement.

You can nest IF ..THEN statements.
The use of ELSE is optional.

The editor converts ENDIF to End If when the reformat option is switched on.

139

222

143BASCOM Language Reference

© 2021 MCS Electronics

See also
IF THEN , ELSE

Example
Dim Nmb As Byte

Again: 'label

Input " Number " , Nmb 'ask for number

If Nmb = 10 Then 'compare

 Print " Number is 10" 'yes

Else 'no

 If Nmb > 10 Then 'is it greater

Print " Number > 10" 'yes

 Else 'no

Print " Number < 10" 'print this

 End If 'end structure

End If 'end structure

End 'end program

6.90 ERASE

Action
Erases a variable so memory will be released.

Syntax
ERASE var

Remarks
var The name of the variable to erase.

The variable must be dimensioned before you can erase it.

When you need temporary variables you can erase them after you used them. This
way your program uses less memory.

You can only ERASE the last dimensioned variables. So when you DIM 2 variables
for local purposes, you must ERASE these variables. The order in which you ERASE
them doesn't matter.

For example :
Dim a1 as byte , a2 as byte , a3 as byte , a4 as byte
'use the vars
ERASE a3 : ERASE a4 'erase the last 2 vars because they were temp vars
Dim a5 as Byte 'Dim new var
Now you can't erase the vars a1 and a2 anymore !

Note that ERASED variables don't show up in the report file nor in the simulator.

165 140

144 BASCOM-8051

© 2021 MCS Electronics

Example
Dim A As Byte 'DIM variable

A = 255 'assign value

Print A 'PRINT variable

Erase A 'ERASE

Dim A As Integer 'DIM again but now as INT

Print A 'PRINT again

REM Note that A uses the same space a the previous ERASED var A so

REM it still holds the value of the previous assigned variable

6.91 EXIT

Action
Exit a FOR..NEXT, DO..LOOP , WHILE ..WEND or SUB..END SUB.

Syntax
EXIT [FOR] [DO] [WHILE] [SUB]

Remarks
With the EXIT ... statement you can exit a structure at any time.

See also
FOR , DO , WHILE

Example
Dim A As Byte , B1 As Byte 'DIM variable
A = 2 : B1 = 1
If A >= B1 Then 'some silly code
 Do 'begin a DO..LOOP
 A = A + 1 'inc a
 If A = 100 Then 'test for a = 100
 Exit Do 'exit the DO..LOOP
 End If 'end the IF..THEN
 Loop 'end the DO
End If 'end the IF..THEN

6.92 FOR

Action
Execute a block of statements a number of times.

Syntax
FOR var = start TO/DOWNTO end [STEP value]

Remarks

144 140 232

145BASCOM Language Reference

© 2021 MCS Electronics

Var The variable counter to use

Start The starting value of the variable var

End The ending value of the variable var

Value The value var is increased/decreased with each time NEXT is
encountered.

var : Byte, Integer, Word, Long, Single.
start: Byte, Integer, Word, Long, Single, Constant.
end : Byte, Integer, Word, Long, Single, Constant.
step : Byte, Integer, Word, Long, Single, Constant.

For incremental loops you must use TO.
For decremental loops you must use DOWNTO.
You may use TO for a decremental loop but in that case you must use a negative
STEP :
 For a = 10 To 1 STEP -1
You must end a FOR structure with the NEXT statement.
The use of STEP is optional. By default a value of 1 is used.

See also
NEXT , EXIT FOR

Example
Dim Y As Byte , A As Byte,x as byte

y = 10 'make y 10

For A = 1 To 10 'do this 10 times

For X = Y To 1 'this one also

 Print X ; A 'print the values

Next 'next x (count down)

Next 'next a (count up)

Dim S As Single

For S = 1 To 2 Step 0.1

 Print S

Next

End

6.93 FOURTHLINE

Action
Reset LCD cursor to the fourth line.

Syntax
FOURTHLINE

192 144

146 BASCOM-8051

© 2021 MCS Electronics

Remarks
Only valid for LCD displays with 4 lines.

See also
HOME , UPPERLINE , LOWERLINE , THIRDLINE , LOCATE

Example
Dim a as byte
a = 255
LCD a
Fourthline
LCD a
Upperline
END

6.94 FUSING

Action
Formats a floating point value.

Syntax
var = Fusing(source, mask)

Remarks
Var The string that is assigned with the result.

Source A variable of the type single that must be formatted.

Mask The formatting mask . ###.##

The # sign is used to indicate the number of digits before and
after the decimal point. Normal rounding is used.

When you don't need rouding the result, use the & sign instead of
the # sign after the point.

When you want leading zero's use the 0 character before the
point.

See also
STR

Example
Dim S As Single , Targ As String * 16

'The FUSING() function formats a single into a string in order to
'represent it better without all the digits after the point

162 228 184 226 181

224

147BASCOM Language Reference

© 2021 MCS Electronics

'assign single

S = 99.4999

Targ = Fusing(s , ##.#)

Print Targ

'with the # mask, you can provide the number of digits before and
after 'the point

'the result should be 99.5

'with a 0 before the point, you can indicate how many digits you want
to 'have filled with zeros

Targ = Fusing(s , 000.#)

'the result should be 099.5

'When you dont want that the result is rounded, you can use the &
indicator

Targ = Fusing(s , 000.&&)

'result should be 099.49

'note that if the number of digits you provide is not enough to store
the 'result result is extended automaticly

'Also note that the - sign will use one digit of the mask too

S = -99.12

Targ = Fusing(s , 00.&&)

'result is -99.12

End

6.95 GET

Action
Retrieves a byte from the software UART.

Syntax
GET #channel , var

Remarks
Channel Positive numeric constant that refers to the opened channel.

Var A variable that receives the value from the software UART.

Note that the channel must be opened with the OPEN statement.
Also, note that the CLOSE statement, must be the last in your program. Please see
comment on OPEN statement
An optional TIMEOUT can be specified so that the routine will return when no
character is received.

194

148 BASCOM-8051

© 2021 MCS Electronics

See also
PUT , $TIMEOUT

Example
Dim S As String * 12 , I As Byte , A As Byte , Dum As Byte

Open "com3.1:9600" For Output As #1 'p3.1 is normally used for tx so
testing is easy

Open "com3.0:9600" For Input As #2 'p3.0 is normally used for RX so
testing is easy

S = "test this" 'assign string

Dum = Len(s) 'get length of string

For I = 1 To Dum 'for all characters from left to right

 A = Mid(s , I , 1) 'get character

 Put #1 , A 'write it to comport

Next

Do

 Get #2 , A 'get character from comport

 Put #1 , A 'write it back

 Print A 'use normal channel

Loop

Printbin #1, a 'Printbin is also supported

Inputbin #2, a 'Inputbin is also supported

Close #1 ' finally close device

Close #2

End

'To use the TIMEOUT option include (without the remarks):

'$TIMEOUT

' Get #2 , A TIMEOUT = 10000 'get character from comport

6.96 GETAD

Action
Retrieves the analog value from channel 0-7.
Channel ranges from 0-11 on a 80517 or 80537.

Syntax
var = GETAD(channel, range)

203 103

149BASCOM Language Reference

© 2021 MCS Electronics

Remarks
Var The variable that is assigned with the A/D value

Channel The channel to measure

Range The internal range selection.

0 = 0-5 Volt

192 = 0 - 3.75 Volt

128 = 0 - 2.5 Volt

64 = 0 - 1.25 Volt

12 = 3.75 - 5 Volt

200 = 2.5 - 3.75 Volt

132 = 1.25 - 2.5 Volt

The GETAD() function is only intended for the 80515, 80535,80517, 80535 and
80552.
For the 89Cc051 use GETAD2051().
It is a microprocessor depended support feature.

See also
GETAD2051

Example
Dim b1 as Byte, Channel as byte,ref as byte
channel=0 'input at P6.0
ref=0 'range from 0 to 5 Volt
b1=getad(channel,ref) 'place A/D into b1

6.97 GETAD2051

Action
Retrieves the analog value from a 89C2051 or 89C4051.

Syntax
var = GETAD2051()

Remarks
var The variable that is assigned with the A/D value

The GETAD2051() function is only intended for the 89C2051 and 89C4051. It uses
the analog comparator of the chip.

Connect the hardware as following :

287

149

150 BASCOM-8051

© 2021 MCS Electronics

See also
GETAD

Example
$regfile = "89c2051.dat"

Dim A As Byte

Do

 A = Getad2051()

 A = Lookup(a , Dta)

 Print A

Loop

End

'this table converts the value into a packed BCD value

'this value can be used to diaplay the value on 2 7-segment displays

Dta:

 Data 0 ' 0 0.000

 Data 1 ' 1 0.047

 Data 1 ' 2 0.093

148

151BASCOM Language Reference

© 2021 MCS Electronics

 Data 2 ' 3 0.138

 Data 2 ' 4 0.184

 Data 3 ' 5 0.229

 Data 3 ' 6 0.273

 Data 3 ' 7 0.317

 Data 4 ' 8 0.361

 Data 4 ' 9 0.404

 Data 5 ' 10 0.447

 Data 5 ' 11 0.489

 Data 6 ' 12 0.531

 Data 6 ' 13 0.573

 Data 6 ' 14 0.614

 Data 7 ' 15 0.655

 Data 7 ' 16 0.696

 Data 8 ' 17 0.736

 Data 8 ' 18 0.776

 Data 8 ' 19 0.815

 Data 9 ' 20 0.854

 Data 9 ' 21 0.893

 Data &H10 ' 22 0.931

 Data &H10 ' 23 0.969

 Data &H10 ' 24 1.006

 Data &H11 ' 25 1.044

 Data &H11 ' 26 1.080

 Data &H11 ' 27 1.117

 Data &H12 ' 28 1.153

 Data &H12 ' 29 1.189

 Data &H12 ' 30 1.224

 Data &H13 ' 31 1.260

 Data &H13 ' 32 1.295

 Data &H13 ' 33 1.329

 Data &H14 ' 34 1.363

 Data &H14 ' 35 1.397

 Data &H14 ' 36 1.431

 Data &H15 ' 37 1.464

 Data &H15 ' 38 1.497

 Data &H15 ' 39 1.530

 Data &H16 ' 40 1.562

 Data &H16 ' 41 1.594

 Data &H16 ' 42 1.626

 Data &H17 ' 43 1.657

 Data &H17 ' 44 1.688

 Data &H17 ' 45 1.719

 Data &H18 ' 46 1.750

152 BASCOM-8051

© 2021 MCS Electronics

 Data &H18 ' 47 1.780

 Data &H18 ' 48 1.810

 Data &H19 ' 49 1.840

 Data &H19 ' 50 1.869

 Data &H19 ' 51 1.898

 Data &H19 ' 52 1.927

 Data &H20 ' 53 1.956

 Data &H20 ' 54 1.984

 Data &H20 ' 55 2.012

 Data &H21 ' 56 2.040

 Data &H21 ' 57 2.068

 Data &H21 ' 58 2.095

 Data &H21 ' 59 2.122

 Data &H22 ' 60 2.149

 Data &H22 ' 61 2.176

 Data &H22 ' 62 2.202

 Data &H22 ' 63 2.228

 Data &H23 ' 64 2.254

 Data &H23 ' 65 2.279

 Data &H23 ' 66 2.305

 Data &H23 ' 67 2.330

 Data &H24 ' 68 2.355

 Data &H24 ' 69 2.379

 Data &H24 ' 70 2.404

 Data &H24 ' 71 2.428

 Data &H25 ' 72 2.452

 Data &H25 ' 73 2.476

 Data &H25 ' 74 2.499

 Data &H25 ' 75 2.523

 Data &H26 ' 76 2.546

 Data &H26 ' 77 2.569

 Data &H26 ' 78 2.591

 Data &H50 ' 79 5.000

 Data &H49 ' 80 4.953

 Data &H49 ' 81 4.907

 Data &H48 ' 82 4.862

 Data &H48 ' 83 4.816

 Data &H47 ' 84 4.771

 Data &H47 ' 85 4.727

 Data &H47 ' 86 4.683

 Data &H46 ' 87 4.639

 Data &H46 ' 88 4.596

 Data &H45 ' 89 4.553

153BASCOM Language Reference

© 2021 MCS Electronics

 Data &H45 ' 90 4.511

 Data &H44 ' 91 4.469

 Data &H44 ' 92 4.427

 Data &H44 ' 93 4.386

 Data &H43 ' 94 4.345

 Data &H43 ' 95 4.304

 Data &H42 ' 96 4.264

 Data &H42 ' 97 4.224

 Data &H42 ' 98 4.185

 Data &H41 ' 99 4.146

 Data &H41 ' 100 4.107

 Data &H40 ' 101 4.069

 Data &H40 ' 102 4.031

 Data &H40 ' 103 3.994

 Data &H39 ' 104 3.956

 Data &H39 ' 105 3.920

 Data &H39 ' 106 3.883

 Data &H38 ' 107 3.847

 Data &H38 ' 108 3.811

 Data &H38 ' 109 3.776

 Data &H37 ' 110 3.740

 Data &H37 ' 111 3.705

 Data &H37 ' 112 3.671

 Data &H36 ' 113 3.637

 Data &H36 ' 114 3.603

 Data &H36 ' 115 3.569

 Data &H35 ' 116 3.536

 Data &H35 ' 117 3.503

 Data &H35 ' 118 3.470

 Data &H34 ' 119 3.438

 Data &H34 ' 120 3.406

 Data &H34 ' 121 3.374

 Data &H33 ' 122 3.343

 Data &H33 ' 123 3.312

 Data &H33 ' 124 3.281

 Data &H32 ' 125 3.250

 Data &H32 ' 126 3.220

 Data &H32 ' 127 3.190

 Data &H31 ' 128 3.160

 Data &H31 ' 129 3.131

 Data &H31 ' 130 3.102

 Data &H31 ' 131 3.073

 Data &H30 ' 132 3.044

 Data &H30 ' 133 3.016

154 BASCOM-8051

© 2021 MCS Electronics

 Data &H30 ' 134 2.988

 Data &H29 ' 135 2.960

 Data &H29 ' 136 2.932

 Data &H29 ' 137 2.905

 Data &H29 ' 138 2.878

 Data &H28 ' 139 2.851

 Data &H28 ' 140 2.824

 Data &H28 ' 141 2.798

 Data &H28 ' 142 2.772

 Data &H27 ' 143 2.746

 Data &H27 ' 144 2.721

 Data &H27 ' 145 2.695

 Data &H27 ' 146 2.670

 Data &H26 ' 147 2.645

 Data &H26 ' 148 2.621

 Data &H26 ' 149 2.596

 Data &H26 ' 150 2.572

 Data &H25 ' 151 2.548

 Data &H25 ' 152 2.524

 Data &H25 ' 153 2.501

 Data &H25 ' 154 2.477

 Data &H24 ' 155 2.454

 Data &H24 ' 156 2.431

 Data &H24 ' 157 2.409

6.98 GETRC

Action
Retrieves the value of a resistor or a capacitor.

Syntax
var = GETRC(pin)

Remarks
var The variable that receives the value.

pin The port pin the R/C is connect to.

GETRC needs a resistor and capacitor in order to work. The capacitor is discharged
and the charging time will vary depending on the user resistor/capacitor value.

155BASCOM Language Reference

© 2021 MCS Electronics

Uses
This function uses TIMER0.

See also
NONE

Example
'--

' GETRC.BAS

' Retrieve resistor value

' Connect 10KOhm variable resistor from +5V to P1.7 for this example

' Connect 10nF capacitor from P1.7 to ground

' The GETRC(pin) function measures the time needed to discharge the
capacitor

'--

Config Timer0 = Timer , Gate = Internal , Mode = 1 'the GETRC()
functions needs timer 0

Config Getrc = 10 '10mS
wait for charging the capacitor. This is the default so for 10 the
CONFIG is not needed

$baud = 9600 'just my settings

$crystal = 11059200

Dim W As Word 'allocate space for
variable

Do 'forever

 W = Getrc(p1.7) 'get RC value

 Print W 'print it

 Wait 1 'wait a moment

Loop

'return values for cap=10nF .The resistor values where measured with
a DVM

' 250 for 10K9

156 BASCOM-8051

© 2021 MCS Electronics

' 198 for 9K02

' 182 for 8K04

' 166 for 7K

' 154 for 6K02

' 138 for 5K04

' 122 for 4K04

' 106 for 3K06

' 86 for 2K16

' 54 for 1K00

' 22 for 198 ohm

' 18 for 150 ohm

' 10 for 104 ohm

' 6 for 1 ohm (minimum)

'As you can see there is a reasonable linearity

'So you can do some math to get the resistor value

'But the function is intended to serve as a rough indication for
resistor values

'You can also change the capacitor to get larger values.

'With 10nF, the return value fits into a byte

6.99 GETRC5

Action
Retrieves a RC5 infrared code and sub address.

Syntax
GETRC5(address , command)

Remarks
Address The RC5 sub address received.

Command The RC5 command received.

Use a Siemens infrared receiver SFH506-36 and connect it to port pin 3.2 to use this
command.
This statement works together with the INT0 interrupt. See the example below on
how to use it.
In version 2.09 the command returns the toggle bit in bit position 5 of the address.
You can clear it like : address = address AND &B0001_1111
The toggle bit will toggle after each key press of the remote control.

157BASCOM Language Reference

© 2021 MCS Electronics

See Also
NONE

Example
'--

' RC5.BAS (c) 1995-2006 MCS Electronics

' connect SFH506-36 IR-receiver to PORT 3.2 (INT0)

' choose the correct port from the Compiler I2C TAB. Int0 should
have P3.2 pin

' On other chips it may be another pin!

'--

Dim New As Bit

Dim Command As Byte , Subaddress As Byte

Reset Tcon.0
'triggered by rising edge

On Int0 Receiverc5

Enable Int0

Enable Interrupts

Do

 If New = 1 Then
'received new code

 Disable Int0

 Print Command ; " " ; Subaddress

 New = 0 'reset
new bit

 Enable Int0

 End If

158 BASCOM-8051

© 2021 MCS Electronics

Loop

Receiverc5:
'interrupt routine

 'the getrc5 routine uses 30 bytes ! of the stack for measuring

 'the interval between the bits

 Getrc5(Subaddress,command)

 New = 1 'set
flag

Return

6.100 GOSUB

Action
Branch to and execute subroutine.

Syntax
GOSUB label

Remarks
label The name of the label where to branch to.

With GOSUB, your program jumps to the specified label, and continues execution at
that label.
When it encounters a RETURN statement, program execution will continue after the
GOSUB statement.

See also
GOTO , CALL , RETURN

Example
GOSUB Routine 'branch to routine
Print "Hello" 'after being at 'routine' print this
END 'terminate program

Routine: 'this is a subroutine
 x = x + 2 'perform some math
 PRINT X 'print result
RETURN 'return

159 109 209

159BASCOM Language Reference

© 2021 MCS Electronics

6.101 GOTO

Action
Jump to the specified label.

Syntax
GOTO label

Remarks
Labels can be up to 32 characters long.
When you use duplicate labels, the compiler will give you a warning.

See also
GOSUB

Example
Dim A As Byte

Start: 'a label must end with a
colon

A = A + 1 'increment a

If A < 10 Then 'is it less than 10?

Goto Start 'do it again

End If 'close IF

Print " Ready" 'that is it

6.102 HEX

Action
Returns a string representation of a hexadecimal number.

Syntax
var = HEX(x)

Remarks
Var A string variable.

X A numeric variable such as Byte, Integer or Word.

See also
HEXVAL , VAL , STR

158

160 228 224

160 BASCOM-8051

© 2021 MCS Electronics

Example
Dim A As Byte , S As String * 10

A = 123

S = Hex(a)

Print S

End

6.103 HEXVAL

Action
Convert string representing a hexadecimal number into a numeric variable.

Syntax
var = HEXVAL(x)

Remarks
var The numeric variable that must be assigned.

X The hexadecimal string that must be converted.

var : Byte, Integer, Word, Long.
x : String.

The string that must be converted must have a length of 2 bytes ,4 bytes or 8
bytes, for bytes, integers/words and longs respectively.

Difference with QB
In QB you can use the VAL() function to convert hexadecimal strings.
But since that would require an extra test for the leading &H signs, that are required
in QB, a separate function was designed.

See also
HEX , VAL , STR

Example
Dim A As Integer , S As String * 15

S = "000A"

A = Hexval(s) : Print A '10

End

6.104 HIGH

Action
Retrieves the most significant byte of a variable.

159 228 224

161BASCOM Language Reference

© 2021 MCS Electronics

Syntax
var = HIGH(s) ‘ high function gets the upper byte of a word

HIGH(word) = byte ‘high statement set the upper byte of a word

Remarks
Var The variable that is assigned with the MSB of var S.

S The source variable to get the MSB from.

Word A word or integer variable that is assigned

Byte The value to set to the MSB of the Word/Integer variable

The HIGH() function returns the MSB of a variable while the HIGH() statement sets
the MSB of a word variable.

See also
LOW , LOWW , HIGHW

Example
Dim I As Integer , Z As Byte
I = &H1001
Z = High(I) ' is 16

6.105 HIGHW

Action
Retrieves the two most significant bytes of a long.

Syntax
var = HIGHW(s)

Remarks
Var The variable that is assigned with the two MSB of var S. It must

be an Integer or Word

S The source variable to get the MSB from. Must be a long

See also
LOW , HIGH , LOWW

Example
Dim I As Long , Z As Word
I = &H10011001

183 184 161

183 160 184

162 BASCOM-8051

© 2021 MCS Electronics

Z = HighW(I)

6.106 HOME

Action
Place the cursor at the specified line at location 1.

Syntax
HOME UPPER | LOWER | THIRD | FOURTH

Remarks
If only HOME is used than, the cursor will be set to the upper line.
You can also specify the first letter of the line like: HOME U

See also
CLS , LOCATE , LCD

Example
Lowerline
LCD " Hello"
Home Upper
LCD " Upper"

6.107 I2CRECEIVE

Action
Receives data from an I2C serial device.

Syntax
I2CRECEIVE slave, var
I2CRECEIVE slave, var ,b2W, b2R

Remarks
slave A byte, Word/Integer variable or constant with the slave address from

the I2C-device.

Var A byte or integer/word variable that will receive the information from
the I2C-device.

b2W The number of bytes to write.

Be cautious not to specify too many bytes!

b2R The number of bytes to receive.

Be cautious not to specify too many bytes!

111 181 174

163BASCOM Language Reference

© 2021 MCS Electronics

In BASCOM LT you could specify DATA for var, but since arrays are supported now
you can specify and array instead of DATA.

This command works only with some additional hardware. See appendix D .

See also
I2CSEND

Example
x = 0 'reset variable
slave = &H40 'slave address of a PCF 8574 I/O IC
I2CRECEIVE slave, x 'get the value
PRINT x 'print it

Dim buf(10) as String
buf(1) = 1 : buf(2) = 2
I2CRECEIVE slave, buf(), 2, 1'send two bytes and receive one byte
Print buf(1) 'print the received byte

6.108 I2CSEND

Action
Send data to an I2C-device.

Syntax
I2CSEND slave, var
I2CSEND slave, var , bytes

Remarks
slave The slave address off the I2C-device.

var A byte, integer/word or number that holds the value which will be sent
to the I2C-device.

bytes The number of bytes to send.

This command works only with additional hardware. See appendix D .

See also
I2CRECEIVE

Example
x = 5 'assign variable to 5
Dim ax(10) As Byte
slave = &H40 'slave address of a PCF 8574 I/O IC

247

163

247

162

164 BASCOM-8051

© 2021 MCS Electronics

bytes = 1 'send 1 byte
I2CSEND slave, x 'send the value or

For a = 1 to 10
 ax(a) = a 'Fill dataspace
Next
bytes = 10
I2CSEND slave,ax(),bytes
END

6.109 I2C

Action
I2CSTART generates an I2C start condition.
I2CSTOP generates an I2C stop condition.
I2CRBYTE receives one byte from an I2C-device.
I2CWBYTE sends one byte to an I2C-device.

Syntax
I2CSTART
I2CSTOP
I2CRBYTE var, 8|9
I2CWBYTE val

Remarks
var A variable that receives the value from the I2C-device.

8/9 Specify 8 or ACK if there are more bytes to read. (ACK)

Specify 9 or NACK if it is the last byte to read. (NACK)

val A variable or constant to write to the I2C-device.

This command works only with additional hardware. See appendix D .

These functions are provided as an addition to the I2CSEND and I2CRECEIVE
functions.

See also
I2CRECEIVE , I2CSEND

Example
'----- Writing and reading a byte to an EEPROM 2404 -----------------

Dim A As Byte

Const Adresw = 174 'write of 2404

Const Adresr = 175 'read adres of 2404

I2cstart 'generate start

I2cwbyte Adresw 'send slaveadres

I2cwbyte 1 'send adres of EEPROM

247

163 162

162 163

165BASCOM Language Reference

© 2021 MCS Electronics

I2cwbyte 3 'send a value

I2cstop 'generate stop

Waitms 10 'wait 10 mS because that is
the time that the chip needs to write the data

'----------now read the value back into the var a -------------------

I2cstart 'generate start

I2cwbyte Adresw 'write slaveadres

I2cwbyte 1 'write adres of EEPROM to
read

I2cstart 'generate repeated start

I2cwbyte Adresr 'write slaveadres of EEPROM

I2crbyte A , 9 'receive value into a. 9
means last byte to receive

I2cstop 'generate stop

Print A 'print received value

End

6.110 IDLE

Action
Put the processor into the idle mode.

Syntax
IDLE

Remarks
In the idle mode, the system clock is removed from the CPU but not from the
interrupt logic, the serial port or the timers/counters.
The idle mode is terminated either when an interrupt is received or upon system
reset through the RESET pin.

See also
POWERDOWN

Example
IDLE

6.111 IF

Action
Allows conditional execution or branching, based on the evaluation of a Boolean
expression.

199

166 BASCOM-8051

© 2021 MCS Electronics

Syntax
IF expression THEN

[ELSEIF expression THEN]

[ELSE]

END IF

Remarks
expression Any expression that evaluates to true or false.

New is the ability to use the one line version of IF :
IF expression THEN statement [ELSE statement]
The use of [ELSE] is optional.

Also new is the ability to test on bits :
IF var.bit = 1 THEN

In V 2.00 support for variable bit index is added:
Dim Idx as Byte
For IDX = 0 To 7
 If P3.IDX = 1 Then
 Print "1" ;
 Else
 Print "0" ;
 End if
Next

A new feature in V2 is the ability to use multiple tests:
If a > 10 AND A < 10 OR A = 15 Then
NOP
End if
It does not work with strings but only numeric conditions.
When you want to test on bytes you can also use the string representation:
Dim X As Byte
If X = "A" then ' normally you need to write :
If X = 65 Then 'so these two lines do the same thing

See also
ELSE , END IF

Example
Dim A As Integer

A = 10

If A = 10 Then 'test expression

Print " This part is executed." 'this will be printed

Else

Print " This will never be executed." 'this not

140 142

167BASCOM Language Reference

© 2021 MCS Electronics

End If

If A = 10 Then Print "New in BASCOM"

If A = 10 Then Goto Label1 Else Print "A<>10"

Label1:

Rem The following example shows enhanced use of IF THEN

If A.15 = 1 Then 'test for bit

 Print "BIT 15 IS SET"

End If

REM the following example shows the 1 line use of IF THEN [ELSE]

If A.15 = 0 Then Print "BIT 15 is cleared" Else Print "BIT 15 is set"

6.112 INCR

Action
Increments a variable by one.

Syntax
INCR var

Remarks
Var Any numeric variable.

There are often situations where you want a number to be increased by 1.
The INCR statement is faster then var = var + 1.

See also
DECR

Example
Dim A As Integer

Do 'start loop

Incr A 'increment a by 1

Print A 'print a

Loop Until A > 10 'repeat until a is greater
than 10

6.113 INKEY

Action
Returns the ASCII value of the first character in the serial input buffer.

134

168 BASCOM-8051

© 2021 MCS Electronics

Syntax
var = INKEY()
var = INKEY(#channel)

Remarks
Var Byte, Integer, Word, Long or String variable.

Channel The channel number of device

If there is no character waiting, a zero will be returned.

The INKEY routine can be used when you have a RS-232 interface on your uP.
See the manual for a design of an RS-232 interface.
The RS-232 interface can be connected to a comport of your computer.

The INKEY() function only works with the hardware UART, not the software UART.

See also
WAITKEY

Example
Dim A As Byte

Do 'start loop

A = Inkey() 'look for character

If A > 0 Then 'is variable > 0?

 Print A 'yes , there was a character in
the buffer

 'so print it

End If

Loop 'loop forever

Example
$regfile = "80517.dat"

Open "COM2:" For Binary As #1 'open serial channel 1 on
80537

Dim St As Byte

St = Inkey(#1) 'get key from com2

If St > 0 Then

 Printbin #1 , St 'send to com 2

End If

Close #1

230

169BASCOM Language Reference

© 2021 MCS Electronics

6.114 INP

Action
Returns a byte read from a hardware port or external memory location.

Syntax
var = INP(address)

Remarks
var Numeric variable that receives the value.

address The address where to read the value from.

The INP statement only works on systems with an uP that can address external
memory.

See also
OUT , PEEK , POKE

Example
Dim a As Byte
a = INP(&H8000) 'read value that is placed on databus(d0-d7) at
 'hex address 8000
PRINT a
END

6.115 INPUT

Action
Allows input from the keyboard during program execution.

Syntax
INPUT [" prompt"] , var [, varn] [NOECHO] [TIMEOUT = xx]

Remarks
Prompt An optional string constant printed before the prompt character.

Var,varn A variable to accept the input value or a string.

NOECHO Disables input echoed back to the Comport.

TIMEOUT Optional delay time. When you specify the delay time, the routine will
return when no input data is available after the specified time. No
timer is used but a long is used to count down.

The INPUT routine can be used when you have a RS-232 interface on your uP.
See the manual for a design of a RS-232 interface.
The RS-232 interface can be connected to a serial communication port of your
computer.

196 198 198

170 BASCOM-8051

© 2021 MCS Electronics

This way you can use a terminal emulator and the keyboard as an input device.
You can also use the built in terminal emulator. A backspace will remove the last
entered character.

Difference with QB
In QB you can specify &H with INPUT so QB will recognize that a hexadecimal string
is used.
BASCOM implements a new statement: INPUTHEX.

See also
INPUTHEX , PRINT , $TIMEOUT

Example
'--

' (c) 1995-2006 MCS Electronics

'--

' file: INPUT.BAS

' demo: INPUT, INPUTHEX

'--

'To use another baudrate and crystalfrequency use the

'metastatements $BAUD = and $CRYSTAL =

$baud = 1200 'try
1200 baud for example

$crystal = 12000000 '12 MHz

'---

' When you need that the program times out on waiting for a
character

' you need to use the TIMEOUT option.

' When the charcter is not received within the specified time ERR
will be set to 1

' otherwise ERR will be 0.

' IMPORTANT : the TIMEOUT variable will use 4 bytes of internal
memory

'---

Dim V As Byte , B1 As Byte

Dim C As Integer , D As Byte

Dim S As String * 15 'only
for uP with XRAM support

Input "Use this to ask a question " , V

Input B1 'leave
out for no question

Input "Enter integer " , C

Print C

172 199 103

171BASCOM Language Reference

© 2021 MCS Electronics

Inputhex "Enter hex number (4 bytes) " , C

Print C

Inputhex "Enter hex byte (2 bytes) " , D

Print D

Input "More variables " , C , D

Print C ; " " ; D

Input C Noecho 'supress
echo

Input "Enter your name " , S

Print "Hello " ; S

Input S Noecho 'without
echo

Print S

'unremark next line and remark all lines above for the TIMEOUT option

'this because when you use TIMEOUT once, you need to use it for all
INPUT statements

'Input "Name " , S Timeout = 0

'Print Err ; " " ; s

End

6.116 INPUTBIN

Action
Read binary values from the serial port.

Syntax
INPUTBIN var1 [,var2]
INPUTBIN #dev, var1 [,var2]

Remarks
var1 The variable that is assigned with the characters from the serial port.

var2 An optional second (or more) variable that is assigned with the
characters from the serial.

#dev Device number. For use with OPEN and CLOSE. Dev is the device number.

The number of bytes to read is depending from the variable you use.
When you use a byte variable, 1 character is read from the serial port.
An integer will wait for 2 characters and an array will wait wait until the whole array
is filled.

172 BASCOM-8051

© 2021 MCS Electronics

Note that the INPUTBIN statement doesn't wait for a <RETURN> but just for the
number of bytes.

See also
PRINTBIN , INPUT , INPUTHEX

Example
Dim a as Byte, C as Integer
INPUTBIN a, c 'wait for 3 characters
End

'This code only for 80517 and 80537 with dual serial port
Open "COM2:" For Binary As #1 'open serial channel 1
INPUTBIN #1, a
Close #1

6.117 INPUTHEX

Action
Allows input from the keyboard during program execution.

Syntax
INPUTHEX [" prompt"] , var [, varn] [NOECHO] [TIMEOUT=xx]

Remarks
prompt An optional string constant printed before the prompt character.

Var,varn A numeric variable to accept the input value.

NOECHO Disables input echoed back to the Comport.

TIMEOUT Optional delay time. When you specify the delay time, the routine
will return when no input data is available after the specified time.
No timer is used but 4 bytes are taken from the internal memory to
provide a count down timer.

When you use the TIMEOUT option once, you must use it for all INPUT/INPUTHEX
statements. Providing zero as the timeout parameter will wait for the longest
possible time.
The INPUTHEX routine can be used when you have a RS-232 interface on your uP.
See the manual for a design of a RS-232 interface.
The RS-232 interface can be connected to a serial communication port of your
computer.
This way you can use a terminal emulator and the keyboard as input device.
You can also use the build in terminal emulator.

If var is a byte then the input must be 2 characters long.
If var is an integer/word then the input must be 4 characters long.
If var is a long then the input must be 8 characters long.

200 169 172

173BASCOM Language Reference

© 2021 MCS Electronics

Difference with QB
In QB you can specify &H with INPUT so QB will recognize that a hexadecimal string
is used.
BASCOM implement a new statement : INPUTHEX.

See also
INPUT , INPUTBIN , PRINTBIN

Example
Dim x As Byte
INPUTHEX " Enter a number " , x 'ask for input

6.118 INSTR

Action
Returns the position of a sub string in a string.

Syntax
var = INSTR(start , string , substr)
var = INSTR(string , substr)

Remarks
Var Numeric variable that will be assigned with the position of the

sub string in the string. Returns 0 when the sub string is not
found.

Start An optional numeric parameter that can be assigned with the first
position where must be searched in the string. By default (when
not used) the whole string is searched starting from position 1.

String The string to search.

Substr The search string.

At the moment INSTR() works only with internal strings.
Support for external strings will be added too.

Difference with QB
No constants can be used for the string and sub string.

See also
None

Example
Dim S As String * 10 , Z As String * 5

Dim Bp As Byte

S = "This is a test"

169 171 200

174 BASCOM-8051

© 2021 MCS Electronics

Z = "is"

Bp = Instr(s , Z) : Print Bp 'should print 3

Bp = Instr(4 , S , Z) : Print Bp 'should print 6

End

6.119 LCASE

Action
Converts a string into lower or upper case.

Syntax
dest = LCASE(source)

Remarks
dest The string variable that will be assigned with the lower case of string

SOURCE.

source The source string. The original string will be unchanged.

See also
UCASE

Example
Dim S As String * 12 , Z As String * 12

Input "Hello " , S 'assign string

S = Lcase(s) 'convert to lowercase

Print S 'print string

S = Ucase(s) 'convert to upper case

Print S 'print string

6.120 LCD

Action
Send constant or variable to LCD display.

Syntax
LCD x

Remarks

227

175BASCOM Language Reference

© 2021 MCS Electronics

X Variable or constant to display.

More variables can be displayed separated by the ; -sign
LCD a ; b1 ; " constant"
The LCD statement behaves just like the PRINT statement.

See also
LCDHEX , $LCD CONFIG LCD

Example
'--

' (c) 1995-2006 MCS Electronics

'--

' file: LCD.BAS

' demo: LCD, CLS, LOWERLINE, SHIFTLCD, SHIFTCURSOR, HOME

' CURSOR, DISPLAY

'--

$sim

Rem The $sim statement will remove long delays for the simulator

Rem It is important to remove this statement when compiling the final
file

'Config Lcdpin = Pin , Db4 = P3.1 , Db5 = P3.2 , Db6 = P3.3 , Db7 =
P3.4 , E = P3.5 , Rs = P3.6

Rem with the config lcdpin statement you can override the compiler
settings

Dim A As Byte

Config Lcd = 16 * 2 'configure lcd screen

'other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a

'When you dont include this option 16 * 2 is assumed

'16 * 1a is intended for 16 character displays with split addresses
over 2 lines

'$LCD = address will turn LCD into 8-bit databus mode

' use this with uP with external RAM and/or ROM

' because it doesnt need the port pins !

Cls 'clear the LCD display

Lcd "Hello world." 'display this at the top line

Wait 1

Lowerline 'select the lower line

Wait 1

Lcd "Shift this." 'display this at the lower
line

Wait 1

For A = 1 To 10

178 91 121

176 BASCOM-8051

© 2021 MCS Electronics

 Shiftlcd Right 'shift the text to the right

 Wait 1 'wait a moment

Next

For A = 1 To 10

 Shiftlcd Left 'shift the text to the left

 Wait 1 'wait a moment

Next

Locate 2 , 1 'set cursor position

Lcd "*" 'display this

Wait 1 'wait a moment

Shiftcursor Right 'shift the cursor

Lcd "@" 'display this

Wait 1 'wait a moment

Home Upper 'select line 1 and return home

Lcd "Replaced." 'replace the text

Wait 1 'wait a moment

Cursor Off Noblink 'hide cursor

Wait 1 'wait a moment

Cursor On Blink 'show cursor

Wait 1 'wait a moment

Display Off 'turn display off

Wait 1 'wait a moment

Display On 'turn display on

'-----------------NEW support for 4-line LCD------

Thirdline

Lcd "Line 3"

Fourthline

Lcd "Line 4"

Home Third 'goto home on line three

Home Fourth

Home F 'first letteer also works

Locate 4 , 1 : Lcd "Line 4"

Wait 1

'Now lets build a special character

'the first number is the characternumber (0-7)

'The other numbers are the rowvalues

'Use the LCD tool to insert this line

Deflcdchar 0 , 31 , 17 , 17 , 17 , 17 , 17 , 31 , 0' replace ? with
number (0-7)

Deflcdchar 1 , 16 , 16 , 16 , 16 , 16 , 16 , 16 , 31' replace ? with
number (0-7)

177BASCOM Language Reference

© 2021 MCS Electronics

Cls 'select data RAM

Rem it is important that a CLS is following the deflcdchar statements
because it will set the controller back in datamode

Lcd Chr(0) ; Chr(1) 'print the special character

'----------------- Now use an internal routine ------------

Acc = 1 'value into ACC

Call Write_lcd 'put it on LCD

End

6.121 LCDINIT

Action
Reinitialize the LCD display.

Syntax
LCDINIT

Remarks
When you use any of the LCD display routines the LCD display will be initialized
automatic at startup of your program.

The LCD routines demand that the WR of the LCD display is connected to GND.
When in your design the WR pin of the LCD is connected to a PIN of the micro
processor, it will be high during the initialization and so the display will not be
initialized properly.

The LCDINIT routine allows you to perform initialization after you have set the
pin that controls WR of the LCD to 0V.

See also
LCDHEX , $LCD CONFIG LCD

Example
'--

' (c) 1995-2006 MCS Electronics

'--

' file: LCD.BAS

' demo: LCD, CLS, LOWERLINE, SHIFTLCD, SHIFTCURSOR, HOME

' CURSOR, DISPLAY

'--

$sim

Rem The $sim statement will remove long delays for the simulator

Rem It is important to remove this statement when compiling the final
file

178 91 121

178 BASCOM-8051

© 2021 MCS Electronics

'Config Lcdpin = Pin , Db4 = P3.1 , Db5 = P3.2 , Db6 = P3.3 , Db7 =
P3.4 , E = P3.5 , Rs = P3.6

Rem with the config lcdpin statement you can override the compiler
settings

Dim A As Byte

Config Lcd = 16 * 2 'configure lcd screen

'other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a

'When you dont include this option 16 * 2 is assumed

'16 * 1a is intended for 16 character displays with split addresses
over 2 lines

'$LCD = address will turn LCD into 8-bit databus mode

' use this with uP with external RAM and/or ROM

' because it doesnt need the port pins !

'----------------- these 2 lines can be used when WR is connected to
P1.0 for example ---

P1.0 = 0

INITLCD

'--

Cls 'clear the LCD display

Lcd "Hello world." 'display this at the top line

Wait 1

Lowerline 'select the lower line

Wait 1

Lcd "Shift this." 'display this at the lower line

6.122 LCDHEX

Action
Send variable in hexadecimal format to the LCD display.

Syntax
LCDHEX var

Remarks
var Variable to display.

var1 : Byte, Integer, Word, Long, Single, Constant.

The same rules apply as for PRINTHEX .

See also

201

179BASCOM Language Reference

© 2021 MCS Electronics

LCD

Example
Dim a as byte
a = 255
LCD a
Lowerline
LCDHEX a
End

6.123 LEFT

Action
Return the specified number of leftmost characters in a string.

Syntax
var = LEFT(var1 , n)

Remarks
var The string that is assigned.

Var1 The sourcestring.

n The number of characters to get from the sourcestring.

n : Byte, Integer, Word, Long, Constant.

For string operations, all the strings must be of the same type : internal or external.

See Also
RIGHT , MID

Example
Dim S As Xram String * 15 , Z As Xram String * 15

S = "ABCDEFG"

Z = Left(s , 5)

Print Z 'ABCDE

End

6.124 LEN

Action
Returns the length of a string.

Syntax
var = LEN(string)

174

210 187

180 BASCOM-8051

© 2021 MCS Electronics

Remarks
var A numeric variable that is assigned with the length of string.

string The string to calculate the length of.

Example
Dim S As String * 12
Dim A As Byte
S = "test"
A = Len(s)
Print A ' prints 4

6.125 LOAD

Action
Load specified TIMER with a value for auto reload mode.

Syntax
LOAD TIMER , value

Remarks
TIMER TIMER0, TIMER1 or TIMER2.

Value The variable or value to load.

When you use the ON TIMERx statement with the TIMER/COUNTER in mode 2,
you can specify on which interval the interrupt must occur.
The value can range from 1 to 255 for TIMER0 and TIMER1.
For TIMER2 the range is 1-65535.

The LOAD statement calculates the correct reload value out of the parameter.
The formula : TLx = THx = (256-value)
For TIMER2 : RCAP2L = RCAP2H = (65536 - value)

The load statement is not intended to assign/read a value to/from the timers/
counters. Use COUNTER x instead.

See Additional hardware for more details

Example
LOAD TIMER0, 100 'load TIMER0 with 100

Will generate :
Mov tl0,#h'9C
Mov th0,#h'9C

LOAD TIMER2, 1000

129

247

181BASCOM Language Reference

© 2021 MCS Electronics

Will generate:
Mov RCAP2L,#24
Mov RCAP2H,#252

6.126 LOCATE

Action
Moves the LCD cursor to the specified position.

Syntax
LOCATE y , x

Remarks
X Constant or variable with the position. (1-64*)

Y Constant or variable with the line (1 - 4*)

* depending on the used display
For Graphical displays X can be in the range from 1-30 and y in the range from 1-8.

See also
CONFIG LCD , LCD , HOME , CLS

Example
LCD "Hello"
Locate 1,10
LCD "*"

6.127 LOOKUP

Action
Returns a value from a table.

Syntax
var =LOOKUP(value, label)

Remarks
var The returned value

value A value with the index of the table

label The label where the data starts

var : Byte, Integer, Word, Long, Single.
value : Byte, Integer, Word, Long, Constant.

121 174 162 111

182 BASCOM-8051

© 2021 MCS Electronics

See also
LOOKUPSTR

Example
Dim B1 As Byte , I As Integer

B1 = Lookup(1 , Dta)

Print B1 ' Prints 2 (zero based)

I = Lookup(0 , Dta2)

End

Dta:

Data 1 , 2 , 3 , 4 , 5

Dta2: 'integer data

Data 1000% , 2000%

6.128 LOOKUPSTR

Action
Returns a string from a table.

Syntax
var =LOOKUPSTR(value, label [, language , length])

Remarks
var The string returned

value A value with the index of the table. The index is zero-based. That is, 0
will return the first element of the table.

label The label where the data starts

language An optional variable that holds a number to identify the language. The
first language starts with the number 0.

length The length of the data for each language.

value : Byte, Integer, Word, Long, Constant. Range(0-255)

See also
LOOKUP

Example
Dim S As String * 8 , Idx As Byte

182

181

183BASCOM Language Reference

© 2021 MCS Electronics

Idx = 0 : S = Lookupstr(idx , Sdata)

Print S 'will print 'This'

End

Sdata:

Data "This" , "is" , "a test"

Example 2
Dim S As String * 8 , Idx As Byte , Language As Byte

Idx = 0 : Language = 1

S = Lookupstr(idx , Sdata , Language , 17)

Print S ' will print 'Dit '

End

Sdata:

Data "This" , "is" , "a test " 'each language data must have the
same length

Data "Dit " , "is" , "een test" 'the length is 17 because strings
include a 0 byte

6.129 LOW

Action
Retrieves the least significant byte of a variable.

Syntax
var = LOW(s)

Remarks
Var The variable that is assigned with the LSB of var S.

S The source variable to get the LSB from.

See also
HIGH , LOWW , HIGHW

Example
Dim I As Integer , Z As Byte
I = &H1001
Z = Low(I) ' is 1

160 184 161

184 BASCOM-8051

© 2021 MCS Electronics

6.130 LOWW

Action
Retrieves the two least significant bytes of a long.

Syntax
var = LOWW(s)

Remarks
var The variable that is assigned with the two LSB of var S.

s The source variable to get the LSB's from.

See also
HIGHW , HIGH , LOW

Example
Dim L As Integer , Z As Long
L = &H1001
Z = LowW(L)

6.131 LOWERLINE

Action
Reset the LCD cursor to the lower line.

Syntax
LOWERLINE

Remarks
None

See also
UPPERLINE , THIRDLINE , FOURTHLINE , HOME

Example
LCD "Test"
LOWERLINE
LCD "Hello"
End

161 160 183

228 226 145 162

185BASCOM Language Reference

© 2021 MCS Electronics

6.132 MAKEBCD

Action
Convert a variable into its BCD value.

Syntax
var1 = MAKEBCD(var2)

Remarks
var1 Variable that will be assigned with the converted value.

Var2 Variable that holds the decimal value.

When you want to use an I2C clock device, which stores its values as BCD values
you can use this function to convert variables from decimal to BCD.
For printing the bcd value of a variable, you can use the BCD() function.

See also
MAKEDEC , BCD()

Example
Dim a As Byte
a = 65
LCD a
Lowerline
LCD BCD(a)
a = MakeBCD(a)
LCD " " ; a
End

6.133 MAKEDEC

Action
Convert a BCD byte or Integer/Word variable to its DECIMAL value.

Syntax
var1 = MAKEDEC(var2)

Remarks
var1 Variable that will be assigned with the converted value.

var2 Variable that holds the BCD value.

When you want to use an I2C clock device which stores its values as BCD values you
can use this function to convert variables from BCD to decimal.

185 108

186 BASCOM-8051

© 2021 MCS Electronics

See also
MAKEBCD , BCD

Example
Dim a As Byte
a = 65
LCD a
Lowerline
LCD BCD(a)
a = MakeDEC(a)
LCD " " ; a
End

6.134 MAKEINT

Action
Compacts 2 bytes into a word or integer.

Syntax
varn = MAKEINT(LSB , MSB)

Remarks
Varn Variable that will be assigned with the converted value.

LSB Variable or constant with the Least Significant Byte.

MSB Variable or constant with the Most Significant Byte.

The equivalent code is :
varn = (256 * MSB) + LSB

See also
MAKEDEC BCD()

Example
Dim a As Integer , I As Integer
a = 2
I = MakeINT(a , 1) 'I = (1 * 256) + 2 = 258
End

6.135 MAX

Action
Returns the highest value of an array.

Syntax
var = MAX(ar(1))

185 108

185 108

187BASCOM Language Reference

© 2021 MCS Electronics

Remarks
Var Numeric variable that will be assigned with the highest value of the

array.

ar() The first array element of the array to return the highest value of.

At the moment MAX() works only with BYTE arrays.
Support for other data types will be added too.

See also
MIN , AVG

Example
Dim ar(10) As Byte
Dim bP as Byte
For bP = 1 to 10
 ar(bP) = bP
Next
bP = Max(ar(1))
Print bP 'should print 10
End

6.136 MID

Action
The MID function returns part of a string (a sub string).
The MID statement replaces part of a string variable with another string.

Syntax
var = MID(var1 ,st [, l])
MID(var ,st [, l]) = var1

Remarks
Var The string that is assigned.

Var1 The source string.

St The starting position.

L The number of characters to get/set.

Operations on strings require that all strings are of the same type(internal or
external)

See also
LEFT , RIGHT

Example

188 106

179 210

188 BASCOM-8051

© 2021 MCS Electronics

Dim S As Xram String * 15 , Z As Xram String * 15

S = "ABCDEFG"

Z = Mid(s , 2 , 3)

Print Z 'BCD

Z = "12345"

Mid(s , 2 , 2) = Z

Print S 'A12DEFG

End

6.137 MIN

Action
Returns the lowest value of an array.

Syntax
var = MIN(ar(1))

Remarks
Var Numeric variable that will be assigned with the lowest value of the

array.

ar() The first array element of the array to return the lowest value of.

At the moment MIN() works only with BYTE arrays.
Support for other data types will be added too.

See also
MAX , AVG

Example
Dim ar(10) As Byte
Dim bP as Byte
For bP = 1 to 10
 ar(bP) = bP
Next
bP = Min(ar(1))
Print bP 'should print 1
End

6.138 MOD

Action
Returns the remainder of a division.

Syntax
ret = var1 MOD var2

186 106

189BASCOM Language Reference

© 2021 MCS Electronics

Remarks
Ret The variable that receives the remainder.

var1 The variable to divide.

var2 The divisor.

Example
a = 10 MOD 3 'divide 10 through 3
PRINT a 'print remainder (1)

6.139 MWINIT

Action
Initializes the pins in order to use them with the micro wire statements.

Syntax
MWINIT

See also
CONFIG MICROWIRE , MWREAD , MWWRITE , MWWOPCODE

6.140 MWREAD

Action
Read a value from the micro wire bus.

Syntax
MWREAD variable , opcode , address, bytes

Remarks
Variable The variable that is assigned with the value retrieved from the

micro wire bus.

Opcode The opcode to use.

Address The address of the device.

Bytes Number of bytes to send.

See also
MWWRITE , MWWOPCODE , MWINIT

Example
'---
' MicroWire test file

123 189 191 190

191 190 189

190 BASCOM-8051

© 2021 MCS Electronics

' please read microwire specs for understanding microwire
'---
'CS - chip select
'DIN - data in
'DOUT - data Out
'CLOCK- Clock
'AL - address lines

' 93C46 93C56 93C57 93C66
'--
' Data bits: 8 16 8 16 8 16 8 16
' AL : 7 6 9 8 8 7 9 8

'you could use the same pin for DIN and DOUT
'we use a 93C46 and send bytes not words so AL is 7
Config Microwire = Pin , Cs = P1.1 , Din = P1.2 , Dout = P1.4 , Clock = P1.5 , Al = 7

'init pins
Mwinit

'dimension variable used
Dim X As Byte

'enable write to eeprom
'send startbit, opcode (00) and 11 + address

'Mwwopcode opcode, numberOfBits
Mwwopcode &B1001100000 , 10
'the mwwopcode can send a command(opcode) to a device

X = 10
'write value of X to address 0
'opcode is 01
'we write 1 byte
'Mwwrite var,opcode,address,numberOfBytes
Mwwrite X , &B101 , 0 , 1

Waitms 10
X = 0
'read back
' mwread var,opcode,address,numberofbytes
Mwread X , &B110 , 0 , 1

'disable write
'send startbit, opcode (00) and 00 + address
Mwwopcode &B1000000000 , 10
End

6.141 MWWOPCODE

Action
Write an opcode to a micro wire device.

Syntax
MWWOPCODE opcode , bits

191BASCOM Language Reference

© 2021 MCS Electronics

Remarks
Opcode The opcode that needs to be send to the micro wire device.

See the micro wire docs for the right values.

Bits The number of bits to send.

Before you can work with micro wire you must send an opcode to enable writing an
EEPROM for example.

See also
MWINIT , MWWRITE , MWREAD
[****]

Example
'enable write to EEPROM
'Needed bits : startbit (1), opcode (00) and (11) + address
'Mwwopcode opcode, numberOfBits
Mwwopcode &B1001100000 , 10 'send the code

6.142 MWWRITE

Action
Writes a value to the micro wire bus.

Syntax
MWWRITE variable , opcode , address, bytes

Remarks
Variable The variable which's content must be send to the micro wires

device.

Opcode The opcode to use.

Address The address of the device.

Bytes Number of bytes to send.

See also
MWINIT , MWREAD , MWWOPCODE

Example
'write value of X to address 0
'opcode is 01 and we write one byte
Mwwrite X , &B101 , 0 , 1

189 191 189

189

189 189 190

192 BASCOM-8051

© 2021 MCS Electronics

6.143 NEXT

Action
Ends a FOR..NEXT structure.

Syntax
NEXT [var]

Remarks
Var The index variable that is used as a counter when you form the

structure with FOR var. Var is optional and not needed.

You must end each FOR statement with a NEXT statement.

See also
FOR

Example
Dim X As Byte , Y As Byte , A As Byte
Y = 10 'make y 10
For A = 1 To 10 'do this 10 times
For X = Y To 1 'this one also
 Print X ; A 'print the values
Next 'next x (count down)
Next A 'next a (count up) END

6.144 ON interrupt

Action
Execute subroutine when specified interrupt occurs.

Syntax
ON interrupt label [NOSAVE]

Remarks
interrupt INT0, INT1, SERIAL, TIMER0 ,TIMER1 or TIMER2.

Chip specific interrupts can be found under microprocessor
support.

Label The label to jump to if the interrupt occurs.

NOSAVE When you specify NOSAVE, no registers are saved and restored in
the interrupt routine. So when you use this option be sure to save
and restore used registers.

You must return from the interrupt routine with the RETURN statement.
You may have only one RETURN statement in your interrupt routine because the
compiler restores the registers and generates a RETI instruction when it encounters

144

193BASCOM Language Reference

© 2021 MCS Electronics

a RETURN statement in the ISR.

You can't use TIMER1 when you are using SERIAL routines such as PRINT
because TIMER1 is used as a BAUDRATE generator.

When you use the INT0 or INT1 interrupt you can specify on which condition the
interrupt must be triggered.
You can use the Set/Reset statement in combination with the TCON-register for this
purpose.

SET TCON.0 : trigger INT0 by falling edge.
RESET TCON.0 : trigger INT0 by low level.
SET TCON.2 : trigger INT1 by falling edge.
RESET TCON.2 : trigger INT1 by low level.

See Hardware for more details

See Also
ON VALUE

Example
ENABLE INTERRUPTS
ENABLE INT0 'enable the interrupt
ON INT0 Label2 nosave 'jump to label2 on INT0
DO 'endless loop
LOOP
END

Label2:
 PRINT " A hardware interrupt occurred!" 'print message
RETURN

6.145 ON value

Action
Branch to one of several specified labels, depending on the value of a variable.

Syntax
ON var [GOTO] [GOSUB] label1 [, label2]

Remarks
Var The numeric variable to test.

This can also be a SFR such as P1.

label1, label2 The labels to jump to depending on the value of var.

Note that the value is zero based. So when var = 0, the first specified label is
jumped/branched.

See Also

247

193

194 BASCOM-8051

© 2021 MCS Electronics

ON interrupt

Example
Dim X As Byte

X = 2 'assign a variable interrupt

On X Gosub Lbl1 , Lbl2 , Lbl3 'jump to label lbl3

X = 0

On X Goto Lbl1 , Lbl2 , Lbl3

End

Lbl3:

 Print "lbl3"

Return

Lbl1:

nop

Lbl2:

nop

'nop is an ASM statement that does nothing

6.146 OPEN

Action
Opens and closes a device.

Syntax
OPEN "device" for MODE As #channel
CLOSE #channel

Remarks
Device There are 2 hardware devices supported: COM1 and COM2.

With the software UART, you must specify the port pin and the baud
rate.

COM3.0:9600 will use PORT 3.0 at 9600 baud.

Optional is ,INVERTED this will use inverted logic so you don't need
MAX232 inverters.

MODE You can use BINARY, INPUT or OUTPUT for COM1 and COM2, but for the
software UART pins, you must specify INPUT or OUTPUT.

Channel The number of the channel to open. Must be a positive constant.

192

195BASCOM Language Reference

© 2021 MCS Electronics

Since there are uP's such as the 80537 with 2 serial channels on board, the compiler
must know which serial port you want to use. That is why the OPEN statement is
implemented. With only 1 serial port on board, you don't need this statement.
The statements that support the device are PRINT , PRINTHEX , INPUT and
INPUTHEX .

Every opened device must be closed using the CLOSE #channel statement. Of
course you must use the same channel number.

The software UART, only supports the GET and PUT statements to retrieve and
send data and the PRINTBIN and INPUTBIN statement.
The SW UART uses timed loops and interrupts can slow down these loops. So turn
interrupts off before you use the SW UART.
COM1: and COM2: are hardware ports, and can be used with PRINT etc.
For the software UART it is important that the pin you use is bit addressable. In
most cases a PORT is bit addressable but some chips have ports that are not bit
addressable. When you use such a port you will get errors like : Error 208, bit
variable not found.
Since the OPEN statement doesn't use real file handles like DOS but only serves as a
compiler directive, it is important that you must use the CLOSE statement as the
last statement in your program.
The following example shows when it will NOT WORK :

OPEN "COM2:" FOR BINARY AS #1 'open the port
PRINT #1, "Hello" 'print to serial 1
Gosub Test
PRINT "Hello" 'print to serial 0
CLOSE #1

Test:
 Print #1, "test"
Return

Since the compiler frees the handle when it encounters the CLOSE statement, the
PRINT #1, "test" code is never executed. To solve this you should put the CLOSE #1
statement under the Return statement.

OPEN "COM2:" FOR BINARY AS #1 'open the port
PRINT #1, "Hello" 'print to serial 1
Gosub Test
PRINT "Hello" 'print to serial 0

Test:
 Print #1, "test"
Return
Close #1

See also
GET , PUT

Example 1

199 201 169

172

147 203

200 171

147 203

196 BASCOM-8051

© 2021 MCS Electronics

'only works with a 80517 or 80537
CONFIG BAUD1 = 9600 'serial 1 baudrate
OPEN "COM2:" FOR BINARY AS #1 'open the port
PRINT #1, "Hello" 'print to serial 1
PRINT "Hello" 'print to serial 0
CLOSE #1 'close the channel

Example 2
'works with every port pin
Dim A As Byte , S As String * 16 , I As Byte , Dum As Byte

'a software comport is named after the pin you use
'for example P3.0 will be "COM3.0:" (so there is no P)
'for software comports, you must provide the baudrate
'So for 9600 baud, the devicename is "COM3.0:9600"
'When you want to use the pin for sending, you must open the device for OUTPUT
'When you want to use the pin for receiving, you must open the device for INPUT

'At this time only variables can be sent and received with the PUT and GET
statements.
'In the feature PRINT etc. will support these software comports.

Open "com3.1:9600" For Output As #1 'p3.1 is normally used for tx so testing is
easy
Open "com3.0:9600,INVERTED" For Input As #2 'p3.0 is normally used for RX
so testing is easy

S = "test this" 'assign string
Dum = Len(s) 'get length of string
For I = 1 To Dum 'for all characters from left to right
 A = Mid(s , I , 1) 'get character
 Put #1 , A 'write it to comport
Next

Do
 Get #2 , A 'get character from comport
 Put #1 , A 'write it back
 Print A 'use normal channel
Loop

Close #1 ' finally close device
Close #2
End

6.147 OUT

Action
Sends a byte to a hardware port or external memory address.

Syntax
OUT address, value

197BASCOM Language Reference

© 2021 MCS Electronics

Remarks
address The address where to send the byte to.

value The variable or value to send.

The OUT statement only works on systems with a uP that can address external
memory.

See also
INP , PEEK , POKE

Example
Dim a as byte
OUT &H8000,1 'send 1 to the databus(d0-d7) at hex address 8000
END

Will generate :
Mov A,#1
Mov dptr,#h'8000
Movx @dptr,a

6.148 PORT

Action
P1 and P3 are special function registers that are treated as variables.

Syntax
Px = var
var = Px

Remarks
X The number of the port. (1 or 3). P3.6 can't be used with an

AT89C2051!

Var The variable to retrieve or to set.

Note that other processors can have more ports such as P0, P2, P4 etc.
When you select the proper .DAT file you can also use these ports as variables.
In fact you can use any SFR as a byte variable in BASCOM.

ACC = 0 'will reset the accumulator for example

See hardware for a more detailed description of the ports.

Example
Dim A As Byte , B1 As Bit

169 198 198

247

198 BASCOM-8051

© 2021 MCS Electronics

A = P1 'get value from port 1

A = A Or 2 'manipulate it

P1 = A 'set port 1 with new value

P1 = &B10010101 'use binary notation

P1 = &HAF 'use hex notation

B1 = P1.1 'read pin 1.1

P1.1 = 0 'set it to 0

6.149 PEEK

Action
Returns a byte stored in internal memory.

Syntax
var = PEEK(address)

Remarks
var Numeric variable that is assigned with the content of the memory

location address

address Numeric variable or constant with the address location.(0-255)

See also
POKE , CPEEK , INP , OUT

Example
DIM a As Byte
a = Peek(0) 'return the first byte of the internal memory (r0)
End

6.150 POKE

Action
Write a byte to an internal memory location.

Syntax
POKE address , value

Remarks
address Numeric variable with the address of the memory location to set. (0-

255)

value Value to assign. (0-255)

198 130 169 196

199BASCOM Language Reference

© 2021 MCS Electronics

Be careful with the POKE statement because you can change variables with it, which
can cause your program to function incorrect.

See also
PEEK , CPEEK , INP , OUT

Example
POKE 127, 1 'write 1 to address 127
End

6.151 POWERDOWN

Action
Put processor into power down mode.

Syntax
POWERDOWN

Remarks
The power down mode stops the system clock completely.
The only way to reactivate the micro controller is by system reset.

See also
IDLE

Example
POWERDOWN

6.152 PRINT

Action
Send output to the RS-232 port.

Syntax
PRINT var ; " constant"

Remarks
var The variable or constant to print.

You can use a semicolon (;) to print more than one variable at one line.
When you end a line with a semicolon, no linefeed will be added.

The PRINT routine can be used when you have a RS-232 interface on your uP.
See the manual for a design of an RS-232 interface.

198 130 169 196

165

200 BASCOM-8051

© 2021 MCS Electronics

The RS-232 interface can be connected to a serial communication port of your
computer.
This way you can use a terminal emulator as an output device.
You can also use the build in terminal emulator.

See also
PRINTHEX , INPUT , OPEN , CLOSE , SPC

Example
'--

' (c) 1995-2006 MCS Electronics

'--

' file: PRINT.BAS

' demo: PRINT, PRINTHEX

'--

Dim A As Byte , B1 As Byte , C As Integer

A = 1

Print "print variable a " ; A

Print 'new line

Print "Text to print." 'constant to print

B1 = 10

Printhex B1 'print in hexa notation

C = &HA000 'assign value to c%

Printhex C 'print in hex notation

Print C 'print in decimal notation

C = -32000

Print C

Printhex C

Rem Note That Integers Range From -32767 To 32768

End

6.153 PRINTBIN

Action
Print binary content of a variable to the serial port.

Syntax
PRINTBIN var [; varn]
PRINTBIN #dev, var ; [,varn]

Remarks
var The variable which value is sent to the serial port.

201 169 194 194 219

201BASCOM Language Reference

© 2021 MCS Electronics

varn Optional variables to send separated by a ;.

#dev Device number for use with OPEN and CLOSE

PRINTBIN is equivalent to PRINT CHR(var); but whole arrays can be printed this
way.

When you use a Long for example, 4 bytes are printed.

See also
INPUTBIN , PRINT , PRINTHEX , INPUTHEX

Example
Dim a(10) as Byte, c as Byte
For c = 1 To 10
 a(c) = a 'fill array
Next
PRINTBIN a(1) 'print content

'This code only for 80517/80537 with dual serial port
Open "COM2:" For Binary As #1 'open serial channel 1
PRINTBIN #1 , a(1) ; a(2) ; a(3) 'note that the channel is separated by a , and
the vars by ;
Close #1

6.154 PRINTHEX

Action
Sends a variable in hexadecimal format to the serial port.

Syntax
PRINTHEX var

Remarks
var The variable to print.

The same rules apply to PRINTHEX as PRINT.

The PRINTHEX routine can be used when you have a RS-232 interface on your uP.
See the manual for a design of an RS-232 interface.
The RS-232 interface can be connected to a serial communication port of your
computer.
This way you can use a terminal emulator as an output device.
You can also use the build in terminal emulator.

See also
PRINT , INPUTHEX , SPC

171 199 201 172

199 172 219

202 BASCOM-8051

© 2021 MCS Electronics

Example
Dim x As Byte
INPUT x 'ask for var
PRINT x 'print it in decimal format
PRINTHEX "Hex " ; x 'print it in hex format

6.155 PRIORITY

Action
Sets the priority level of the interrupts.

Syntax
PRIORITY SET / RESET interrupt

Remarks
SET Bring the priority level of the interrupt to a higher level.

RESET Bring the priority level of the interrupt to a lower level.

Interrupt The interrupt to set or reset.

The interrupts are: INT0, INT1, SERIAL, TIMER0, TIMER1 and TIMER2.

Interrupt INT0 always has the highest priority.
When more interrupts occur at the same time the following order is used to handle
the interrupts.

Note that other microprocessors can have additional/other interrupt setting.
Read microprocessor support to check the additions.

Interrupt Priority

INT0 1 (highest)

TIMER0 2

INT1 3

TIMER1 4

SERIAL 5 (lowest)

Example
PRIORITY SET SERIAL 'serial int highest level
ENABLE SERIAL 'enable serial int
ENABLE TIMER0 'enable timer0 int
ENABLE INTERRUPTS 'activate interrupt handler
ON SERIAL label 'branch to label if serial int occur
DO 'loop for ever

LOOP

287

203BASCOM Language Reference

© 2021 MCS Electronics

Label: 'start label
 PRINT " Serial int occurred." 'print message
RETURN 'return from interrupt

6.156 PSET

Action
Sets or resets a single pixel.

Syntax
PSET X , Y, value

Remarks
X The X location of the pixel. In range from 0-239.

Y The Y location of the pixel. In range from 0-63.

value The value for the pixel. 0 will clear the pixel. 1 Will set the pixel.

The PSET is handy to create a simple data logger or oscilloscope.

See also
CONFIG GRAPHLCD

Example
Dim X as Byte, Y as Byte

For X = 0 To 10

 For Y = 0 To 10

 Pset X , Y , 1 'make a nice block

 Next

Next
End

6.157 PUT

Action
Sends a byte to the software UART.

Syntax
PUT #channel , var

Remarks
channel Positive numeric constant that refers to the opened channel.

var A variable or constant who's value is sent to the the software
UART.

117

204 BASCOM-8051

© 2021 MCS Electronics

See also
GET , PRINT , INPUT , OPEN

Example
Open "com3.1:9600" For Output As #1 'p3.1 is normally used for
tx so testing is easy
Open "com3.0:9600" For Input As #2 'p3.0 is normally used for
RX so testing is easy

S = "test this" 'assign string
Dum = Len(s) 'get length of string
For I = 1 To Dum 'for all characters from left to right
 A = Mid(s , I , 1) 'get character
 Put #1 , A 'write it to comport
Next

Do
 Get #2 , A 'get character from comport
 Put #1 , A 'write it back
 Print A 'use normal channel
Loop

Close #1 ' finally close device
Close #2
End

6.158 READ

Action
Reads those values and assigns them to variables.

Syntax
READ var

Remarks
var Variable that is assigned data value.

Difference with QB
It is important that the variable is of the same type as the stored data.

See also
DATA , RESTORE

147 199 169 194

132 208

205BASCOM Language Reference

© 2021 MCS Electronics

Example
Dim A As Byte, I As Byte, C As Integer, S As XRAM String * 10
RESTORE dta
FOR a = 1 TO 3
 READ i : PRINT i
NEXT
RESTORE DTA2
READ C : PRINT C
READ C : PRINT C
Restore dta3 : Read s : Print s
END

dta:
Data 5,10,15
dta2:
Data 1000%, -2000%
dta3:
Data " hello"

6.159 READMAGCARD

Action
Reads data from a magnetic card reader.

Syntax
READMAGCARD var , bytes , code, timeout

Remarks
Var A byte array large enough to store the data from the magnetic

card reader.

bytes The number of bytes read from the card.

Shifts The coding used. Must be 5 or 7. In version 2.03 only 5 is
supported.

Timeout A LONG variable or constant that the routine will wait for a card.
Err will be set when no card is detected within Timeout.

There can be 3 tracks on a magnetic card.

Track 1 strores the data in 7 bit including the parity bit. This is handy to store alpha
numeric data.

On track 2 and 3 the data is stored with 5 bit coding.

The ReadMagCard routine works with ISO7811-2 5 and 7 bit decoding.

The returned numbers for 5 bit coding are:

Returned number ISO characterT

0 0

1 1

2 2

206 BASCOM-8051

© 2021 MCS Electronics

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 hardware control

11 start byte

12 hardware control

13 separator

14 hardware control

15 stop byte

See also
None

Calls
_Read_Magcard_Code5

Example
'[DIM used variables]

Dim X(40) As Byte , I As Byte , Bts As Byte

'[ALIAS the pins used]

_mcs Alias P1.1

_mclock Alias P1.2

_mdata Alias P1.0

Do

 Print "Slide magcard through reader"

 Readmagcard X(1) , Bts , 5, 10000 'call routine

 ' ^ may be 5 or 7. 7 bit coding not implemented yet

 Print "Error " ; Err '1 if error occured

 Print ; " " ; Bts ; " bytes read" 'show number of bytes read

 Print Err

 For I = 1 To Bts

 Print X(i) ; " "; 'show number

 Next

 Print

207BASCOM Language Reference

© 2021 MCS Electronics

Loop

End

6.160 REM

Action
Instruct the compiler that comment will follow.

Syntax
REM or '

Remarks
You can comment your program for clarity.
You can use REM or ' followed by your comment.
All statements after REM or ' are treated as comment so you cannot
use statements after a REM statement.

It is also possible to use block comments:
'(start block comment
print "This will not be compiled
') end block comment

Note that the starting ' sign will ensure compatibility with QB
Each block must be closed with a ')

Example
REM TEST.BAS version 1.00
PRINT a ' " this is comment : PRINT " hello"
 ^--- this will not be executed!

6.161 REPLACE

Action
Replace all occurrences of a single character in a string.

Syntax
REPLACE string , old , new

Remarks
string The source string to change.

old A string constant or byte that specifies the character to replace.

new The new character. Also a string constant or a byte.

Example
Dim S as String * 12

208 BASCOM-8051

© 2021 MCS Electronics

s = "Hello"
REPLACE s , "e" , "a" ' now we got some dutch :-)
Print s ' should print Hallo

6.162 RESET

Action
Reset a bit of a PORT (P1.x, P3.x) or an internal bit/byte/integer/word/long variable.

Syntax
RESET bit
RESET var.x

Remarks
bit Can be a P1.x, P3.x or any bitvariable where x=0-7.

var Can be a byte, integer or word variable.

x Constant of variable to reset.(0-7) for bytes and (0-15) for Integer/
Word. 0-31 for a LONG.

See also
SET

Example
Dim b1 as bit, b2 as byte, I as Integer
RESET P1.3 'reset bit 3 of port 1
RESET b1 'bitvariable
RESET b2.0 'reset bit 0 of bytevariable b2
RESET I.15 'reset MS bit from I

6.163 RESTORE

Action
Allows READ to reread values in specified DATA statements.

Syntax
RESTORE label

Remarks
Label The label of a DATA statement.

See also
DATA , READ

212

132 204

209BASCOM Language Reference

© 2021 MCS Electronics

Example
DIM a AS BYTE, I AS BYTE
RESTORE dta
FOR a = 1 TO 3
 READ a : PRINT a
NEXT
RESTORE DTA2
READ I : PRINT I
READ I : PRINT I
END

DTA1:
Data 5, 10, 100

DTA2:
Data -1%, 1000%
Integers must end with the %-sign. (Integer : <0 or >255)

6.164 RETURN

Action
Return from a subroutine.

Syntax
RETURN

Remarks
Subroutines must be ended with a related RETURN statement.
Interrupt subroutines must also be terminated with the Return statement.

See also
GOSUB

Example
Dim Result As Byte , Y As Byte

Gosub Pr 'jump to subroutine

Print Result 'print result

End 'program ends

Pr: 'start subroutine with label

Result = 5 * Y 'do something stupid

Result = Result + 100 'add something to it

Return 'return

158

210 BASCOM-8051

© 2021 MCS Electronics

6.165 RIGHT

Action
Return a specified number of rightmost characters in a string.

Syntax
var = RIGHT(var1 ,st)

Remarks
var The string that is assigned.

Var1 The sourcestring.

st The starting position.

All strings must be of the same data type, internal or external.

See also
LEFT , MID

Example
Dim s As XRAM String * 15, z As XRAM String * 15
s = "ABCDEFG"
z = Right(s,2)
Print z 'FG
End

6.166 RND

Action
Returns a random number.

Syntax
var = RND(limit)

Remarks
Limit The maximum number that will be assigned to the random

number.

The RND() function uses 2 internal bytes to store the value of the random seed.

It is important to understand that the RND() function is a math function. Every
time you reset the micro, it will produce the same sequence. Only when you vary
the variables with for example a timer, temperature reading, or a clock, you can
make a more random value.

See also

179 187

211BASCOM Language Reference

© 2021 MCS Electronics

NONE

Example
'---
' (c) 1995-2006 MCS Electronics
' RND.BAS
'---
Dim W As Word

Do
 'get a random number and limit it to be maximum 100
 W = Rnd(100)
 Print W
Loop
End

6.167 ROTATE

Action
Shifts all bits one place to the left or right.

Syntax
ROTATE var , LEFT/RIGHT [, shifts]

Remarks
Var Byte, Integer/Word or Long variable.

Shifts The number of shifts to perform.

Note that the behavior of ROTATE is just like the ASM RL or RR mnemonic. It works
for integer, words, single and longs also. All bits in the variable are preserved so for
a byte after 8 rotations, the value will be the same.

See also
SHIFTIN , SHIFTOUT , SHIFT

Calls
_ROTATE_LEFT or _ROTATE_RIGHT

Example
Dim a as Byte
a = 128
ROTATE a, LEFT , 2
Print a '1

214 214 213

212 BASCOM-8051

© 2021 MCS Electronics

6.168 SELECT

Action
Executes one of several statement blocks depending on the value of a variable.

Syntax
SELECT CASE var
 CASE test1 : statements
 [CASE test2 : statements]
 CASE ELSE : statements
END SELECT

Remarks
var Variable. to test

Test1 Value to test for.

Test2 Value to test for.

See also
IF THEN

Example
Dim b2 as byte
SELECT CASE b2 'set bit 1 of port 1
 CASE 2 : PRINT "2"
 CASE 4 : PRINT "4"
 CASE IS >5 : PRINT ">5" 'a test requires the IS keyword
 CASE 10 TO 20 'test the range from 10 to 20
 CASE ELSE
END SELECT
END

6.169 SET

Action
Set a bit of a PORT(P1.x,P3.x) or a bit/byte/integer/word/long variable.

Syntax
SET bit
SET var.x

Remarks
Bit P1.x, P3.x or a Bit variable.

Var A byte, integer, word or long variable.

165

213BASCOM Language Reference

© 2021 MCS Electronics

X Bit of variable (0-7) to set. (0-15 for Integer/Word) and 0-31 for a
LONG.

See also
RESET

Example
Dim b1 as Bit, b2 as byte, c as Word
SET P1.1 'set bit 1 of port 1
SET b1 'bitvariable
SET b2.1 'set bit 1 of var b2
SET C.15 'set highest bit of Word

6.170 SHIFTCURSOR

Action
Shift the cursor of the LCD display left or right by one position.

Syntax
SHIFTCURSOR LEFT | RIGHT

See also
SHIFTLCD , LCD , CLS , LOCATE , HOME

Example
LCD "Hello"
SHIFTCURSOR LEFT
End

6.171 SHIFT

Action
Shifts all bits one place to the left or right.

Syntax
SHIFT var , LEFT/RIGHT [, shifts]

Remarks
Var Byte, Integer/Word or Long variable.

Shifts The number of shifts to perform.

The SHIFT statements shifts all bits to the left or right and so for a byte after 8
shifts, the byte will be zero.

208

215 174 111 181 162

214 BASCOM-8051

© 2021 MCS Electronics

See also
SHIFTIN , SHIFTOUT ROTATE

Example
Dim a as Word
a = 128
SHIFT a, LEFT , 1
Print a '256

6.172 SHIFTIN

Action
Shifts a bit stream in or out a variable.

Syntax
SHIFTIN pin , pclock , var , option [PRE]
SHIFTOUT pin , pclock , var , option

Remarks
pin The portpin which serves as as input/output.

pclock The portpin which generates the clock.

var The variable that is assigned.

option Option can be :

0 - MSB shifted in/out first when clock goes low

1 - MSB shifted in/out first when clock goes high

2 - LSB shifted in/out first when clock goes low

3 - LSB shifted in/out first when clock goes high

For the SHIFTIN statement you can add 4 to the parameter to use
the external clock signal for shifting.

PRE Add this additional parameter (no comma) to sample the input pin
before the clock signal is generated.

It depends on the type of the variable, how many shifts will occur.
When you use a byte, 8 shifts will occur and for an integer, 16 shifts will occur.

See also
NONE

Example
Dim a as byte
SHIFTIN P1.0 , P1.1 , a , 0
SHIFTOUT P1.2 , P1.1 , a , 0

214 214 211

215BASCOM Language Reference

© 2021 MCS Electronics

For the SHIFTIN example the following code is generated:
Setb P1.1
Mov R0,#h'21
Mov r2,#h'01
__UNQLBL1:
Mov r3,#8
__UNQLBL2:
Clr P1.1
Nop
Nop
Mov c,P1.0
Rlc a
Setb P1.1
Nop
Nop
Djnz r3,__UNQLBL2
Mov @r0,a
Dec r0
Djnz r2,__UNQLBL1

Of course, it depends on the parameter, which code will be generated.
To shift with an external clock signal:
SHIFTIN P1.0, P1.1 , a , 4 'add 4 for external clock

Generated code:

Mov R0,#h'21
Mov r2,#h'01
__UNQLBL1:
Mov r3,#8
__UNQLBL2:
Jnb P1.1,*+0
Mov c,P1.0
Rlc a
Jb P1.1,*+0
Djnz r3,__UNQLBL2
Mov @r0,a
Dec r0
Djnz r2,__UNQLBL1

6.173 SHIFTLCD

Action
Shift the LCD display left or right by one position.

Syntax
SHIFTLCD LEFT / RIGHT

Remarks
NONE

216 BASCOM-8051

© 2021 MCS Electronics

See also
SHIFTCURSOR , CLS , LCD , HOME , LOCATE

Example
LCD "Very long text"
SHIFTLCD LEFT
Wait 1
SHIFTLCD RIGHT
End

6.174 SHOWPIC

Action
Shows a BGF file on the graphic display

Syntax
SHOWPIC x, y , label

Remarks
Showpic can display a converted BMP file. The BMP must be converted into a BGF
file with the Tools Grahic Converter .
The X and Y parameters specify where the picture must be displayed. X and Y must
be 0 or a multiple of 8. The picture height and width must also be an multiple of 8.
The label tells the compiler where the graphic data is located. It points to a label
where you put the graphic data with the $BGF directive.

See also
$BGF , CONFIG GRAPHLCD , PSET

Example
CLS GRAPH 'clear graphic part of display
ShowPic 0,0, label 'show picture
End

Label:
$BGF "mypic.bgf" 'data will be inserted here

6.175 SOUND

Action
Sends pulses to a port pin.

Syntax
SOUND pin, duration, frequency [,NOINT]

213 111 174 162 181

50

85 117 203

217BASCOM Language Reference

© 2021 MCS Electronics

Remarks
Pin Any I/O pin such as P1.0 etc.

duration The number of pulses to send. Byte, integer/word or constant.

(1- 32768).

Frequency The time the pin is pulled low and high.

NOINT An option to disable interrupts during the sound statement.

When you connect a speaker or a buzzer to a port pin (see hardware) , you can use
the SOUND statement to generate some tones.
The NOINT will clear the global interrupts so no interrupts can occur during the
sound statement. When the sound statement has completed the interrupt register is
restored.

The port pin is switched high and low for frequency uS. The pin will be in the low
state when the sound statement ends.
This loop is executed duration times.

See also
SOUNDEXT

Example
SOUND P1.1 , 10000, 10 'BEEP
End

6.176 SOUNDEXT

Action
Sends pulses to a port pin.

Syntax
SOUND pin, duration, frequency [,NOINT]

Remarks
Pin Any I/O pin such as P1.0 etc.

duration This is an integer, word or constant that specifies how long the sound
is generated. A bigger value will result in a longer duration of the
sound.

Frequency This is an integer, word, or constant that that will be used to
generate the frequency. A higher value will result in a higher
frequency. A very low value might result in a sound that can not be
heard.

NOINT An option to disable interrupts during the sound statement.

The SOUNDEXT should be used instead of the SOUND statement. It has a wider
range.

217

218 BASCOM-8051

© 2021 MCS Electronics

When you connect a speaker or a buzzer to a port pin (see hardware) , you can use
the SOUNDEXT statement to generate some tones.
The NOINT will clear the global interrupts so no interrupts can occur during the
sound statement. When the sound statement has completed the interrupt register is
restored.

The SoundExt routine will create the sound as following:
· The port pin is set LOW
· The specified frequency is inverted
· The inverted value is decreased
· The port pin is set HIGH
· The inverted value is restored and decreased again

The actions are executed for DURATION times.

When the statement is ready, it will leave the pin in the HIGH state.
The time the pin is low is exact the same time as the pin is high. So the created
pulse width is 50%.

Since loops are used, the frequency is relatively to the processor speed.
The width range of the frequency will ensure that you can create hearable tones
width a variety of oscillator values. When you want to create tones that are
independent of the processor speed, you need to use a timer.

See also
SOUND

Example
$regfile = "89s4051.dat"
$crystal = 8000000
Dim X As Word
X = 0
Do
 X = X - 10
 Soundext P3.4 , 500 , X
 Waitms 1
Loop

6.177 SPACE

Action
Returns a string of spaces.

Syntax
var = SPACE(x)

Remarks
X The number of spaces.

Var The string that is assigned.

Using 0 for x, will result in a string of 255 bytes because there is no check for a zero

216

219BASCOM Language Reference

© 2021 MCS Electronics

length assign.

See also
STRING , SPC

Example
Dim s as XRAM String * 15, z as XRAM String * 15
s = Space(5)
Print " {" ;s ; " }" '{ }

Dim A as Byte
A = 3
S = Space(a)

Genereated code for last 2 lines :
; ---------- library routine -----------
_sStr_String:
Mov @r1,a
Inc r1
Djnz r2,_sStr_String
Clr a
Mov @r1,a
Ret
;---------------------------------------
Mov R1,#h'22 ; location of string
Mov R2,h'21 ; number of spaces
Mov a,#32
Acall _sStr_String

6.178 SPC

Action
Prints spaces to the serial port or LCD display.

Syntax
PRINT SPC(x)

Remarks
x The number of spaces to print. Range from 1 - 255.

Use SPACE() function to assign spaces to a string.
SPC() can only be used in combination with PRINT and LCD.

See Also
SPACE

Example
Dim s as XRAM String * 15, z as XRAM String * 15

224 219

218

220 BASCOM-8051

© 2021 MCS Electronics

s = "Hello"
Print " {" ;s ; SPC(3) ; "}"

6.179 SPIIN

Action
Reads a value from the SPI-bus.

Syntax
SPIIN var, bytes

Remarks
Var The variable that is assigned with the value read from the SPI-bus.

Bytes The number of bytes to read.

See also
SPIOUT , CONFIG SPI , SPIINIT

Example
Dim a(10) as byte
CONFIG SPI = SOFT, DIN = P1.0, DOUT = P1.1, CS=P1.2, CLK = P1.3
SPIINIT
SPIIN a(1) , 4 'read 4 bytes

6.180 SPIINIT

Action
Initializes the pins of the SPI-bus.

Syntax
SPIINIT

Remarks
The pins used for the SPI bus must be set to the proper logical level before you can
use the SPI commands.

See also
SPIOUT , CONFIG SPI , SPIIN

Example
Dim a(10) as byte
CONFIG SPI = SOFT, DIN = P1.0, DOUT = P1.1, CS=P1.2, CLK = P1.3
SPIINIT

221 126 220

221 126 220

221BASCOM Language Reference

© 2021 MCS Electronics

SPIIN a(1) , 4 'read 4 bytes

6.181 SPIOUT

Action
Sends a value of a variable to the SPI-bus.

Syntax
SPIOUT var , bytes

Remarks
var The variable woes content must be send to the SPI-bus.

bytes The number of bytes to send.

See also
SPIIN , CONFIG SPI , SPIINIT

Example
CONFIG SPI = SOFT, DIN = P1.0, DOUT = P1.1, CS=P1.2, CLK = P1.3
SPIINIT ‘ init SPI pins
Dim a(10) as Byte , X As Byte
SPIOUT a(1) , 5 'send 5 bytes
SPIOUT X , 1 'send 1 byte

6.182 START

Action
Start the specified timer/counter.

Syntax
START timer

Remarks
timer TIMER0, TIMER1, TIMER2, COUNTER0 or COUNTER1.

You must start a timer/counter in order for an interrupt to occur (when the external
gate is disabled).

TIMER0 and COUNTER0 are the same device.

See also
STOP TIMERx

220 126 220

222

222 BASCOM-8051

© 2021 MCS Electronics

Example
ON TIMER0 label2
LOAD TIMER0, 100
START TIMER0
DO 'start loop
LOOP 'loop forever

label2: 'perform an action here

RETURN

6.183 STOP

Action
Stop program execution.

Syntax
STOP

Remarks
END can also be used to terminate a program.

When an END or STOP statement is encountered a never ending loop is generated.

See Also
STOP TIMER , START

Example
PRINT var 'print something
STOP 'thats it

6.184 STOP Timer

Action
Stop the specified timer/counter.

Syntax
STOP timer

Remarks
timer TIMER0, TIMER1, TIMER2, COUNTER0 or COUNTER1.

You can stop a timer when you don't want an interrupt to occur.

222 221

223BASCOM Language Reference

© 2021 MCS Electronics

TIMER0 and COUNTER0 are the same.

See also
START TIMERx , STOP

Example
'--

' (c) 1995-2006 MCS Electronics

'--

' file: TIMER0.BAS

' demo: ON TIMER0

' *TIMER1 is used for RS-232 baudrate generator

'--

Dim Count As Byte , Gt As Byte

Config Timer0 = Timer , Gate = Internal , Mode = 2

'Timer0 = counter : timer0 operates as a counter

'Gate = Internal : no external gate control

'Mode = 2 : 8-bit auto reload (default)

On Timer0 Timer_0_int

Load Timer0 , 100 'when the timer reaches 100 an
interrupt will occur

Enable Interrupts 'enable the use of interrupts

Enable Timer0 'enable the timer

Rem Setting Of Priority

Priority Set Timer0 'highest priority

Start Timer0 'start the timer

Count = 0 'reset counter

Do

 Input "Number " , Gt

 Print "You entered : " ; Gt

Loop Until Gt = 1 'loop
until users enters 1

Stop Timer0

End

Rem The Interrupt Handler For The Timer0 Interrupt

Timer_0_int:

 Inc Count

 If Count = 250 Then

 Print "Timer0 Interrupt occured"

 Count = 0

221 222

224 BASCOM-8051

© 2021 MCS Electronics

 End If

Return

6.185 STR

Action
Returns a string representation of a number.

Syntax
var = STR(x)

Remarks
Var A string variable.

X A numeric variable.

The string must be big enough to store the string.

See also
VAL , HEX , HEXVAL

Difference with QB
In QB STR() returns a string with a leading space. This behaviour is not in
BASCOM.

Example
Dim a as Byte, S as XRAM String * 10
a = 123
s = Str(a)
Print s
End

6.186 STRING

Action
Returns a string consisting of m repetitions of the character with ASCII
code n.

Syntax
var = STRING(m ,n)

228 159 160

225BASCOM Language Reference

© 2021 MCS Electronics

Remarks
Var The string that is assigned.

N The ASCII-code that is assigned to the string.

M The number of characters to assign.

Since a string is terminated by a 0 byte, you can't use 0 for n.
Using 0 for m will result in a string of 255 bytes, because there is no check on a
length assign of 0. When you need this let me know.

See also
SPACE

Example
Dim s as XRAM String * 15
s = String(5,65)
Print s 'AAAAA
End

6.187 SUB

Action
Defines a Sub procedure.

Syntax
SUB Name[(var1)]

Remarks
name Name of the sub procedure, can be any non reserved word.

var1 The name of the parameter.

You must end each subroutine with the END SUB statement.

You must Declare Sub procedures before the SUB statement.
The parameter names and types must be the same in both the declaration and the
Sub procedure.

Parameters are global to the application.
That is the used parameters must be dimensioned with the DIM statement.
Therefore, the variables can be used by the program and sub procedures.
The following examples will illustrate this :

Dim a as byte, b1 as byte, c as byte 'dim used variables
Declare Sub Test(a as byte) 'declare subroutine
a = 1 : b1 = 2: c = 3 'assign variables

Print a ; b1 ; c 'print them

218

226 BASCOM-8051

© 2021 MCS Electronics

Call Test(b1) 'call subroutine
Print a ;b1 ; c 'print variables again
End

Sub Test(a as byte) 'begin procedure/subroutine
 print a ; b1 ; c 'print variables
End Sub

See also
CALL , DECLARE

Example
NONE

6.188 SWAP

Action
Exchange two variables of the same type.

Syntax
SWAP var1, var2

Remarks
var1 A variable of type bit, byte, integer or word.

var2 A variable of the same type as var1.

After the swap, var1 will hold the value of var2 and var2 will hold the value of var1.

Example
Dim a as integer,b1 as integer
a = 1 : b1 = 2 'assign two integers
SWAP a, b1 'swap them
PRINT a ; b1

6.189 THIRDLINE

Action
Reset LCD cursor to the third line.

Syntax
THIRDLINE

Remarks

109 135

227BASCOM Language Reference

© 2021 MCS Electronics

NONE

See also
UPPERLINE , LOWERLINE , FOURTHLINE

Example
Dim a as byte
a = 255
LCD a
Thirdline
LCD a
Upperline
End

6.190 UCASE

Action
Converts a string into upper case.

Syntax
dest = UCASE(source)

Remarks
dest The string variable that will be assigned with the upper case of string

SOURCE.

source The source string. The original string will be unchanged.

See also
LCASE

Example
Dim S As String * 12 , Z As String * 12

Input "Hello " , S 'assign string

S = Lcase(s) 'convert to lowercase

Print S 'print string

S = Ucase(s) 'convert to upper case

Print S 'print string

228 184 145

174

228 BASCOM-8051

© 2021 MCS Electronics

6.191 UPPERLINE

Action
Reset LCD cursor to the upper line.

Syntax
UPPERLINE

Remarks
NONE

See also
LOWERLINE , THIRDLINE , FOURTHLINE

Example
Dim a as byte
a = 255
LCD a
Lowerline
LCD a
Upperline
End

6.192 VAL

Action
Converts a string representation of a number into a number.

Syntax
var = Val(s)

Remarks
Var A numeric variable that is assigned with the value of s.

S Variable of the string type.

var : Byte, Integer, Word, Long, Single.

See also
STR , HEXVAL

Example
Dim a as byte, s As XRAM string * 10
s = "123"
a = Val(s) 'convert string

184 226 145

224 160

229BASCOM Language Reference

© 2021 MCS Electronics

Print a
End

6.193 VARPTR

Action
Retrieves the memory-address of a variable.

Syntax
var = VARPTR(var2)

Remarks
Var The variable that is assigned with the address of var2.

var2 A variable to retrieve the address from.

See also
PEEK POKE

Example
Dim I As Integer , B1 As Byte
B1 = Varptr(I)

Generated code:
Mov h'23,#h'21

6.194 WAIT

Action
Suspends program execution for a given time.

Syntax
WAIT seconds

Remarks
seconds The number of seconds to wait.

The delay time is based on the used X-tal (frequency).
When you use interrupts the delay can be extended.

See also
DELAY , WAITMS , WAITMSE

198 198

137 230 231

230 BASCOM-8051

© 2021 MCS Electronics

Example
WAIT 3 'wait for three seconds
Print "*"

6.195 WAITKEY

Action
Wait until a character is received in the serial buffer.

Syntax
var = WAITKEY()
var = WAITKEY(#channel)

Remarks
Var Variable that is assigned with the ASCII value of the serial buffer.

channel The channel number of the device

var : Byte, Integer, Word, Long, String.

See also
INKEY

Example
Dim A As Byte
A = Waitkey 'wait for character
Print A

Example
Dim A As Byte
Open "COM2:" For Binary As #1 'open serial chan.1 COM2 of 80517/80537
Dim St As Byte
St = Inkey(#1) 'get key
St = Inkey() 'get key from COM1 (the default)

6.196 WAITMS

Action
Suspends program execution for a given time in mS.

Syntax
WAITMS mS

Remarks
mS The number of milliseconds to wait. (1-255)

167

231BASCOM Language Reference

© 2021 MCS Electronics

The delay time is based on the used X-tal (frequency).
The use of interrupts can slow down this routine.
This statement is provided for the I2C statements.
When you write to an EEPROM you must wait for 10 mS after the write instruction.

See also
DELAY , WAIT , WAITMSE

Example
WAITMS 10 'wait for 10 mS
Print "*"

6.197 WAITMSE

Action
Suspends program execution for a given time in mS.

Syntax
WAITMS mS

Remarks
mS The number of milliseconds to wait. (1-65535)

The delay time is based on the used X-tal (frequency).
So it is important that you provide the right $CRYSTAL value.

The use of interrupts can slow down this routine.
For a real precise delay you should use a timer.
The WAITMS statement can only delay for 255 mS. That is why the WAITMSE
statement was added, it can give a longer delay.

See also
DELAY , WAIT , WAITMS

Example
WAITMSE 1000 'wait for 1000 mS
Print "*"

6.198 WATCHDOG

Action
Start and stop the watchdog timer.

Syntax

137 229 231

87

137 229 230

232 BASCOM-8051

© 2021 MCS Electronics

START WATCHDOG 'will start the watchdog timer.
STOP WATCHDOG 'will stop the watchdog timer.
RESET WATCHDOG 'will reset the watchdog timer.

Remarks
The AT89S8252 has a built in watchdog timer.
A watchdog timer is a timer that will reset the uP when it reaches a certain value.
So during program execution this WD-timer must be reset before it exceeds its
maximum value. This is used to be sure a program is running correct.
When a program crashes or sits in an endless loop it will not reset the WD-timer so
an automatic reset will occur resulting in a restart.
You need to configure the reset time with CONFIG WATCHDOG.

CONFIG WATCHDOG = value

value The time in mS it takes the WD will overflow, causing a reset.

Possible values are :

16,32,64,128,256,512,1024 or 2048

See Also
CONFIG WATCHDOG

Example
DIM A AS INTEGER
CONFIG WATCHDOG = 2048 'after 2 seconds a reset will occur
START WATCHDOG 'start the WD
DO
 PRINT a
 a = a + 1 'notice the reset
 REM RESET WATCHDOG 'delete the REM to run properly
LOOP
END

6.199 WHILE .. WEND

Action
Executes a series of statements in a loop, as long as a given condition is true.

Syntax
WHILE condition
 statements
WEND

Remarks
If the condition is true then any intervening statements are executed until the
WEND statement is encountered.
BASCOM then returns to the WHILE statement and checks condition.
If it is still true, the process is repeated.
If it is not true, execution resumes with the statement following the WEND

128

233BASCOM Language Reference

© 2021 MCS Electronics

statement.

See also
DO .. LOOP , FOR .. NEXT

Example
Dim A As Byte

While A <= 10

Print A

Incr A

Wend

140 144

Part

VII

235Using assembly

© 2021 MCS Electronics

7 Using assembly

7.1 Using assemly

In line assembly
Assembler statements are recognized by the compiler.
The only exception is SWAP because this is a valid BASIC statement.
You must precede this ASM-statement with the !-sign so the compiler knows that
you mean the ASM SWAP statement.

Note that for the ACC register, A is used in mnemonics.(Except for bit operations)
Example:
Mov a, #10 'ok
Mov acc,#10 'also ok but generates 1 more byte
Setb acc.0 'ok
Setb a.0 'NOT OK

You can also include an assembler file with the $INCLUDE FILE.ASM statement.

The assembler is based on the standard Intel mnemonics.
The following codes are used to describe the mnemonics:

Rn working register R0-R7

Direct 128 internal RAM locations, any IO port, control or status register.

For example : P1, P3, ACC

@Ri indirect internal RAM location addressed by register R0 or R1

#data 8-bit constant included in instruction

#data16 16-bit constant included in instruction

Bit 128 software flags, any IO pin, control or status bit

For example : ACC.0, P1.0, P1.1

Boolean variable
manipulation

CLR C clear carry flag

CLR bit clear direct bit

SETB C set carry flag

SETB bit set direct bit

CPL C complement carry flag

CPL bit complement direct bit

ANL C, bit AND direct bit to carry flag

ORL C,bit OR direct bit to carry flag

MOV C,bit Move direct bit to carry flag

Program and machine
control

236 BASCOM-8051

© 2021 MCS Electronics

LCALL addr16 long subroutine call

RET return from subroutine

RETI return from interrupt

LJMP addr16 long jump

SJMP rel short jump (relative address)

JMP @A+DPTR jump indirect relative to the DPTR

JZ rel jump if accu is zero

JNZ rel jump if accu is not zero

JC rel jump if carry flag is set

JNC rel jump if carry flag is not set

JB bit,rel jump if direct bit is set

JNB bit,rel jump if direct bit is not set

JBC bit,rel jump if direct bit is set & clear bit

CJNE A,direct,rel compare direct to A & jump of not equal

CJNE A,#data,rel comp. I'mmed. to A & jump if not equal

CJNE Rn,#data,rel comp. I'mmed. to reg. & jump if not equal

CJNE @Ri,#data,rel comp. I'mmed. to ind. & jump if not equal

DJNZ Rn,rel decrement register & jump if not zero

DJNZ direct,rel decrement direct & jump if not zero

NOP No operation

Arithmetic
operations

ADD A,Rn add register to accu

ADD A,direct add register byte to accu

ADD A,@Ri add indirect RAM to accu

ADD A,#data add immediate data to accu

ADDC A,Rn add register to accu with carry

ADDC A,direct add direct byte to accu with carry flag

ADDC A,@Ri add indirect RAM to accu with carry flag

ADDC A,#data add immediate data to accu with carry flag

SUBB A,Rn subtract register from A with borrow

SUBB A,direct subtract direct byte from A with borrow

SUBB A,@Ri subtract indirect RAM from A with borrow

SUBB A,#data subtract immediate data from A with borrow

INC A increment accumulator

237Using assembly

© 2021 MCS Electronics

INC Rn increment register

INC direct increment direct byte

INC@Ri increment indirect RAM

DEC A decrement accumulator

DEC Rn decrement register

DEC direct decrement direct byte

DEC@Ri decrement indirect RAM

INC DPTR increment datapointer

MUL AB multiply A & B

DIV AB divide A by B

DA A decimal adjust accu

Logical operations

ANL A,Rn AND register to accu

ANL A,direct AND direct byte to accu

ANL A,@Ri AND indirect RAM to accu

ANL A,#data AND immediate data to accu

ANL direct,A AND accu to direct byte

ANL direct,#data AND immediate data to direct byte

ORL A,Rn OR register to accu

ORL A,direct OR direct byte to accu

ORL A,@Ri OR indirect RAM to accu

ORL A,#data OR immediate data to accu

ORL direct,A ORL accu to direct byte

ORL direct,#data ORL immediate data to direct byte

XRL A,Rn exclusive OR register to accu

XRL A,direct exclusive OR direct byte to accu

XRL A,@Ri exclusive OR indirect RAM to accu

XRL A,#data exclusive OR immediate data to accu

XRL direct,A exclusive OR accu to direct byte

XRL direct,#data exclusive OR immediate data to direct byte

CLR A clear accu

CPL A complement accu

RL A rotate accu left

RLC A rotate A left through the carry flag

RR A rotate accu right

RRC A rotate accu right through the carry flag

238 BASCOM-8051

© 2021 MCS Electronics

SWAP A swap nibbles within the accu

Data transfer

MOV A,Rn move register to accu

MOV A,direct move direct byte to accu

MOV A,@Ri move indirect RAM to accu

MOV A,#data move immediate data to accu

MOV Rn,A move accu to register

MOV Rn,direct move direct byte to register

MOV Rn,#data move immediate data to register

MOV direct,A move accu to direct byte

MOV direct,Rn move register to direct byte

MOV direct,direct move direct byte to direct

MOV direct,@Ri move indirect RAM to direct byte

MOV direct,#data move immediate data to direct byte

MOV@Ri,A move accu to indirect RAM

MOV@Ri,direct move direct byte to indirect RAM

MOV@Ri,#data move immediate to indirect RAM

MOV DPTR,#data16 load datapointer with a 16-bit constant

MOVC A,@A+DPTR move code byte relative to DPTR to A

MOVC A,@A+PC move code byte relative to PC to A

MOVX A,@Ri move external RAM (8-bit) to A

MOVX A,@DPTR move external RAM (16 bit) to A

MOVX@Ri,A move A to external RAM (8-bit)

MOVX@DPTR,A move A to external RAM (16-bit)

PUSH direct push direct byte onto stack

POP direct pop direct byte from stack

XCH A,Rn exchange register with accu

XCH A,direct exchange direct byte with accu

XCH A,@Ri exchange indirect RAM with A

XCHD A,@Ri exchange low-order digit ind. RAM w. A

How to access labels from ASM.
Each label in BASCOM is changed into a period followed by the label name.

Example :
GOTO Test
Test:

239Using assembly

© 2021 MCS Electronics

generated ASM code:
LJMP .Test
.Test:

When you are using ASM-labels you can also precede them with the !-Sign so the
label won't be converted.
Jb P1.0, Test ; no period
!test : ; indicate ASM label

Or you can include the period in the labelname.
Another good alternative is to use the $ASM $END ASM directives.

Example:
$Asm
 mov a,#1
 test:
 sjmp test
$End Asm

How variables are stored.
BIT variables are stored in bytes.
These bytes are stored from 20hex -2Fhex thus allowing 16 * 8 = 128 bit variables.
You can access a bit variable as follows:

Dim var As Bit 'dim variable
SETB {var} ; set bit
CLR {var} ; clear bit
Print var ; print value
End

Or you can use the BASIC statement SET and RESET which do the same thing.

BYTE variables are stored after the BIT variables.
Starting at address 20 hex + (used bytes for bit vars).

INTEGER/WORD variables are stored with the LSB at the lowest memory position.
LONG variables are stored with the LSB at the lowest memory position too.

You can access variables by surrounding the variable with {}.
To refer to the MSB of an Integer/Word use var+1.
To refer to the MSB of a Long use var+3.
The following example shows how to access the variables from ASM

Dim t as Byte, c as Integer
CLR a ; clear register a
MOV {t} , a ; clear variable t
INC {t} ; t=t + 1
MOV {c} , {t} ; c = t
MOV {c+0}, {t} ; LSB of C = t (you don't have to enter the +0)
MOV {lain+1}, {t} ; MSB of C = t
MOV {c},#10 ; assign value

You can also change SFRs from BASIC.
P1 = 12 'this is obvious
ACC = 5 'this is ok too
B = 3 'B is a SFR too

240 BASCOM-8051

© 2021 MCS Electronics

MUL AB 'acc = acc * b
Print acc

EXTERNAL variables are stored similar.
Strings are stored with a terminating zero.

Example :

$RAMSTART = 0
Dim s As String * 10 'reserve 10 bytes + 1 for string terminator
s = "abcde" 'assign string constant to string

ram location 0 = a 'first memory location
ram location 1 = b
ram location 2 = c
ram location 3 = d
ram location 4 = e
ram location 5 = #0

External variables must be accessed somewhat different.

Dim T as XRAM Byte
mov dptr,#{T} ; address of T to datapointer
mov a,#65 ; place A into acc
movx @dptr,a ; move to external memory
Print T ; print it from basic

Dim T1 as XRAM Integer
mov dptr,#{T1} ; set datapointer
mov a,#65 ; place A into acc (LSB)
movx @dptr,a ; move to external memory
inc dptr ; move datapointer
mov a,#1 ; 1 to MSB
movx @dptr,a ; move to external memory

Print T1 ; print it from basic

Helper routines
There are two ASM helper routines that can make it a bit easier:
PLACEVALUE var , SFR
PLACEADRES var, SFR

PLACEVALUE assigns the variable, var, to the specified register, SFR.
Placevalue 1, A will generate :
Mov a,#1

Dim x as Byte
Placevalue x ,R0 will generate:
Mov a, h'3A ; in this example only of course

Where it is becoming handy is with arrays :
Placevalue a(x), RO will generate :

Mov r0,#h'3A
Mov a,@r0

241Using assembly

© 2021 MCS Electronics

Rl a
Add a,#h'1F
Mov R0,a
Mov a,@r0

These are all examples, the generated code will differ with the type of variables
used.
You can only assign 1 SFR with the PLACEVALUE statement.
This is where PLACEADRES comes around the corner.
Placeadres , places a variables address into a register.

Placeadres ar(x),A
Placeadres z , R0

When external variables are used, you don't need to specify a register because DPTR
is always assigned.

Dim X as xram Integer
PLACEADRES x , dptr or PLACEADRES x
Will generate :
Mov dptr,#2

Or with arrays :
PLACEADRES ar(x)

Mov dptr,#2
Mov r0,#h'37
Mov a,@r0
Mov r2,a
Inc r0
Mov a,@r0
Mov r3,a
Mov r1,#1
Acall _AddIndex

Of course these are also examples, the generated code depends on the types and if
they are internal or external variables.

Hexdecimal notation
You can also use hexadecimal notation.
Example : Mov a,#h'AA
Or use the BASIC notation :
Mov a,#&HAA

Binary notation
You can also use binary notation.
Example : Mov a,#&B10001000

Jumping with offset
You can specify an offset instead of a labelname when jumping.
Jb P1.0 , *+12 ;jump forward
Jb P1.0 , *-12 ;jump back
Jnb P1.0 , *+0 ;loop until P1.0 becomes high

242 BASCOM-8051

© 2021 MCS Electronics

This also applies to the other instructions where can be jumped to a label like SJMP,
LJMP DJNZ etc.

Internal buffer for string conversion
The string conversion routines used for PRINT num , STR() and VAL(), use an
internal buffer of 16 bytes. This has the advantage that no stack handling is needed
but the disadvantage that a fixed space is used.
Of course you can use this buffer. It can be referenced with ___TMP_S1
So when you need a temp string, you can use this buffer.
Note that this buffer is only available with the mentioned statements!

Example :
Dim s as single
s = 1.1
Print s 'now the buffer is needed
___TMP_S1 = "Use this space"
Print ___TMP_S1

Comment
The ; sign can be used or the BASIC comment sign '
Mov a,#1 ; comment
Mov a,#2 'comment

7.2 Internal registers

You can manipulate the register values directly from BASIC.
They are also reserved words. The internal registers are :

BIT addressable registers

TCON Timer/counter control

P1 Port 0 latch

SCON Serial port control

IE Interrupt enable

P3 Port 3 latch

IP Interrupt priority control

PSW Program status word

ACC Accumulator

B B register

BYTE addressable register

SP Stack pointer

DPL Data pointer low word

DPH Data pointer high word

PCON Power control

TMOD Timer/counter mode control

243Using assembly

© 2021 MCS Electronics

TL0 Timer/counter 0 low byte

TL1 Timer/counter 1 low byte

TH0 Timer/counter 0 high byte

TH1 Timer/counter 1 high byte

SBUF Serial data port

P1 Port 1 latch

P3 Port 3 latch

The registers and their addresses are defined in the REG51.DAT file which
is placed in the BASCOM application directory.
You can use an other file for other uPs.
You can select the appropriate register file with the Options Compiler settings .

Take care when you are directly manipulating registers!
The ACC and B register are frequently used by BASCOM.
Also the SP register is better to be left alone.
Altering SP will certainly crash your application!

Bit addressable registers can be used with the SET /RESET statements and as
bit-variables.
Byte addressable registers can be used as byte variables.
P1 = 40 will place a value of 40 into port 40.

Please note that internal registers are reserved words.
This means that they can't be dimensioned as BASCOM variables!

So you can't use the statement DIM B as Byte because B is an internal register.
You can however manipulate the register with the B = value statement.

Making your own register file is very simple:
· copy the 8052.DAT file to a new DAT file for example myproc.DAT

 DOS c:\bascom copy 8052.dat myproc.dat
· edit the registerfile with BASCOM

A register file has a few sections. The following example shows only a few items
under each section.
The [BIT] section contains all SFR's which are bit addressable. A bit addressable
SFR ends with 0 or 8.
After the SFR name you can write the hexadecimal address.
An optional initial value for the simulator can also be specified. Separate the values
by a comma.
Acc = E0 , 00

The [BYTE] section contains all the other SFR's.

The [MISC] section has a few items:
· up : here you can enter a short name for the uP.
· IRAM : the amount of available internal memory (128 or 256 bytes)
· org : the hexadecimal address where the code can start. This is 3 bytes after the

last interrupt entry address, because the last interrupt will have a LJMP to an
ISR and a LJMP needs 3 bytes.

· I_xxx : where xxx is the name of the additional interrupt. The name must be no

56

212 208

244 BASCOM-8051

© 2021 MCS Electronics

longer than 6 characters. As you can see in the example below the last interrupt
T2 has an entry address of 73 (hex). So the org is set to 73+3 = 76 (hex).

 You only need to specify the additional interrupts. The interrupts for INT0,INT1,
TIMER0, TIMER1 and SERIAL are already handled by the compiler.

· CLOCKDIV : The division factor of the oscillator. By default this is 12 and when
you don't specify it, 12 will be used. Some micro processors have a division
factor of 6 or 4.

EXAMPLE

[BIT]
ACC = E0
B = F0

[BYTE]
ADCH = C6
ADCON = C5
CTCON = EB

[MISC]
up = 80552
I_TIMER2 = 2B
I_CT0 = 33
I_CT1 = 3B
I_CT2 = 43
I_CT3 = 4B
I_ADC = 53
I_CM0 = 5B
I_CM1 = 63
I_CM2 = 6B
I_T2 = 73
org = 76
IRAM = 256
CLOCKDIV = 12

7.3 Initialization

BASCOM initializes the processor depending on the used statements.
When you want to handle this by yourself you can specify this by the meta
command $NOINIT .

The only initialization that is always done is the setting of the stack pointer and the
initialization of the LCD display (if LCD related statements are used).

You can use the $NOSP statement when you don't want the stack pointer to be
set.

All data used for variables like the internal RAM or external RAM, is in an unknown
condition at startup. This means that you can not assume that a variables is 0.
For example:

Dim a as byte
Print a
End
When you run the code, 'a' can contain any value. When you want to be sure the
variable is 0, assign it with 0. During a reset, the memory content might be the

94

96

245Using assembly

© 2021 MCS Electronics

same as before the reset, but again, there is no guarantee.

Part

VIII

247Additional Hardware

© 2021 MCS Electronics

8 Additional Hardware

8.1 Additional Hardware

You can attach additional hardware to the ports of the microprocessor.
The following statements will become available :
I2CSEND and I2CRECEIVE and other I2C related statements.
LCD, LCDHEX, DISPLAY and other related LCD statements.
1 WIRE bus explanation.
More about connecting a LCD display .
More about the I2C bus

Hardware related commands
The uP must be connected to a crystal. The frequency of the crystal can range from
0 to 24 Mhz for most chips. The frequency is divided by 12 internally.
So with a 12 Mhz crystal the processor is clocked with 1 Mhz.
Because almost each instruction takes, 1 clock cycle to execute the processor can
handle 1 MIPS.

When RS-232 statements such as INKEY, PRINT and INPUT are used, TIMER1 is
connected to the system clock.
So TIMER1 cant be used for other purposes such as ON TIMER1 anymore.
When no RS-232 related statements are used you can use TIMER1.

The Baud rate is generated by dividing the system clock.
When a crystal of 11.0592 Mhz is used, the Baud rate can be generated very
accurately.
Other crystals can be used too but the generated baud rate will never be exactly
2400 or 4800 baud and higher baud rates are almost impossible.
The exact baud rate is shown in the report file.

Clock
The clock frequency is the system frequency divided by 12.
With a 12 Mhz crystal this means that every microsecond the register is
incremented.

Timers and Counters
The 8051 has two 16-bit timers named TIMER0 and TIMER1.
Below the internal representation of timer0 is shown.
TIMER0 and TIMER1 are almost identical so you can read TIMER1 for TIMER0.

254

253

254

248 BASCOM-8051

© 2021 MCS Electronics

Each counter register has two SFRs associated with it.
For TIMER0 the SFRs are TL0 and TH0.
TL0 is the lowest byte of TIMER0 and TH0 is the highest byte of TIMER0.
These two registers make the timers 16-bit wide.

The timer can operate as a timer or as a counter.
A timer uses the system clock divided by 12 as the source of its input
pulses.
So it increments periodical.

A counter uses external pulses to increment its count.
The external pulses are received at alternative pin P3.4 for TIMER0 and P3.5 for
TIMER1.
The timer/counter can be controlled by the run-bit TR0.

You can stop a timer/counter with the statement STOP TIMER0 /COUNTER0.
You can start a timer/counter with the statement START TIMER0 /TIMER1.

The timer/counter can also be controlled with the alternative pin P3.2.
This pin is labeled for its alternative INT0-input but it can be used to control the
timer.
When GATE is reset the timer/counter is enabled.
When GATE is set the timer/counter is enabled if INT0 is active(low). (provided that
the timer is started)

The timer/counter can operate in four modes:
· mode 0 : 13-bit counter.

An interrupt is generated when the counter overflows. So it takes 8192 pulses
to generate the next interrupt.

· mode 1 : 16-bit counter.

222

221

249Additional Hardware

© 2021 MCS Electronics

Mode 1 is similar to mode 0. It implements a 16-bit counter.
It takes 65536 input pulses to generate the next interrupt.

· mode 2 : 8-bit auto reload.
TL0 serves as an 8-bit timer/counter.
When the timer/counter overflows the number stored in TH0 is copied into TL0

and the count continues.
An interrupt is generated each time the counter overflows and a reload is

performed.
· mode 3 : TIMER1 is inactive and holds its count. (TIMER1).

For TIMER0 in timer mode two 8-bit timers are available and in counter mode
one 8-bit timer is available.

See a datasheet for more details.

The timer/counter can be configured with the CONFIG statement.
CONFIG TIMER0= COUNTER/TIMER, GATE=INTERNAL/EXTERNAL, MODE=0-3
The first argument is the timer/counter you want to configure, TIMER0 in this case.
GATE specifies if external timer control with the INT0 pin is enabled.
MODE specifies the timer/counter mode (0-3).

So CONFIG TIMER0 = COUNTER, GATE = INTERNAL, MODE=2 will configure
TIMER0 as a COUNTER with no external gate control , in mode 2 (auto reload)
When the timer/counter is configured the timer/counter is stopped so you must start
it afterwards with the START TIMER0 statement.

The ON TIMERx statement can be used to respond to a timer/counter interrupt when
the timer overflows.

When the timer/counter is used in mode 2 (auto reload) the reload value can be
specified with the LOAD TIMERx, value statement.
Because it is an 8-bit register a maximum time of 255 uS can be achieved.

So for a period of 10 uS you must supply a value of (256-10) is 246. To make things
easier you can assign the value directly : LOAD TIMERx , 250 will internally be
transformed into 256-250=6.
This saves you the trouble of calculating the correct value.

The COUNTER0 and COUNTER1 variables hold the values of timer/counter 0 and 1.
You can also set the timer/counter contents with the COUNTER0 = value statement.

Please note that with the LOAD statement, you can only load a byte value into the
timer/counter.
Because the statement is meant for timer/counter mode 2.

Also note that you can assign a value to the timer/counter with the COUNTER0/
COUNTER1 variables. You can not use the TIMER0/TIMER1 in it's place but it does
the same thing : assigning/retrieving the timer/counter.

Port 3 is a unique port because it has alternative functions.
That is you can use it as a port like P3.1 = 1 or SET P3.1 or you can make use of the
double function of this port.

Port Alternative function

P3.0 RxD receive data for RS-232

P3.1 TxD transmit data for RS-232

250 BASCOM-8051

© 2021 MCS Electronics

P3.2 INT0 interrupt 0 input/timer 0 gate control

P3.3 INT1 interrupt 1 input/timer 1 gate control

P3.4 T0 timer 0 input or counter input

P3.5 T1 timer 1 input or counter input

P3.5 -

P3.7 -

When you make use of the PRINT, INPUT and other RS-232 related statements
P3.0 and P3.1 are used for the RS-232 interface.

When you make use of the INT0/INT1 interrupts, you must connect an interrupt
source to the corresponding pins. A switch for example.
The INTx interrupt can occur on the falling edge of a signal or when the signal is
low.
Use the following statements to specify the trigger:

SET TCON.0 Falling edge generates interrupt for INT0.

RESET TCON.0 Low signal generates interrupt for INT0.

SET TCON.2 Falling edge generates interrupt for INT1.

RESET TCON.2 Low signal generates interrupt for INT1.

When TCON.x is RESET the interrupts keep on occurring while the input is low.r
When TCON.x is SET the interrupt only occurs on the falling edge.

To test if a hardware interrupt is generated you can test the TCON.1 and TCON.3
flags.
These flags are set by hardware when an external interrupt edge is detected.
They are reset by the RETURN statement of the interrupt service routine or
subroutine.
TCON.1 must be tested for INT0 and TCON.3 must be tested for INT1.

Some uPs have an additional timer named TIMER2 . It depends on the used chip
which features TIMER2 has.

Ports and Power Up
Port 1 is an 8-bit bi-directional I/O port. Port pins P1.2 to P1.7 provide internal
pull-ups.
P1.0 and P1.1 requires external pull-ups. P1.0 and P1.1 also serve as the positive
input(AIN0) and the negative input(AIN1), respectively, of the on-chip precision
analog comparator.

The port 1 output buffers can sink 20 mA and can drive LED displays directly.
When 1s are written to Port 1 pins, they can be used as inputs.
When pins P1.2 to P1.7 are used as inputs and are externally pulled low,
they will source current because of the internal pullups.

Port 3 pins P3.0 to P3.5, P3.7 are seven bi-directional I/O pins with internal pull-
ups.
P3.6 is hard wired as an input to the output of the on-chip comparator and is not
accessible as a general purpose I/O pin.

288

251Additional Hardware

© 2021 MCS Electronics

The port3 output buffers can sink 20 mA.
When 1's are written to Port 3 pins they are pulled high by the internal pullups and
can be used as inputs.
Port 3 pins that are externally being pulled low will source current because of the
pullups.
Port 3 also serves the functions of various special features of the AT89C2051 as
listed below.

Port Alternative function

P3.0 RxD receive data for RS-232

P3.1 TxD transmit data for RS-232

P3.2 INT0 interrupt 0 input/timer 0 gate control

P3.3 INT1 interrupt 1 input/timer 1 gate control

P3.4 T0 timer 0 input or counter input

P3.5 T1 timer 1 input or counter input

P3.5 -

P3.7 -

Writing to a Port
P1 = 255 will write the value 255 to the port 1, setting all the pins to 1
so all pins can be used as inputs.

P1 = 0 will write the value 0 to port 1, setting al pins to zero.

Reading from a Port
byte = P1 will read the value from port 1 and will assign the value to variable byte.

Setting individual pins of a Port
You can also set individual pins of the ports in BASCOM.

SET P1.0 will set pin P1.0 high.
P1.0 = 1 will also set pin P1.0 high.

RESET P1.0 will set pin P1.0 low.
P1.0 = 0 will also set pin P1.0 low.

At power up both ports are high and can be used an inputs.
Individual bits can be set to use a port both as input/output.
For example : P1 = &B00001111 , will set a value of 15 to port 1.
P1.0 to P1.3 can be used as inputs because they are set high.

How to interface the port pins

252 BASCOM-8051

© 2021 MCS Electronics

The schematic above shows how to connect a LED as an output, a speaker as an
output and a switch as an input device.

8.2 Alternative port-pin functions

The AT89S8252 ports have alternative functions.
The following table shows the alternative functions.

Port pin Alternate function

P1.0 T2 external count input to timer.counter 2, clock out

P1.1 T2EX timer/counter 2 capture/reload trigger and direction flag

P1.4 /SS Slave port select input

P1.5 MOSI Master data output, slave data input pin for SPI channel

P1.6 MISO Master data input, slave data output pin for SPI channel

P1.7 SCK Master clock output, slave clock input pin for SPI channel

P3.0 RxD serial input port

P3.1 TxD serial output port

P3.2 /INT0 external interrupt 0

P3.3 /INT1 external interrupt 1

P3.4 T0 timer 0 external input

253Additional Hardware

© 2021 MCS Electronics

P3.5 T1 timer 1 external input

P3.6 /WR external data memory write strobe

P3.7 /RD external data memory read strobe

/ means active low

8.3 Hardware - LCD display

The LCD display can be connected as follows:

LCD-DISPLAY PORT PIN

DB7 P1.7 14

DB6 P1.6 13

DB5 P1.5 12

DB4 P1.4 11

E P1.3 6

RS P1.2 4

RW Ground 5

Vss Ground 1

Vdd +5 Volt 2

Vo 0-5 Volt 3

This leaves P1.1 and P1.0 and P3 for other purposes.

You can change the LCD pin layout from the Options LCD menu.
You can select the display used with the CONFIG LCD statement.

The LCD display operates in 4-bit mode.
See the $LCD statement for operation in 8-bit mode.

BASCOM supports a lot of statements to control the LCD display.
For those who want to have more control the example below shows how to do so.

Acc = 5 'load register A with value
Call Lcd_control 'it is a control value to control the display
Acc = 65 'load with new value (letter A)
Call Write_lcd 'write it to the LCD display

Note that lcd_control and write_lcd are assembler subroutines which can be called
from BASCOM.

See manufacture details from your LCD display for the correct assignment.

121

91

254 BASCOM-8051

© 2021 MCS Electronics

8.4 Hardware - I2C

The design below shows how to implement an I2C-bus.
Note that you can select which port pins you want to use for the I2C interface with
the compiler settings .

You can also select the SDA and SCL pin with the CONFIG SDA and
CONFIG SCL statement.

8.5 1WIRE INFO

The following information is written by Göte Haluza, thanks!

Dallas Semiconductor (DS) 1wire. This is a brief description of DS 1wirebus when
used in combination with BASCOM. For more detailed explanations about the 1w-
bus, please go to http://www.dalsemi.com/techbriefs/tb1.html. Using BASCOM,
makes the world a lot easier. This paper will approach the subject from a "BASCOM-
user-point-of-view".

1wire-net is a serial communication protocol, used by DS devices. The bus could be
implemented in two basic ways :

With 2 wires, then DQ and ground is used on the device. Power is supplied on the
DQ line, which is +5V, and used to charge a capacitor in the DS device. This power
is used by the device for its internal needs during communication, which makes DQ
go low for periods of time. This bus is called the 1wirebus.

With 3 wires, when +5V is supplied to the VDD line of the device, and DQ +
ground as above. This bus is called the 2wirebus.

So, the ground line is "not counted" by DS. But hereafter we use DS naming
conventions.

54

125

124

255Additional Hardware

© 2021 MCS Electronics

How it works. (1wire)

The normal state of the bus is DQ=high. Through DQ the device gets its power, and
performs the tasks it is designed for.

When the host (your micro controller (uC)) wants something to happen with the
1w-bus, it issues a reset-command. That is a very simple electric function that
happens then; the DQ goes active low for a time (480uS on original DS 1w-bus).
This put the DS-devices in reset mode; then (they) send a presence pulse, and then
(they) listen to the host.

The presence pulse is simply an active low, this time issued by the device(s).

Now, the host cannot know what is on the bus, it is only aware of that at least 1 DS
device is attached on the bus.

All communication on the 1w-bus is initialized by the host, and issued by time-slots
of active-low on a normally high line (DQ), issued by the device, which is sending at
the moment. The devices(s) internal capacitor supplies its power needs during the
low-time.

How you work with 1w-bus

Thereafter, you can read a device, and write to it. If you know you only have 1
sensor attached, or if you want to address all sensors, you can start with a "Skip
Rom" - command. This means; take no notice about the Ids of the sensors - skip
that part of the communication.

When you made a 1w-reset, all devices of the bus are listening. If you chose to
address only one of them, the rest of them will not listen again before you have
made a new 1w-reset on the bus.

I do not describe BASCOM commands in this text - they are pretty much self-
explaining. But the uC has to write the commands to the bus - and thereafter read
the answer. What you have to write as a command depends on devices you are
using - and what you want to do with it. Every DS chip has a datasheet, which you
can find at http://www.dalsemi.com/datasheets/pdfindex.html. There you can find
out all about the actual devices command structure.

There are some things to have in mind when deciding which of the bus-
types to use.

The commands, from BASCOM, are the same in both cases. So this is not a problem.

The +5V power-supply on the VDD when using a 2wire-bus has to be from separate
power supply, according to DS. But it still works with taking the power from the
same source as for the processor, directly on the stabilising transistor. I have not
got it to work taking power directly from the processor pin.

Some devices consume some more power during special operations. The DS1820
consumes a lot of power during the operation "Convert Temperature". Because the
sensors knows how they are powered (it is also possible to get this information from
the devices) some operations, as "Convert T" takes different amount of time for the

256 BASCOM-8051

© 2021 MCS Electronics

sensor to execute. The command "Convert T" as example, takes ~200mS on 2wire,
but ~700mS on 1wire. This has to be considered during programming.

And that power also has to be supplied somehow.

If you use 2wire, you don't have to read further in this part. You can simultaneously
"Convert T" on all the devices you attach on the bus. And save time. This command
is the most power-consuming command, possible to execute on several devices, I
am aware of.

If you use 1wire, there are things to think about. It is about not consuming more
power than you feed. And how to feed power? That depends on the devices (their
consumption) and what you are doing with them (their consumption in a specific
operation).

Short, not-so-accurate description of power needs, not reflecting on cable
lengths

Only the processor pin as power supplier, will work < 5 sensors. (AVR, 1w-functions
use an internal pull-up. 8051 not yet tested). Don't even think of simultaneous
commands on multiple sensors.

With +5V through a 4K7 resistor, to the DQ-line, 70 sensors are tested. But, take
care, cause issuing "Convert T" simultaneously, would cause that to give false
readings. About ~15 sensors is the maximum amount of usable devices, which
simultaneously performs some action. This approach DS refers to as "pull-up
resistor".

With this in mind, bus up to 70 devices has been successfully powered this way.

The resistor mentioned, 4K7, could be of smaller value. DS says minimum 1K5, I
have tested down to 500 ohm - below that the bus is not usable any more. (AVR).
Lowering the resistor feeds more power - and makes the bus more noise -resistant.
But, the resistor minimum value is naturally also depending on the uC-pin electric
capabilities. Stay at 4K7 - which is standard recommendation.

DS recommends yet another approach, called "strong pull-up" which (short) works
via a MOS-FET transistor, feeding the DQ lines with enough power, still on 1wire,
during power-consuming tasks. This is not tested, but should naturally work. Cause
this functionality is really a limited one; BASCOM has no special support for that.
But anyway, we tell you about it, just in case you wonder. Strong pull-up has to use
one uC pin extra - to drive the MOS-FET.

Cable lengths (this section is only for some limited understanding)

For short runs up to 30 meters, cable selection for use on the 1W bus is less critical.
Even flat modular phone cable works with limited numbers of 1-Wire devices.
However, the longer the 1W bus, the more pronounced cable effects become, and
therefore the greater importance placed on cable selection.

For longer distances, DS recommends twisted-pair-cable (CAT5).

DS standard examples show 100 meters cable lengths, so they say, that's no

257Additional Hardware

© 2021 MCS Electronics

problem. They also show examples with 300m cabling, and I think I have seen
something with 600-meter bus (but I cant find it again).

Noise and CRC

The longer cable and the noisier environment, the more false readings will be made.
The devices are equipped with a CRC-generator - the LSByte of the sending is
always a checksum. Look in program examples to learn how to re-calculate this
checksum in your uC. AND, if you notice that there are false readings - do
something about your cables. (Shield, lower resistor)

Transfer speed

On the original 1w-bus, DS says the transfer speed is about 14Kbits /second. And, if
that was not enough, some devices has an overdrive option. That multiplies the
speed by 10. This is issued by making the communication-time-slots smaller (from
60 uS to 6uS) which naturally will make the devices more sensitive, and CRC-error
will probably occur more often. But, if that is not an issue, ~140Kbit is a reachable
speed to the devices. So, whatever you thought before, it is FAST.

The BASCOM scanning of the bus is finds about 50 devices / second , and reading a
specific sensors value to a uC should be about 13 devices / second.

Topology

Of the 1w-net - that is an issue we will not cover so much. Star-net, bus-net? It
seems like you can mix that. It is a bus-net, but not so sensitive about that.

The benefit of the 1w-bus

Each device is individual - and you can communicate with it over the media of 2
wires. Still, you can address one individual device, if you like. Get its value. There
are 64 ^ 2 unique identifications-numbers.

Naturally, if lot of cables are unwanted, this is a big benefit. And you only occupy 1
processor pin.

DS supplies with different types of devices, which all are made for interfacing an uC
- directly. No extra hardware. There are sensors, so you can get knowledge about
the real world, and there are also potentiometers and relays, so you can do
something about it. On the very same bus.

And the Ibutton approach from DS (ever heard of it?) is based on 1wire technology.
Maybe something to pick up.

BASCOM let you use an uC with 1wire-devices so easy, that (since now) also has to
count as a benefit - maybe one of the largest. ;-)

The disadvantages of the 1w-bus

So far as I know, DS is the only manufacturer of sensors for the bus. Some people
think their devices are expensive. And, until now, it was really difficult to
communicate with the devices. Particularly when using the benefit of several devices
on one bus. Still some people say that the 1w-bus is slow - but I don't think so.

258 BASCOM-8051

© 2021 MCS Electronics

Göte Haluza

System engineer

Part

IX

260 BASCOM-8051

© 2021 MCS Electronics

9 Supported Programmers

9.1 MCS Flash programmer

There are different models of the MCS Flash programmer, but all of them are
compatible with the driver software.

The MCS Flash programmer is a parallel printer port based programmer.
It can only program the ATMEL 89C1051 , AT89C2051 and AT89C4051.
Select the correct printer port address before you run the programmer.
Be sure to switch on the power supply before running BASCOM.

When you run the programmer, the buffer will be filled automatically with your
program data. The programmer works with binary files. The following menu options
are available.

Exit
Exit the programmer.

Buffer clear
Clear the buffer. That is, fill it with zero bytes.

Buffer Read from disk
Load a file into the buffer. By default the current program.BIN file is selected.
Select a file with the file selection dialog box and press the Ok-button.

Buffer Write to disk
Write the content of the buffer to a file.
Note that the file size is 1024 ,2048 or 4096 bytes depending on the chip type.

261Supported Programmers

© 2021 MCS Electronics

Buffer read from chip
Read the content of the FLASGROM into the buffer.
If the lock bits are set all bytes will return FF.

Buffer Write to chip
Program the chip with the content of the buffer.
The chip is erased before the buffer is written to the chip.

Buffer Verify
Compares the content of the buffer with the content of the chip.

Buffer program chip
Erases the chip, writes the buffer to the chip and finally verifies the buffer with the
chip.

Chip get type
Retrieves the chip type. AT89C1051 , AT89C2051 or AT89C4051.

Chip Erase
Erases the chip. Lock bits are also erased.

Chip Set lockbit 1
When LB1 is set the chip can not be programmed anymore.

Chip Set lockbit 2
When LB2 is set the chip can not be programmed nor can it be verified (read)
Use LB1 and LB2 together for securing your program.

Options LPT1 .. LPT3
Select the printer port the programmer is connected to.

Option Port delay
Because computers become faster every day and the hardware is run by software a
delay can be specified for very fast computers.
A value of 5 is used on a 486DX266. You must increase the value on faster
computers if problems occur.
The default is 0, and for best results, 0 should be used.

262 BASCOM-8051

© 2021 MCS Electronics

9.2 MCS SPI programmer

The MCS SPI programmer is a parallel printer port based SPI-programmer.
It is a modified design of Jakub Jiricek's SPI-programmer. (two LED's were added)

The programmer can program the AT89S52 which has an extra 2048 bytes built in
EEPROM for storing data and the AT89S53.
The nice thing about SPI-programmable chips is that the chip can be programmed in
circuit. You only must design your application so that the SPI-port pins will not be
pulled low.

The following menu options are available:

File exit
Will exit the programmer.

Write code
Will program the chip with the current programs binary image.

Write data
Will ask for a file and will write the data to the EEPROM.

Verify code
Will verify the programs binary image with the chip content.

Verify data
Will verify a file with the chips EEPROM content.

Read code
Will ask for a filename and will write the chip content to the file.

Read data
Will ask for a filename and will write the EEPROM content to the file.

Chip reset
Will reset the chip.

Chip erase
Will erase the chip.

Chip set lockbits
Will set the selected lock bits.

The following use feedback was received:

I have at last found my problem with the SPI flash programmer designed by

Jakub Jiricek.

My PC's LPT port was set to NORMAL mode in the BIOS. Symptoms include

normal reset pulse but very slow progress bar with eventual failure to verify.

Correct programmer operation was achieved by changing to EPP (enhanced

263Supported Programmers

© 2021 MCS Electronics

parallel port) mode in BIOS. I can only assume that the s/w must be using

one line in bi-directional mode. Of course, this "fix" may only apply to my PC.

Not recommended for new programmers.

9.3 Blow IT Flashprogrammer

The Blow IT flashprogrammer is a parallel printer port based programmer and can
only erase, and program a chip. The programmer works only with the AT89C1051 to
AT89C4051 chips.

The programmer uses the same interface as the MCS Flashprogrammer, but doesn't
support all the features due it's design. So for a description read the MCS
Flashprogrammer help.

Not recommended for new programmers.

9.4 PG2051 flash programmer

The PG2051 is a serial comport based programmer and can program AT89C1051
and ATC2051 chips only. A nice feature is that the programmer can serve as an
simulator too. The programmer works with Intel HEX files only.

The following menu options are available:

File Exit
This will exit the programmer.

Buffer read from disk
This allows you to load a binary file from disk.
The current projects binary file is always loaded automatic.

Buffer write to disk
This option can be used to save the buffer to disk.

Buffer download
With this option you send the programs' hex file to the programmer/simulator.
After it is sent, you can program the chip or simulate the program.

Buffer retrieve
Use this option to load the chip content into the buffer.

Buffer verify
This option will verify the buffer with the chip content.

Buffer autoprogram
This option will erase the chip, download the buffer, program the chip and finally
verifies the chip.

Chip get type
To identify the chip you can select this option.

260

264 BASCOM-8051

© 2021 MCS Electronics

The radio-button 89C1051 or 89C2051 will be set.

Chip set lockbit 1
Set lockbit 1 so the chip can not be programmed anymore.

Chip set lockbit 2
Set lockbit 2 so the chip can not be programmed or verified/read anymore .

Chip erase
Erases the chip.

Chip program
Will program the chip with the downloaded buffer.

Chip simulate
Will simulate the programmed program. This saves swapping the chip in and out of
the target application.

9.5 PG302 programmer

The PG302 is a serial comport based programmer.
The programmer can program a wide variety of chips with additional adapters.
The BASCOM interface is designed to look similar with the original PG302 driver
software.

You must select the target chip from the device list.
Some chips will enable the memory radio buttons. For example the AT89S8252.
You can select the memory-area with the radio buttons in these cases.

Blank check
Will perform a blank check on the chip. That is, every memory location will be
checked if it is equal to 255 (hex FF), indicating an un-programmed byte.

Erase
Will erase the chip. All memory locations will be set to 255.

Program
Will program the chip with the current program.
If EEPROM-memory is selected, you will be asked for a filename.

Verify
Will verify the current program with the target chip.

Read
Will read the target chip and saves the result to a file.

Set lockbit
Will set the selected lock bits.
You must select the lock bits first. The lock bits to set depend on the selected target
chip.

265Supported Programmers

© 2021 MCS Electronics

Auto erase
When this checkbox is selected, the target chip will be erased before it will be
programmed.

Auto verify
When this checkbox is selected, the result will be verified after each programming.

9.6 SE512 or SE514 programmer

The SE512 and SE514 are parallel printer port based programmers.
The nice thing about these programmers is that they can simulate the application
too. This has the advantage that no device swapping is needed until your application
works like you want. The SE512 can program the AT89C1051 to AT89C4051. The
SE514 can program larger chips too.

Buffer clear
Will clear the buffer.

Buffer load from file
With this option you can load a file into the buffer. By default the current program is
loaded into the buffer.

Buffer save to file
With this option you can save the buffer to a binary file.

Chip Write buffer into chip
With this option you program the chip.

Chip Read chipcode into buffer
This option will read the target device its memory into the buffer.

Chip Blank check
Performs a blank check on the target device. A chip is considered blank if every
memory location contains 255 (FF hex)

Chip Erase
Will erase the target chip.

Chip verify
Will verify the buffer with the chipcontent.

Chip autoprogram
Will erase, program and verify the chip.

Note that the targetchip will be detected automatic. When the targetchip can't be
detected, the menu options will not work.

266 BASCOM-8051

© 2021 MCS Electronics

9.7 SE-812

The SE-812 from Sample Electronics is a programmer for the aduc812.

The programmer is well suited for in circuit programming.

Since it is a serial programmer that operates via the COM port, the programming is
done with the terminal emulator. When you select the SE812 from the programmer
options there will be an additional menu in the terminal emulator.

- Erase chip. This option will erase both the code flash and the EEPROM.

- Erase code flash. This option will erase only the code flash memory.

- Program chip. This will program the chip with the current program.

- Auto program. This will erase the chip and program the chip.

The programmer works only with version 2.00 of the boot loader.

9.8 Sample Electronics ISP programmer

The simple cable programmer was submitted by Sample Electronics.

They produce professional programmers too. This simple programmer you can make
yourself within a 10 minutes. And only a few resistors are needed.

The operation is the same a for the STK200/300 programmer .

What you need is a DB25 centronics male connector, a flat cable and a connector
that can be connected to the target MCU board.

The connections to make are as following:

DB25 pin Target MCU pin(AT89S8252) DT104

2, D0 MOSI, pin 6 J5, pin 4

4, D2 RESET, pin 9 J5, pin 8

5, D3 CLOCK, pin 8 J5, pin 6

11, BUSY MISO, pin 7 J5, pin 5

18-25,GND GROUND J5, pin 1

The MCU pin numbers are shown for an 8252!

Note that 18-25 means pins 18,19,20,21,22,23,24 and 25

You can use a small resistor of 100 ohm in series with the D0, D2 and D3 line in
order not to short circuit your LPT port in the event the MCU pins are high.

But it was tested without these resistors and my PC still works :-)

Tip : when testing programmers etc. on the LPT it is best to buy an I/O card for
your PC that has a LPT port. This way you dont destroy your LPT port that is on the
motherboard in the event you make a mistake!

270

267Supported Programmers

© 2021 MCS Electronics

The following picture shows the connections to make. Both a setup for the DT104
and stand alone PCB are shown.

I received the following useful information :

Hi Mark,

I have been having spurious success with the simple cable programmer from

Sample Electronics for the AVR series.

After resorting to hooking up the CRO I have figured it out (I think). When

trying to identify the chip, no response on the MISO pin indicates that the

Programming Enable command has not been correctly received by the target.

The SCK line Mark/Space times were okay but it looked a bit sad with a slow

rise time but a rapid fall time. So I initially tried to improve the rise

time with a pullup. No change ie still could not identify chip. I was about

to add some buffers when I came across an Atmel app note for their serial

programmer

"During this first phase of the programming cycle, keeping the SCK line

free from pulses is critical, as pulses will cause the target AVR to loose

syncronisation with the programmer. When syncronisation is lost, the only

means of regaining syncronisation is to release the RESET line for more

than 100ms."

I have added a 100pF cap from SCK to GND and works first time every time

now. The SCK rise time is still sad but there must have been enough noise

to corrupt the initial command despite using a 600mm shielded cable.

This may be useful to your users.

268 BASCOM-8051

© 2021 MCS Electronics

Regards,

Mark Hayne

9.9 CYGNAL JTAG Programmer

The CYGNAL JTAG programmer comes with the CYGNAL development kit and is also
available from www.sample.co.kr

All tests were performed with the programmer/evaluation board from Sample
Electronics.

The Cygnal JTAG programmer is controlled by a COM port.

You need to select a free COM port of your PC that is connected to the programmer.

When you program the cygnal chip BASCOM will erase and program the chip.

9.10 Futurelec

The Futurelec programmer from www.futurlec.com is an ISP programmer for the
89S8252.

All tests are performed with the AT89S8252 board from Futurelec Electronics.

9.11 JPK Systems X-programmer

The JPK Systems X-programmer is a serial comport based SPI-programmer.
It is fully optical isolated and so an ideal device for industrial equipment.
It supports AVR chips too, but these aren't supported in BASCOM of course so there
is only support for the 89S8252 and the 89S53.

Since it is serial based, the support is placed in the terminal emulator.
After selecting the JPK programmer, there will be additional menu options available
in the terminal emulator. All these options can be found under the JPK menu.
The transfer between the PC and the programmer is implemented with the X-
modem CRC protocol.

Select device
Use this option to select the targetdevice. You can choose between the 89S8252 and
the 89S53.

Erase
Erase the target chip.

Read code
Will read the codememory from the chip. You will be asked for a filename first.

Program chip

269Supported Programmers

© 2021 MCS Electronics

Will program the targetchip with the current program.

Set lockbits
Will set the lockbits of the targetchip. All lockbits will be set.

Read EEPROM
Will save the EEPROM data into a file. This only applies to the AT89S8252.

Write EEPROM
Will program the EEPROM with a file. This only applies to the AT89S8252.

Of course all commands can be typed manually too, but you must set the terminal
emulator communication settings to 2400N82 in that case.

9.12 Peter Averill's TAFE programmer

The TAFE flashprogrammer is a parallel printer port based programmer and can be
build with the DT004 and DT206 SimmSticks from Dontronics. The programmer can
program only AT89C1051 to AT89C4051 chips.

Peter also has schematics available on the web so you can build your own PCB.
The programmer supports all the usual features except the 'read signature' feature.
Thats is why you have to select the used chip yourself from the mnu.

The programmer uses the same interface as the MCS Flashprogrammer, so for a
description read the MCS Flashprogrammer help.
I got some feedback from a user that had problems with his programmer.
he added 5K1 pullup resistors to +5V. This is shown in the picture below. The dots
(11) must each have a resistor of 5K1 to +5V.

260

270 BASCOM-8051

© 2021 MCS Electronics

9.13 STK200/300 ISP Programmer

The STK200 and STK300 are AR starter kits from Atmel.

They come with a parallel printer port programmer dongle for in system
programming of the chips.

This dongle can be used to program the 89S8252 or 89S53.

For those who don't have this kit and the programmer the following schematic
shows how to make your own programmer:

The dongle has a chip with no identification but since the schematic is all over the
web, I have included it. Kanda also sells a very cheap separate programmer dongle.
So I suggest you buy this one!

MCS also sells a compatible dongle.

The following screen will pop up when you have selected this programmer:

271Supported Programmers

© 2021 MCS Electronics

You must select the chip you use. By selecting the FlashROM TAB or the EEPROM
TAB you can write that info to the chip. When the chip does not have EEPROM
memory, the EEPROM TAB will not be visible.

When the chip such as the 89S8253, 89S2051 or 89S4051 has USER data, an
additional TAB will be shown.

This is intended to read/write the user data.

When you select auto Flash, pressing F4 from the IDE will program the chip
automatic and the window will not be displayed.

When Code + Data is selected from the programmer options both the Code and
the EEPROM data are programmed.

9.14 Rhombus SCE-51

Rhombus developed the SCE-51. A powerful small 8051 micro processor board with
on board RAM and FLASHROM and bootloader.

In addition the board serves as an in circuit emulator.

Transferring your program to RAM goes very fast. Faster than loading it into the
traditional FLASHROM. So during debugging it is well suited for debugging large
applications.

When you select the SCE-51, the following window will appear when you press F4.

60

272 BASCOM-8051

© 2021 MCS Electronics

The filename is automatic filled.

The original SCE-51 software from Rhombus has much more options and BASCOM
only supports programming to RAM and FLASH.

You must select the target memory before you click the Program button.

By clicking the Erase button you can erase the memory.

During programming a status bar will be shown.

The baud rate is fixed to 19200 baud. Support for 115200 baud will be added later.

9.15 SE511-SE516 programmer

The SE511-SE516 can be used for the SE511 and SE516 programmers from Sample
Electronics.
These programmers are serial programmers. They require a COM port.

273Supported Programmers

© 2021 MCS Electronics

When you launch the programmer, the current program will be loaded into the
memory.
You can also use the LOAD button to load a program into the buffer.

Reset This button will reset the programmer and will determine the used chip.

Load Load a binary or Intel HEX file into the buffer

Save Save the current buffer to file

Read Read the chip flash content

Blank Test if a chip is blank

Erase Erase (blank) a chip

Write Write(program) the buffer into the chip

Verify Verify if the buffer is the same as the chip content

Lock Bits
Write the selected lock bits

9.16 MCS USBISP Programmer

The MCS USBISP programmer is a new USB programmer based on the FT232RL
chip.
The FT232RL is a well known virtual COM port chip. It can also be used in so called
'bitbang' mode. Exactly this mode is used.

The programmer is based on the Sample ELectronics SE-UTS cable. It is modified
(the flatcable is removed and a connector is soldered)
But you can also create your own programmer.

274 BASCOM-8051

© 2021 MCS Electronics

The circuit shows the used FT232RL chip. There are only a few connections to the
target 8051 processor : RTS(CLOCK), CTS(MOSI), DTR(RESET), DSR(MISO).
GND is also connected but not shown here. VCC from the USB which is 5V is also
connected. But take in mind this is a stand alone programmer.
Normally you would not conenct 5V from the USB to the target circuit since the USB
can only supply little power. it is best if you enable your circuit with its own power.
Also note that for ISP programming the used ISP pins may not have a load. When
there is hardware connected to the circuit with a low impedance, either use some
switch or a MUX.

TX and RX of the FTDI are not used. This way you can use the FTDI in virtual COM
port mode as well to communicate with the processor.

The circuit above does not show the complete FT232RL setup. Only the connections
for the programming are shown.
Also the 898252 requires an XTAL and capacitors. It is not shown either but your
target hardware surely would have this already.

In order to work the FTDI drivers must be installed. On windows 10 they are
installed automatically. On older platforms you might need to download from the
FTDI site : https://ftdichip.com/drivers/d2xx-drivers/

In options select the programmer :

https://ftdichip.com/drivers/d2xx-drivers/

275Supported Programmers

© 2021 MCS Electronics

The SCAN button can be clicked to check the USB devices for FTDI chips. When
found, their serial number is shown.
When multiple FTDI devices are connected it is important you select the proper one.
If you have one device you can also leave the serial number blank.

The programmer has the usual options :

276 BASCOM-8051

© 2021 MCS Electronics

You can erase the chip, read and write it.
Identify will not work for the 898252.

Programming is relatively slow in ISP mode.
Parallel mode is much faster but does not work in circuit.

Part

X

278 BASCOM-8051

© 2021 MCS Electronics

10 BASCOM Misc

10.1 Error messages

The following table list all errors that can occur.

Nr Error message

1 BASIC source file not found

2 Code does not fit into FLASHROM

3 Unknown statement

4 Extension expected

5 Wrong variable or variable not dimensioned

6 Two parameters expected

7 No more space for BIT

8 No more space for BYTE

9 No more space for INTEGER/WORD

10 Wrong type (BIT,BYTE or INTEGER/WORD) expected

11 AS expected by DIM

12 , expected

13 Unknown interrupt

14 IF THEN expected

15 FOR, DO or WHILE expected

16 Wrong number of parameters

17 Illegal compare (=,>,<,<>,<=,>=) expected

18 THEN expected

19 TIMER0 or TIMER1 expected

20 DO expected

21 UNTIL expected

22 Illegal mathematical operation

23 FOR expected

24 WHILE expected

25 Variable not dimensioned

26 Source file not found

27 Label not found

100-134 These are internal assembler warnings. Contact MCS
Electronics .

135 Too many RAM used

136 Variable already dimensioned

137 Constant must be in range of 1-8

138 Baudrate not supported with selected frequency

279BASCOM Misc

© 2021 MCS Electronics

139 9 parameters expected

140 COUNTER0 or COUNTER1 expected.

141 = expected.

142 Maximum of 128 aliases statements allowed

143 Duplicate label

144 Value does not fit into byte

145 No more space for external BYTE

146 No more space for external INTEGER/WORD

147 No more space for STRING

148 Call outside 2048 page range. Use $LARGE to compile this
program.

150 Unsupported LCD display

151 Unsupported mode

152 Variable not found or dimensioned

153 Wrong type (BYTE,INTEGER/WORD, LONG or STRING)
expected

154 : expected

155 SELECT CASE expected

156 Numeric variable expected

157 (external) LONG expected

158 Value does not fit into Integer

159 Value does not fit into Word

160 Value does not fit into Long

161 * xxx (xxx=length) expected

162 Variable expected

163 Small string expected.

164 Variable not DIMensioned

166 Three parameters expected

167 1 or 0 expected

168 4 or 8 expected

170 Wrong value for WATCHDOG

171 Wrong parameter for I2C

172 Byte,Integer or Long expected

173 Variable expected

174 Integer or Long expected

175 Value does not fit into bit

176 Variables must be of the same type

280 BASCOM-8051

© 2021 MCS Electronics

177 Illegal operation

178 Value doesn't fit

179 Not supported

180 Illegal operation in PlaceValue

181 Constant or Internal byte or integer expected for index

182 Invalid device

183 Channel not opened

184 Device already open

185 Device was not open

186 Value does not fit into byte

187 IF ... THEN not allowed on same line as CASE

188 END IF expected

189 CONST expected

190 Channel expected (#x)

191 ALIAS already used

192 Word or Integer expected

193 CONST already defined

194 = expected

195 TO expected

196 Jump out of address range

197 RNDDATA variable not dimensioned

198 ') expected

199 '(expected

206 Library file not found

207 Library file already registered

208) expected

209 (expected

210 LEFT or RIGHT expected

211 External routine not found

212 Valid number must be in range from 1-16

213 Numeric constant expected

214 No SUB found.

215 Already in SUB

216 Wrong mode

217 NOINT expected

218 + must be between {}

219 Address >127, use indirect addressing

281BASCOM Misc

© 2021 MCS Electronics

999 DEMO allows 2048 bytes of code only

10.2 Compiler Limits

There are some limitations to the compiler :
You can perform only one calculation in a formula.
Good False
a = a * b1 a = a * b1 + c

Maximum allowed labels 5000

Maximum allowed variable names 1000

Maximum number of INTEGER/WORD variables 10*

Maximum number of BYTE variables 20*

Maximum number of BIT variables 120*

Maximum number of STRING variables Up to available
external memory

Maximum number of ALIAS statements 128

*Depending on the used statements and the used variables of the other types.

A maximum of 32 bytes is used internally. This depends on the used statements.
The stack uses some space too. So it depends on the used statements how much
variables you can use. In the worst case (32+16+8) = 56 bytes are used.
You can find out by viewing the report file how much bytes are used by your
program.
When you have a micro such as the 89S8252 with 256 bytes of internal memory,
you can have more variables.

8 used bit vars will use 1 byte;
1 used byte will use 1 byte;
1 used integer/word will use 2 bytes;
1 used long will use 4 bytes;
1 used single will use 4 bytes;
1 string with a length of 10 bytes will use 11 bytes.

Maximum nesting :

FOR .. NEXT 50

IF .. THEN 50

DO .. LOOP 50

WHILE .. WEND 50

SELECT .. CASE 25

44

282 BASCOM-8051

© 2021 MCS Electronics

10.3 Reserved Words

The following table shows the reserved BASCOM statements.
Red keywords can only be used on systems, which can address external RAM
memory.

!
;
$INCLUDE
$NOINIT
$NOSP
$NOBREAK
$BAUD
$BGF
$DEFAULT
$CRYSTAL
$LARGE
$LCD
$ROMSTART
$RAMSIZE
$RAMSTART
$SERIALINPUT
$SERIALOUTPUT
$SIM
1WRESET
1WREAD
1WWRITE
ACK
ALIAS
ABS()
AND
AS
ASC()
BAUD
BCD()
BIT
BITWAIT
BLINK
BOOLEAN
BREAK
BYTE
CALL
CASE
CLS
CHR()
CONFIG
CONST
COUNTER
COUNTER0
COUNTER1
CPEEK()
CURSOR
DATA
DEC
DECLARE
DEFBIT
DEFBYTE

283BASCOM Misc

© 2021 MCS Electronics

DEFLCDCHAR
DEFINT
DEFWORD
DELAY
DIM
DISABLE
DISPLAY
DO
DOWNTO
ELSE
ELSEIF
ENABLE
END
ERR
EXIT
EXTERNAL
FOR
FOURTH
FOURTHLINE
GATE
GETAD
GOSUB
GOTO
HEXVAL()
HIGH()
HIGHW()
HOME
I2CRECEIVE
I2CSEND
I2CSTART
I2CSTOP
I2CRBYTE
I2CWBYTE
IDLE
IF
INC
INKEY
INP()
INPUT
INPUTHEX
INT0
INT1
INTEGER
INTERNAL
IS
LCD
LCDHEX
LEFT
LEFT()
LOAD
LOCATE
LONG
LOOKUP
LOOP
LOW()
LOWW()
LOWER

284 BASCOM-8051

© 2021 MCS Electronics

LOWERLINE
MAKEBCD()
MAKEDEC()
MAKEINT()
MID()
MOD
MODE
NACK
NEXT
NOBLINK
NOSAVE
NOT
OFF
ON
OR
OUT
P0-P6
PEEK()
POKE
POWERDOWN
PSET
PRINT
PRINTHEX
PRIORITY
READ
READEEPROM
REM
RESET
RESTORE
RETURN
RIGHT
RIGHT()
RND()
ROTATE
SELECT
SERIAL
SET
SHIFT
SHIFTLCD
SHIFTCURSOR
SHIFTIN
SHIFTOUT
SHOWPIC
SOUND
SPACE()
START
STEP
STR()
STRING()
STOP
STOP TIMER
SUB
SWAP
THEN
THIRD
THIRDLINE
TIMEOUT

285BASCOM Misc

© 2021 MCS Electronics

TIMER0
TIMER1
TO
UNTIL
UPPER
UPPERLINE
VAL()
WAIT
WAITKEY
WAITMS
WATCHDOG
WRITEEEPROM
WEND
WHILE
WORD
XOR
XRAM

The internal registers are also reserved words (variables)

TCON
P1
SCON
IE
P3
IP
PSW
ACC
B
SP
DPL
DPH
PCON
TMOD
TL0
TL1
TH0
TH1
SBUF

Note that you can change the internal registers with the Register File settings
from the Options menu.

56

Part

XI

287Microprocessor support

© 2021 MCS Electronics

11 Microprocessor support

11.1 Microprocessor support

Some microprocessors have additional features compared to the AT89C2051/8051.

8032/8052/AT89S8252
TIMER2

AT89S8252
WATCHDOG
DATA EEPROM
Alternative port-pin functions

80515,80535,80517,80535
GETAD
WATCHDOG
BAUDRATE GENERATOR
INTERRUPTS and PRIORITY

80517,80537
GETAD
WATCHDOG
BAUDRATE GENERATOR
BAUDRATE GENERATOR1
INTERRUPTS and PRIORITY

89C51+
WATCHDOG
PRIORITY

ADUC812
CONFIG ADUC812
Using the DAC that also contains an example
The additional interrupts are :

ADCI , I2CSPI and PSMI

To enable them :

ENABLE ADCI, ENABLE I2CSPI, ENABLE PSMI

To disable them:

DISABLE ADCI, DISABLE I2CSPI, DISABLE PSMI

To set the priority to the highest level in addition to the normal priority interrupt
sources:

PRIORITY SET|RESET ADCI

PRIORITY SET|RESET I2CSPI

80552

288

231

291

252

148

292

115

292

148

292

115

115

293

296

202

113

293

141

139

202

202

288 BASCOM-8051

© 2021 MCS Electronics

GETAD(channel, prm) where channel is the channel and the prm is a paramter that
may be 0 for software trigger only or 32(dec) for trigger by rising edge on STADC
too.

To use the PWM of the 80552 :

Dim Pwp As Byte, Pwa as Byte, Pwb as Byte

Pwp = 200 'set output frequency (0 - 255)

Pwa = 50 'set channel 0 (a) pulse width (0 - 255)

Pwb = 0 'set channel 1 (b) pulse width (0 - 255)

Do

 Gosub Pwm

Loop

Pwm:

$asm

 MOV PWMP , {Pwp}

 MOV PWM0 , {Pwa}

 MOV PWM1 , {Pwb}

$end asm

Return

11.2 TIMER2

Some microprocessors have an additional timer on board : TIMER2.
This section describes the 8032 compatible TIMER2 and is not compatible with the
TIMER2 found in the 80C535 and others.
TIMER2 is a 16-bit timer/counter which can operate as either an event timer or an
event counter. TIMER2 has three main operating modes : capture, auto-reload(up or
down counting) , and baud rate generator.
When using the TIMER2 interrupt, you must reset the interrupt bit that caused the
interrupt yourself in the ISR handler.

Capture mode
In the capture mode there are two options :

· 16-bit timer/counter which upon overflowing sets bit TF2, the TIMER2 overflow
bit. This bit can be used to generate an interrupt.

Counter mode :
CONFIG TIMER2 = COUNTER, GATE = INTERNAL, MODE = 1

Timer mode:
CONFIG TIMER2=TIMER, GATE= INTERNAL,MODE =1

· As above but with the added future that a 1 to 0 transition on at external input
T2EX causes the current values in the TIMER2 registers TL2 and TH2 to be
captured into the capture registers RCAP2L and RCAP2H.

Counter mode:
CONFIG TIMER2 = COUNTER, GATE = EXTERNAL, MODE = 1

289Microprocessor support

© 2021 MCS Electronics

Timer mode:
CONFIG TIMER2=TIMER,GATE=EXTERNAL,MODE=1
In addition the transition at T2EX causes bit EXF2 in T2CON to be set and EXF2 like
TF2 can generate an interrupt.

The TIMER2 interrupt routine can interrogate TF2 and EXF2 to determine which
event caused the interrupt.
(there is no reload value in this mode. Even when a capture event occurs from T2EX
the counter keeps on counting T2EX pin transitions or osc/12 pulses)

Auto reload mode
In the 16-bit auto reload mode, TIMER2 can be configured as a timer or counter
which can be programmed to count up or down. The counting direction is
determined by bit DCEN.
TIMER2 will default to counting up to &HFFFF and sets the TF2 overflow flag bit
upon overflow. This causes the TIMER2 registers to be reloaded with the 16-bit
value in RCAP2L and RCAP2H.
The values in RCAP2L and RCAP2H are preset by software means.

Counter mode:
CONFIG TIMER2=COUNTER,GATE=INTERNAL,MODE=0

Timer mode:
CONFIG TIMER2=COUNTER,GATE=INTERNAL,MODE=0

If EXEN2=1 then a 16-bit reload can be triggered either by an overflow or by a 1 to
0 transition at input T2EX. This transition also sets the EXF2 bit. The TIMER2
interrupt, if enabled, can be generated when either TF2 or EXF2 are 1.

Counter mode:
CONFIG TIMER2=COUNTER,GATE=EXTERNAL,MODE=0

Timer mode:
CONFIG TIMER2=TIMER,GATE=EXTERNAL,MODE=0
TIMER2 can also count up or down. This mode allows pin T2EX to control the
direction of count. When a logic 1 is applied at pin T2EX TIMER2 will count up.
TIMER2 will overflow at &HFFFF and sets the TF2 flag, which can then generate an
interrupt, if the interrupt is enabled. This timer overflow also causes the 16-bit
value in RCAP2L en RCAP2H to be reloaded in to the timer registers TL2 and TH2.

Counter mode:
CONFIG TIMER2=COUNTER,GATE=INTERNAL/EXTERNAL,MODE=0,DIRECTION=UP

Timer mode:
CONFIG TIMER2=COUNTER,GATE=INTERNAL/EXTERNAL,MODE=0,DIRECTION=UP

A logic 0 applied at pin T2EX causes TIMER2 to count down. The timer will under
flow when TL2 and TH2 become equal to the value stored in RCAP2L and RCAP2H.
TIMER2 under flows sets the TF2 flag and causes &HFFFF to be reloaded into the
timer registers TL2 and TH2.

Counter mode:
CONFIG TIMER2=COUNTER,GATE=INTERNAL/EXTERNAL,MODE=0,
DIRECTION=DOWN

Timer mode:

290 BASCOM-8051

© 2021 MCS Electronics

CONFIG TIMER2=COUNTER,GATE=INTERNAL/EXTERNAL,MODE=0,
DIRECTION=DOWN

The external flag TF2 toggles when TIMER2 under flows or overflows.
The EXF2 flag does not generate an interrupt in counter UP/DOWN mode.

Baud rate generator
This mode can be used to generate a baud rate for the serial port. TIMER1 can be
used for an other task this way.
CONFIG TIMER2=TIMER,GATE=INTERNAL,MODE=2

Receive only
This mode can be used to generate the baudrate for the receiver only.
TIMER1 can be used for the transmission with an other baudrate.
CONFIG TIMER2=TIMER,GATE=INTERNAL,MODE=3

Note that TIMER1 must be setup from assembler this way.

Transmit only
This mode can be used to generate the baud rate for transmitter only.
TIMER1 can be used for the reception with an other baudrate.
CONFIG TIMER2=TIMER,GATE=INTERNAL,MODE=4

Note that TIMER1 must be setup from assembler this way.

Clock output
Some 8052 deviants have the ability to generate a 50% duty cycle clock on P1.0.
CONFIG TIMER2=TIMER,MODE=5

The output frequency = (fOSC / 4) / (65536-CAPTURE)

Use CAPTURE = value to set the capture register.

How to determine what caused the interrupt
You can test the bit T2CON.7 to see if an overflow caused the interrupt.
You can test bit T2CON.6 whether either a reload or capture is caused by a negative
transition on T2EX.

Timer2_ISR:
If T2CON.7 = 1 Then
 Print "Timer overflowed"
 Reset T2con.7
Else
 If T2CON.6 = 1 Then
 Print "External transition"
 Reset t2con.6
 End if
End If
Return

291Microprocessor support

© 2021 MCS Electronics

11.3 DATA EEPROM

The AT89S8252 has a built in 2Kbytes flash EEPROM.
You can use this to store data.
Two statements are provided : WRITEEEPROM and READEEPROM.

WRITEEEPROM var [, address]

var Any BASCOM variable name.

Address The address of the EEPROM where to write the data to.

Ranges from 0 to 2047.

When you omit the address the address will be assigned
automatically. You can view the assigned address in the report file.

READEEPROM var [, address]

var Any BASCOM variable name.

Address The address of the EEPROM where to read the data from.

Ranges from 0 to 2047.

You can omit the address when you have written a value before with
the WRITEEEPROM var statement.

Because in that case the compiler knows about the address because it
is assigned by the compiler.

Example
Dim S As String * 15 , S2 As String * 10
S = "Hello" : S2 = "test"

Dim L As Long
L = 12345678
Writeeeprom S
Writeeeprom S2 'write strings
Writeeeprom L 'write long

S = "" : S2 = "" : L = 0 'clear variables
Readeeprom L : Print L
Readeeprom S : Print S
Readeeprom S2 : Print S2
End

11.4 AT898252 WATCHDOG

The AT89S8252 has a built in watchdog timer.
A watchdog timer is a timer that will reset the uP when it reaches a certain value.
So during program execution this WD-timer must be reset before it exceeds its
maximum value.
This is used to be sure a program is running correct.
When a program crashes or sits in an endless loop it will not reset the WD-timer so
an automatic reset will occur resulting in a restart.

START WATCHDOG will start the watchdog timer.
STOP WATCHDOG will stop the watchdog timer.
RESET WATCHDOG will reset the watchdog timer.

292 BASCOM-8051

© 2021 MCS Electronics

See also
CONFIG WATCHDOG

Example
'---
' (c) 1998 MCS Electronics
' WATCHD.BAS demonstrates the AT89S8252 watchdog timer
' select 89s8252.dat !!!
'---
Config Watchdog = 2048 'reset after 2048 mSec
Start Watchdog 'start the watchdog timer
Dim I As Word
For I = 1 To 10000
 Print I 'print value
 ' Reset Watchdog
 'you will notice that the for next doesnt finish because of the reset
 'when you unmark the RESET WATCHDOG statement it will finish because the
 'wd-timer is reset before it reaches 2048 msec
Next
End

11.5 WATCHDOG 80515

The 80515 and 80535 both have a WD-timer.
This is a 16 bit timer that can't be stopped!
It will reset the system after 65535 uS at 12MHz.

START WATCHDOG 'start the WD-timer.
RESET WATCHDOG 'will reset the WD-timer.

11.6 INTERRUPTS and PRIORITY 80515

The 80515, 80535, 80517 and 80537 have more interrupt sources and priority is
handled different compared to the 8051.

Enable interrupts:
ENABLE AD 'AD converter
ENABLE INT2|INT3|INT4|INT5|INT6 'external interrupt 2-6
ENABLE TIMER2EX 'timer2 external reload

Disable interrupts:
DISABLE AD 'AD converter
DISABLE INT2|INT3|INT4|INT5|INT6 'external interrupt 2-6
DISABLE TIMER2EX 'timer2 external reload

Selecting of priority:
PRIORITY SET|RESET source , level
level can be 0,1,2 or 3.(0=lowest,3=highest)

The source can be :
INT0/ADC
TIMER0/INT2
INT0/INT3

128

293Microprocessor support

© 2021 MCS Electronics

TIMER1/INT4
SERIAL/INT5
TIMER2/INT6

Note that only one of the pairs must be selected.
PRIORITY SET INT4,3 'will set INT4 to the highest priority.
When two ints occur with the same priority the first source in the list will be handled
first. So when both TIMER1 and INT4 have the same priority, TIMER1 will be
serviced first. Look at a datasheet for more details.

11.7 INTERRUPTS and PRIORITY 80537

The 80517 and 80537 have more interrupts and priority is handled different
compared to the 8051.

Enable interrupts:
ENABLE AD 'AD converter
ENABLE INT2|INT3|INT4|INT5|INT6 'external interrupt 2-6
ENABLE TIMER2EX 'timer2 external reload
ENABLE CTF 'compare timer interrupt
ENABLE SERIAL1 'serial1 interrupt

Disable interrupts:
DISABLE AD 'AD converter
DISABLE INT2|INT3|INT4|INT5|INT6 'external interrupt 2-6
DISABLE TIMER2EX 'timer2 external reload
DISABLE CTF 'compare timer interrupt
DISABLE SERIAL1 'serial1 interrupt

Selecting of priority:
PRIORITY SET|RESET source , level
level can be 0,1,2 or 3.(0=lowest,3=highest)

source can be :
INT0/ADC/SERIAL1
TIMER0/INT2
INT0/INT3
TIMER1/CTF/INT4
SERIAL/INT5
TIMER2/INT6
Note that only one of the TRIPLE-pairs must be selected.
PRIORITY SET INT4,3 'will set INT4 to the highest priority.
When two ints occur with the same priority the first source in the list will be handled
first. So when both TIMER1 and INT4 have the same priority, TIMER1 will be
serviced first.
Look at a datasheet for more details.

11.8 ADUC 812

The 812 has 2 DACS named DAC0 and DAC1.

You can use the CONFIG ADUC812 statement to set the DAC behaviour.113

294 BASCOM-8051

© 2021 MCS Electronics

The DAC can be powered on or off.

DAC0.POWEROFF will power off the DAC0

DAC1.POWERON will power on the DAC1

To force the output of the DAC to 0 volt use :

DAC0.CLEAR

To let it output the voltage use :

DAC0.NORMAL

The DAC values can be written with the following statements:

DAC0.value = 1024 'or a variable

DAC1.value = word

The sync bit is reset and to sync the DAC with the supplied values use :

DAC.SYNC

Note that the SYNC method operates on both DACS and so there is no 0 or 1
specified!

All the previous methods shown can work with 0 for DAC0 or 1 for DAC1.

See the aduc812.bas example:

'---

' ADCU812.bas (c) 2000 MCS Electronics

' Note that the support for this chip is untested

' Any feedback appreciated!

'---

'Use this dat file

$regfile = "812.dat"

'configure ADC

Config Aduc812 = Adcon , Mode = Normal , Clock = 1 , Aquisition = 1 , Timer2 =
Disabled , Extrig = Disabled

'configure DACS

Config Aduc812 = Dac , Mode = 12 , Range1 = Vref , Range0 = Vref , Clear0 =
False , Sync = Enabled , Power0 = On , Power1 = Off

Declare Sub Write_ebyte

Declare Sub Read_ebyte

'dim variables

295Microprocessor support

© 2021 MCS Electronics

Dim Wdac As Word

Dim Adc As Word

Dim Eeadr As Word , Eebyte As Byte , Page As Word

'get value from adc channel 0

'note that simulator will halt until you make the adccon2 bit 4 zero.

Adc = Getad(0)

'enable dac0 by powering it on

Dac0.poweron

'0V to output of dac0

Dac0.clear

'put voltage into dacs

Dac0.value = 12

Dac1.value = 500

'dac0 was 0V but must work normal now

Dac0.normal

'and after setting the value(s) the dacs must be updated with the sync method

Dac.sync

'the EEPROM is accessed via pages

'each page is 4 bytes

'to write 1 byte you need to write the whole 4 byte page

'assign eeadr with the address

'and eebyte with the value to write

Eeadr = 100 : Eebyte = 5 : Call Write_ebyte

Eeadr = 100 : Call Read_ebyte

Print Eebyte

End

Sub Write_ebyte

 Page = Eeadr \ 4 'page

 mov edarl,{page} ; page address

 mov econ,#1 ; read 4 current bytes

 mov econ,#5 ; erase page

 Waitms 20 'wait 20 msecs

 Page = Page * 4

 Page = Eeadr - Page

 If Page = 0 Then

296 BASCOM-8051

© 2021 MCS Electronics

 mov edata1,{eebyte} ; data register to write

 Elseif Page = 1 Then

 mov edata2,{eebyte} ; data register to write

 Elseif Page = 2 Then

 mov edata3,{ebyte} ; data register to write

 Else 'must be 3

 mov edata4,{eebyte} ; data register to write

 End If

 mov econ,#2 ; write registers

End Sub

Sub Read_ebyte

 Page = Eeadr \ 4 'page

 mov edarl,{page} ; page address

 mov econ,#1 ; read 4 current bytes

 Page = Page * 4

 Page = Eeadr - Page

 If Page = 0 Then

 mov {EEbyte},edata1 ; data register to read

 Elseif Page = 1 Then

 mov {eebyte},edata2 ; data register to read

 Elseif Page = 2 Then

 mov {eebyte},edata3 ; data register to read

 Else 'must be 3

 mov {eebyte},edata4 ; data register to read

 End If

 mov econ,#2 ; write registers

End Sub

End

11.9 89C51

The 89C51 has an additional PCA interrupt.
The priority mechanism is also different compared to a normal 8051.
You can set a level in the range from 0-3.
PRIORITY SET|RESET source , level
level can be 0,1,2 or 3.(0=lowest,3=highest)

The source can be :
INT0
TIMER0
INT1
TIMER1
SERIAL
TIMER2
PCA

297Microprocessor support

© 2021 MCS Electronics

PRIORITY SET INT0,3 'will set INT0 to the highest priority.
Look at a datasheet for more details.

The WATCHDOG can be started with the statement :
START WATCHDOG.
RESET WATCHDOG must be used in your program to reset the WD-timer.
When it reaches 16384 the chip will be reset.
The input to the WD-timer is the XTAL frequency!

Part

XII

299International Resellers

© 2021 MCS Electronics

12 International Resellers

12.1 International Resellers

The list with resellers is updated once in a while. Please look at the resellers list at
the MCS website :

http://www.mcselec.com/index.php?option=com_contact&catid=82&Itemid=59

http://www.mcselec.com/index.php?option=com_contact&catid=82&Itemid=59

Part

XIII

301Third party hardware

© 2021 MCS Electronics

13 Third party hardware

13.1 Third party Hardware

There is a lot of third party hardware available.

Below you find links to some of the available hardware

Grifo , boards for BASCOM-AVR, BASCOM-8051 and BASCOM-LT

Rhombus SCE-51 , small 8051 board and in circuit emulator

13.1.1 Grifo

EXAMPLES
BASCOM - BASIC

The content of this page is provided by Grifo.

As following you can find a wide range of demo programs.The programs have been
realized to be used on a well-known hardware, as the K51-AVR or the DEB-01, etc.
in order to avoid any doubts about the interpretation of the results.

The demo programs are well documented in order to allow a fast approach for
anybody.In addition to that, being the same demoes written in different languages,
it is possible to get an efficient comparison both for Quality and Speed terms.

I N D E X

B A S I C

· Examples - \BASCOM-LT

301

308

302 BASCOM-8051

© 2021 MCS Electronics

· Examples - \BASCOM-8051

· Examples - \BASCOM-AVR

SHORT PROGRAM DESCRIPTION

x_AD11

This program monitors one anagogic channel out of eleven, managed by IC12
(TLC2543), visualization of the channel is in hexadecimal format, through T1 and T2
the channel to convert is selected, T1 increments while T2 decrements.

The display shows first the channel being converted, then the 12 bits wide
hexadecimal value of the channel converted: Before compiling set in menu Option/
Compiler/Misc: Byte End 5F; Register File 89c1051.DAT or 8052.DAT.

For use with 8xC51/52 modify the source where the pins used are described
replacing pins for 89c1051 with pins for 8xc51.

x_AD4

This program monitors one analogue channel out of four, managed by IC12
(PCF8591), visualization of the channel is in hexadecimal format, through T1 the
channel to convert is selected: Whenever a key is pressed, an acoustic signal is
emitted.

Display DY1 shows the channel to convert, while displays DY3 and DY4 show the
converted value in HEX.

Before compiling set in menu Option/Compiler/Misc: Byte End 5F; Register File
89c1051.DAT or 8052.DAT.

For use with 8xC51/52 modify the source where the pins used are described
replacing pins for 89c1051 with pins for 8xc51.

x_DA

This program monitors one D/A converter channel on IC2 (PCF8591), key T1
increments the value, while key T2 decrements the value which is shown in
hexadecimal format the 7 segments displays.

Whenever a key is pressed, an acoustic signal is emitted.

Before compiling set in menu Option/Compiler/Misc: Byte End 5F; Register File
89c1051.DAT or 8052.DAT.

For use with 8xC51/52 modify the source where the pins used are described
replacing pins for 89c1051 with pins for 8xc51.

x_REE

This program allows to read a serial EEPROM on IC4 (max 24c08), with addresses
ranging from &H400 to &H7ff, addresses from &H0 to &H0FF are taken by IC7 (RTC
PCF8583) while addresses from &H100 to &H3FF are free space.

At start the program shows the address where to write, through keys T1 and T2 the
value in incremented or decremented.

Through key T3 the address is accepted and the value read at such address is
shown.

Whenever a key is pressed, an acoustic signal is emitted.

Before compiling set in menu Option/Compiler/Misc: Byte End 5F; Register File
89c1051.DAT or 8052.DAT.

303Third party hardware

© 2021 MCS Electronics

For use with 8xC51/52 modify the source where the pins used are described
replacing pins for 89c1051 with pins for 8xc51.

x_WEE

This program allows to write to a serial EEPROM on IC4 (max 24c08), with
addresses ranging from &H400 to &H7ff, addresses from &H0 to &H0FF are taken by
IC7 (RTC PCF8583) while addresses from &H100 to &H3FF are free space.

At start the program shows the address where to write, through keys T1 and T2 the
value in incremented or decremented.

Through key T3 the address is accepted, then the value to write is selected through
T1 and T2, as last press key T3 to write.

Whenever a key is pressed, an acoustic signal is emitted.

After the operation is terminated the selected address and the written data are
shown one after the other.

Before compiling set in menu Option/Compiler/Misc: Byte End 5F; Register File
89c1051.DAT or 8052.DAT.

For use with 8xC51/52 modify the source where the pins used are described
replacing pins for 89c1051 with pins for 8xc51.

x_LCD

This program allows to manage an alphanumeric LCD featuring a number rows and
columns definable by User.

The display must be connected to CN5 following the connections shown in the
diagram of K51-AVR page 4 of 4.

Before compiling select in menu Option/Compiler/Misc/ :

Byte End 5F, Register File REG51.DAT

In menu Option/ LCD select:

Db4 = P1.5 , Db5 = P1.6 , Db6 = P1.7 , Db7 = P1.2 , E
= P1.4 , Rs = P1.3

x_PPI

This program shows, in hexadecimal format, the status of the eight lines connected
to IC1 (PCF8547A9).

Before compiling set in menu Option/Compiler/Misc: Byte End 5F; Register File
89c1051.DAT or 8052.DAT.

For use with 8xC51/52 modify the source where the pins used are described
replacing pins for 89c1051 with pins for 8xc51.

x_PPO

This program activates sequentially one at a time all the 8 lines connected to IC1
(PCF8574A).

Before compiling set in menu Option/Compiler/Misc: Byte End 5F; Register File
89c1051.DAT or 8052.DAT.

For use with 8xC51/52 modify the source where the pins used are described
replacing pins for 89c1051 with pins for 8xc51.

304 BASCOM-8051

© 2021 MCS Electronics

x_PPO2

This program turns on in sequence the 16 TTL lines available on connector CN3.

Before compiling select in menu Option/Compiler/Misc/ :

Byte End 5F; Register File 8052.DAT

x_RTC

This program allows you to show the RTC or Real Time Clock on IC7 (PCF8583) to
the four 7 segments displays: To set the RTC values keys T2 and T3 are used, in
detail key T2 increments the hours and T3 increments the minutes.

Whenever one of the two keys is pressed the seconds are reset.

Key T1 switches between visualization of seconds and hours.

Whenever a key is pressed, an acoustic signal is emitted.

Date and eventual alarm are not managed: Before compiling set in menu Option/
Compiler/Misc: Byte End 5F; Register File 89c1051.DAT or 8052.DAT.

For use with 8xC51/52 modify the source where the pins used are described
replacing pins for 89c1051 with pins for 8xc51.

x_TER

This program reads the temperature measured by IC3 (DS1621) and shows it in
centigrade degreases with values ranging from -55 to +125.

Before compiling set in menu Option/Compiler/Misc: Byte End 5F; Register File
89c1051.DAT or 8052.DAT.

For use with 8xC51/52 modify the source where the pins used are described
replacing pins for 89c1051 with pins for 8xc51.

BASCOM Examples for boards

KND_08 - KND_44 - KAD_08

KND_08

This program allows to manage the board resources of KND 08 card through a
menu, using 2 TTL lines driven by a family 51 micro controller.

This program is managed through a RS 232 serial line, so it is essential to connect a
free COM port of the PC to connector CN2 of K51-AVR.

To configure the BASCOM 8051 terminal in menu Options/Communication select the
COM port and set Baud Rate to 19200, parity to none, data bits to 8, stop bits to 1.

The board used to drive KND 08 is K51-AVR, connections are:

K51-AVR KND 08

L1 (pin4 CN6) ----> SC (pin2 CN1 KND08)

L2 (pin5 CN6) ----> SD (pin1 CN1 KND08)

305Third party hardware

© 2021 MCS Electronics

Supply both the boards.

Before compiling in menu Option/Compiler/Misc set Byte End(Hex) = 60.

KND_44

This program allows to manage the board resources of KND 44 card through a
menu, using 2 TTL lines driven by a family 51 micro controller.

This program is managed through a RS 232 serial line, so it is essential to connect a
free COM port of the PC to connector CN2 of K51-AVR.

To configure the BASCOM 8051 terminal in menu Options/Communication select the
COM port and set Baud Rate to 19200, parity to none, databits to 8, stopbits to 1.

The board used to drive KND 44 is K51-AVR, connections are.

K51-AVR KND 44

L1 (pin4 CN6) ----> SC (pin2 CN1 KND44)

L2 (pin5 CN6) ----> SD (pin1 CN1 KND44)

Supply both the boards.

Before compiling in menu Option/Compiler/Misc set Byte End(Hex) = 60.

KAD_08

This program manages a sliding alphanumeric message on eight 14-segments
displays, installed on KAD 08 board, through 2 TTL signals driveb by a micro
controller of family 51.

The master board is K51-AVR which must be connected to KAD 08 as follows:

K51-AVR KAD 08

L1 (pin4 CN6) ----> SC (pin2 CN1 KAD08)

L2 (pin5 CN6) ----> SD (pin1 CN1 KAD08)

Supply both the boards.

Before compiling in menu Option/Compiler/Misc set Byte End(Hex) = 70.

KAD_08_2

This program allows to manage the resources on the KAD 08 board through a menu
and 2 TTL lines driven by a micro controller of the 51 family.

This program is controlled through the RS 232 serial line so it is essential to connect
a free COM port on the PC to the connector CN2 of K51-AVR.

Configure the BASCOM 8051 terminal using menu Option/Communication, select the
COM port and set baud rate to 19200, parity to none, data bits to 8 and stop bits to
1.

The master board is K51-AVR which must be connected to KAD 08 as follows:

K51-AVR KAD 08

L1 (pin4 CN6) ----> SC (pin2 CN1 KAD08)

L2 (pin5 CN6) ----> SD (pin1 CN1 KAD08)

Supply both the boards.

Before compiling in menu Option/Compiler/Misc set Byte End(Hex) = 50.

306 BASCOM-8051

© 2021 MCS Electronics

EXAMPLEs

BASCOM-LT

for K51-AVR.

K51-AVR

DEMO_AD11, DEMO_AD4, DEMO_DA, DEMO_REE, DEMO_WEE, DEMO_LCD,
DEMO_PPI, DEMO_PPI1, DEMO_PPO, DEMO_PPO1, DEMO_PPO2,
DEMO_RTC, DEMO_TER,

BASCOM-LT Examples for boards

KND_08 - KND_44 - KAD_08

KND_08, KND_44, KAD_08

EXAMPLEs

BASCOM-8051

for K51-AVR..

K51-AVR

51_AD11, 51_AD4, 51_DA, 51_REE, 51_WEE, 51_PPI, 51_PPO, 51_RTC,
51_TER

GPC® F2

F2_AD11, F2_AD4, F2_DA, F2_REE, F2_WEE, F2_PPI, F2_PPO, F2_RTC,
F2_TER

BASCOM-8051 Examples for boards

KND_08 - KND_44 - KAD_08

307Third party hardware

© 2021 MCS Electronics

KND_08, KND_44, KAD_08, KAD_08_2

GPC® F2

F2_KND_08, F2_KND_44, F2_KAD_08, F2_KND_08_2

EXAMPLEs

BASCOM-AVR

for K51-AVR.

K51-AVR

DEMO_AD11, DEMO_AD4, DEMO_DA, DEMO_REE, DEMO_WEE, DEMO_PPI,
DEMO_PPO, DEMO_RTC, DEMO_TER

BASCOM-AVR Examples for boards

KND_08 - KND_44 - KAD_08

KND_08, KND_44, KAD_08

Page up-dated at June 7st, 2000

GRIFO®

Via dell'Artigiano, 8/6

40016 San Giorgio di Piano

Bologna ITALY

Tel: +39 051 892.052 (4 lines)

FAX: +39 051 893.661

E-mail:

for commercial communications sales@grifo.it

for technical communications tech@grifo.it

for general communications grifo@grifo.it

308 BASCOM-8051

© 2021 MCS Electronics

13.1.2 Rhombus

Rhombus developed the SCE-51. A powerful small 8051 micro processor board with
on board RAM and FLASHROM and bootloader.

In addition the board serves as an in circuit emulator.

Transferring your program to RAM goes very fast. Faster than loading it into the
traditional FLASHROM. So during debugging it is well suited for debugging large
applications.

There are many possibilities with this board and you have to look at www.
rhombusinc.com for all the details.

A picture of the board is included here:

Since the help file must be kept small, the quality of the picture is poor.

309Third party hardware

© 2021 MCS Electronics

A bootloader is integrated into BASCOM. Select the Rhombus SCE-51 programmer
to enable it.

BASCOM-8051310

© 2021 MCS Electronics

Index

- # -
#ELSE 77

#ENDIF 78

#IF 76

- $ -
$BAUD 85

$BGF 85

$CRYSTAL 87

$DEFAULT XRAM 88

$END ASM 84

$EXTERNAL 88

$INCLUDE 89

$IRAMSTART 90

$LARGE 90

$LCD 91, 93

$LCDRS 92

$LIB 91

$NOBREAK 93

$NOINIT 94

$NONAN 94

$NONULL 95, 132

$NORAMCLEAR 95

$NOSP 96

$OBJ 96

$RAMSIZE 97

$RAMSTART 99

$RAMTRON 97

$REGFILE 100

$ROMSTART 100

$SERIALINPUT 101

$SERIALINPUT2LCD 101

$SERIALOUTPUT 102

$SIM 103

$TIMEOUT 103

$WAIT 104

- 1 -
1WIRE 254

1WIRECOUNT 80

1WREAD 79

1WRESET 79

1WSEARCHFIRST 81

1WSEARCHNEXT 83

1WWRITE 79

- 8 -
8032_Alternative port-pin functions 252

8032_TIMER2 288

80515_WATCHDOG 292

89C51 296

- A -
ABS 105

Additional Hardware 247

ALIAS 104

ASC 106

AT898252 WATCHDOG 291

AVG 106

- B -
BASCOM 34

BASCOM statements 73

BAUD 107

BCD 108

BITWAIT 108

Blow IT Flashprogrammer 263

BREAK 109

BROWSE001e 140

- C -
CALL 109

CASE 212

CHR 110

CLOSE 194

CLS 111

Compiler Limits 281

CONFIG 112

CONFIG 1WIRE 113

CONFIG ADUC812 113

CONFIG BAUD 115

CONFIG BAUD1 115

CONFIG DEBOUNCE 116

CONFIG GETRC 117

CONFIG GRAPHLCD 117

CONFIG I2CDELAY 116

Index 311

© 2021 MCS Electronics

CONFIG LCD 121

CONFIG LCDBUS 122

CONFIG LCDPIN 121

CONFIG MICROWIRE 123

CONFIG PRINT 123

CONFIG SCL 124

CONFIG SDA 125

CONFIG SERVOS 125

CONFIG SPI 126

CONFIG TIMER0
TIMER1 127

CONFIG WATCHDOG 128

CONST 112

COUNTER 129

CPEEK 130

Credits 64

CURSOR 131

CYGNAL JTAG Programmer 268

- D -
DATA 132

DATA EEPROM 291

DEBOUNCE 133

DECLARE 135

DECR 134

DEF 136

DEFBIT 136

DEFBYTE 136

DEFINT 136

DEFLCDCHAR 136

DELAY 137

DIM 137

DISABLE 139

DISPLAY 139

- E -
Edit Copy 38

Edit Cut 38

Edit Find 39

Edit Find Next 39

Edit Goto 40

Edit Indent Block 41

Edit Paste 39

Edit Redo 38

Edit Replace 40

Edit Undo 38

Edit Unindent Block 41

Editor Keys 42

ELSE 140

ENABLE 141

END 142

END IF 142

ERASE 143

Error messages 278

EXIT 144

- F -
File Close 36

File Compile 43

File End 37

File Exit 37

File New 35

File Open 35

File Print 37

File Print Preview 36

File Save 36

File Save As... 36

File Simulate 45

File Transmit 49

FOR 144

FOURTHLINE 145

FUSING 146

Futurelec 268

- G -
GET 147, 194

GETAD 148

GETAD2051 149

GETRC 154

GETRC5 156

GOSUB 158

GOTO 159

Grifo 301

- H -
Hardware - I2C 254

Hardware - LCD display 253

Help About 63

Help Credits 64

Help Forum 64

Help index 63

Help on help 63

Help Shop 64

BASCOM-8051312

© 2021 MCS Electronics

Help Support 64

HEX 159

HEXVAL 160

HIGH 160

HIGHW 161

HOME 162

- I -
I2C 164

I2CRBYTE 164

I2CRECEIVE 162

I2CSEND 163

I2CSTART 164

I2CSTOP 164

I2CWBYTE 164

IDLE 165

IF 165

INCR 167

INDEX 13

Initialization 244

INKEY 167

INP 169

INPUT 169

INPUTBIN 171

INPUTHEX 172

Installing BASCOM-8051 21

INSTR 173

Internal registers 242

International Resellers 299

INTERRUPTS and PRIORITY 80515 292

INTERRUPTS and PRIORITY 80537 293

- J -
JPK Systems X-programmer 268

- K -
Keyword Reference 17

- L -
Language fundamentals 66

LCASE 174

LCD 174

LCD designer 50

LCDHEX 178

LCDINIT 177

LEFT 179

LEN 179

LIB 51

LOAD 180

LOCATE 181

LOOKUP 181

LOOKUPSTR 182

LOOP 140

LOW 183

LOWERLINE 184

LOWW 184

- M -
MAKEBCD 185

MAKEDEC 185

MAKEINT 186

MAX 186

MCS Flash programmer 260

MCS SPI programmer 262

MCS USBISP Programmer 273

Microprocessor support 287

MID 187

MIN 188

MOD 188

MWINIT 189

MWREAD 189

MWWOPCODE 190

MWWRITE 191

- N -
NEXT 192

- O -
ON interrupt 192

ON value 193

OPEN 194

Options Communication 56

Options Compiler Communication 54

Options Compiler I2C 54

Options Compiler LCD 55

Options Compiler Misc 56

Options Compiler Output 53

Options Environment 58

Options hardware simulator 60

Options Monitor 61

Options Printer 62

Index 313

© 2021 MCS Electronics

Options Programmer 60

Options View Report 44

OUT 196

- P -
PEEK 198

Peter Averill's TAFE programmer 269

PG2051 flash programmer 263

PG302 programmer 264

POKE 198

PORT 197

POWERDOWN 199

PRINT 199

PRINTBIN 200

PRINTHEX 201

PRIORITY 202

PSET 203

PUT 194, 203

- R -
READ 204

READMAGCARD 205

REM 207

REPLACE 207

Reserved Words 282

RESET 208

RESTORE 208

RETURN 209

Rhombus 308

Rhombus SCE-51 271

RIGHT 210

RND 210

ROTATE 211

RUNNING BASCOM-8051 33

- S -
Sample Electronics ISP programmer 266

SE 512 or SE514 programmer 265

SE511-SE516 programmer 272

SE-812 266

SELECT 212

Send to chip 48

SET 212

SHIFT 213

SHIFTCURSOR 213

SHIFTIN 214

SHIFTLCD 215

SHOWPIC 216

SOUND 216

SPACE 218

SPC 219

SPIIN 220

SPIINIT 220

SPIOUT 221

START 221

STK200/300 ISP Programmer 270

STOP 222

STOP TIMER 222

STR 224

STRING 224

SUB 225

SWAP 226

Syntax check 43

- T -
Table of contents 14

THIRDLINE 226

Tool LIB Manager 51

Tool Triscent Converter 52

Tools Export to RTF 53

Tools Graphic Converter 50

- U -
UCASE 227

UPPERLINE 228

Using assemly 235

Using the DAC 293

- V -
VAL 228

VARPTR 229

- W -
WAIT 229

WAITKEY 230

WAITMS 230

WATCHDOG 231

WEND 232

WHILE 232

WHILE.. WEND 232

Window arrange icons 63

BASCOM-8051314

© 2021 MCS Electronics

Window cascade 62

Window tile 63

Windows minimize all 63

© MCS Electronics 1995-2021

Making BASIC Easy

www.mcselec.com

	INDEX
	Table of contents
	Keyword Reference

	Installing BASCOM-8051
	Updates
	BASCOM IDE
	RUNNING BASCOM-8051
	BASCOM IDE
	File New
	File Open
	File Close
	File Save
	File Save As...
	File Print Preview
	File Print
	File Exit
	Edit Undo
	Edit Redo
	Edit Copy
	Edit Cut
	Edit Paste
	Edit Find
	Edit Find Next
	Edit Replace
	Edit Goto
	Edit Indent Block
	Edit Unindent Block
	Editor Keys
	Program Compile
	Program Syntax check
	Program Show Result
	Program Simulate
	Program Send to chip
	Tools Terminal Emulator
	Tools LCD designer
	Tools Graphic Converter
	Tools LIB Manager
	Tools Triscent Converter
	Tools Export to RTF
	Options Compiler Output
	Options Compiler Communication
	Options Compiler I2C
	Options Compiler LCD
	Options Compiler Misc
	Options Communication
	Options Environment
	Options hardware simulator
	Options Programmer
	Options Monitor
	Options Printer
	Window cascade
	Window Tile
	Window arrange icons
	Window minimize all
	Help About
	Help Index
	Help on help
	Help Shop
	Help Forum
	Help Support
	Help Credits

	Language fundamentals
	Language fundamentals

	BASCOM Language Reference
	BASCOM Statements
	#IF
	#ELSE
	#ENDIF
	1WIRE
	1WIRECOUNT
	1WSEARCHFIRST
	1WSEARCHNEXT
	$ASM - $END ASM
	$BAUD
	$BGF
	$CRYSTAL
	$DEFAULT XRAM
	$EXTERNAL
	$INCLUDE
	$IRAMSTART
	$LARGE
	$LIB
	$LCD
	$LCDRS
	$MAP
	$NOBREAK
	$NOINIT
	$NONAN
	$NONULL
	$NORAMCLEAR
	$NOSP
	$OBJ
	$RAMSIZE
	$RAMTRON
	$RAMSTART
	$REGFILE
	$ROMSTART
	$SERIALINPUT
	$SERIALINPUT2LCD
	$SERIALOUTPUT
	$SIM
	$TIMEOUT
	$WAIT
	ALIAS
	ABS
	ASC
	AVG
	BAUD
	BCD
	BITWAIT
	BREAK
	CALL
	CHR
	CLS
	CONST
	CONFIG
	CONFIG 1WIRE
	CONFIG ADUC812
	CONFIG BAUD
	CONFIG BAUD1
	CONFIG DEBOUNCE
	CONFIG I2CDELAY
	CONFIG GETRC
	CONFIG GRAPHLCD
	CONFIG LCDPIN
	CONFIG LCD
	CONFIG LCDBUS
	CONFIG MICROWIRE
	CONFIG PRINT
	CONFIG SCL
	CONFIG SDA
	CONFIG SERVOS
	CONFIG SPI
	CONFIG TIMER0, TIMER1
	CONFIG WATCHDOG
	COUNTER
	CPEEK
	CURSOR
	DATA
	DEBOUNCE
	DECR
	DECLARE
	DEF
	DEFLCDCHAR
	DELAY
	DIM
	DISABLE
	DISPLAY
	DO
	ELSE
	ENABLE
	END
	END IF
	ERASE
	EXIT
	FOR
	FOURTHLINE
	FUSING
	GET
	GETAD
	GETAD2051
	GETRC
	GETRC5
	GOSUB
	GOTO
	HEX
	HEXVAL
	HIGH
	HIGHW
	HOME
	I2CRECEIVE
	I2CSEND
	I2C
	IDLE
	IF
	INCR
	INKEY
	INP
	INPUT
	INPUTBIN
	INPUTHEX
	INSTR
	LCASE
	LCD
	LCDINIT
	LCDHEX
	LEFT
	LEN
	LOAD
	LOCATE
	LOOKUP
	LOOKUPSTR
	LOW
	LOWW
	LOWERLINE
	MAKEBCD
	MAKEDEC
	MAKEINT
	MAX
	MID
	MIN
	MOD
	MWINIT
	MWREAD
	MWWOPCODE
	MWWRITE
	NEXT
	ON interrupt
	ON value
	OPEN
	OUT
	PORT
	PEEK
	POKE
	POWERDOWN
	PRINT
	PRINTBIN
	PRINTHEX
	PRIORITY
	PSET
	PUT
	READ
	READMAGCARD
	REM
	REPLACE
	RESET
	RESTORE
	RETURN
	RIGHT
	RND
	ROTATE
	SELECT
	SET
	SHIFTCURSOR
	SHIFT
	SHIFTIN
	SHIFTLCD
	SHOWPIC
	SOUND
	SOUNDEXT
	SPACE
	SPC
	SPIIN
	SPIINIT
	SPIOUT
	START
	STOP
	STOP Timer
	STR
	STRING
	SUB
	SWAP
	THIRDLINE
	UCASE
	UPPERLINE
	VAL
	VARPTR
	WAIT
	WAITKEY
	WAITMS
	WAITMSE
	WATCHDOG
	WHILE .. WEND

	Using assembly
	Using assemly
	Internal registers
	Initialization

	Additional Hardware
	Additional Hardware
	Alternative port-pin functions
	Hardware - LCD display
	Hardware - I2C
	1WIRE INFO

	Supported Programmers
	MCS Flash programmer
	MCS SPI programmer
	Blow IT Flashprogrammer
	PG2051 flash programmer
	PG302 programmer
	SE512 or SE514 programmer
	SE-812
	Sample Electronics ISP programmer
	CYGNAL JTAG Programmer
	Futurelec
	JPK Systems X-programmer
	Peter Averill's TAFE programmer
	STK200/300 ISP Programmer
	Rhombus SCE-51
	SE511-SE516 programmer
	MCS USBISP Programmer

	BASCOM Misc
	Error messages
	Compiler Limits
	Reserved Words

	Microprocessor support
	Microprocessor support
	TIMER2
	DATA EEPROM
	AT898252 WATCHDOG
	WATCHDOG 80515
	INTERRUPTS and PRIORITY 80515
	INTERRUPTS and PRIORITY 80537
	ADUC 812
	89C51

	International Resellers
	International Resellers

	Third party hardware
	Third party Hardware
	Grifo
	Rhombus

