

MCS ELECTRONICS
Making Things Easy

Educational Development Board
Manual

Version

0.3

Educational Development Board
Features:

● LCD
● PS/2 keyboard/mouse connector
● Breadboard
● USB interface
● RS-232 interface
● ISP connection

● Comes with extensive
 “getting started” manual

 2

UPDATES AVAILABLE VISIT

www.mcselec.com/edb

M C S E L E C T R O N I C S

Educational Development Board Guide

Barry de Graaff
© 2005 MCS Electronics

www.mcselec.com

 3

Table of Contents
Introduction 5
1. Experience 6
 1.1 Hardware requirements 6
 1.2 Beware of un-programmed chips! 6
2. Getting started 7
 2.1 Assembling your PCB 7
 2.2 Installing Bascom AVR 12
 2.3 Programming the controller thru the serial port (Boot loader procedure) 18
 2.4 Troubleshooting 20
3. Experiments 21
 3.1 Basic I/O Experiments 23
 3.1.2 Shifting LED’s 25
 3.1.3a Output with transistor or FET 27
 3.1.3b Output with FET 30
 3.1.3c Output with relay 31
 3.1.4 Output with a ULN2803 32
 3.1.5 I/O with Opto coupler 34
 3.2 UART Data communication 37
 3.2.1 The UART 37
 3.2.2 The Software UART 42
 3.3 Display output 44
 3.3.1 HD44780 LCD 44
 3.3.2 7 segment display 46
 3.4 Keyboard input 48
 3.4.1 PS2 or AT Keyboard 48
 3.4.2 Matrix keyboard 50
 3.4.3 Remote control with RC5 52
 3.5 Advanced I/O 54
 3.5.1 Counter with anti bounce input 54
 3.5.2 The GetRC Statement 56
 3.5.3 Siren with the SOUND statement 57

 4

Table of Contents (continued)

 3.6 AD and DA conversion 59
 3.6.1 PWM output 59
 3.6.2 AD conversion with LDR 61
 3.6.3 Low cost voltmeter 64
 3.7 Other controller features 68
 3.7.1 About the memory 68
 3.7.2 Watchdog 70
 3.7.3 Using a timer 71
 3.8 Other interfaces 72
 3.8.1 The I²C bus 72
 3.8.2 USB Interface 74
 3.8.3 Installation procedure 76
 3.8.3.1 Installation procedure Virtual Com Port Windows 76
 3.8.3.2 Installation procedure USB Device Windows 79
 3.8.3.3 Driver uninstall 82
 3.8.4 USB interface, device as Virtual COM port 83
 3.8.5 USB interface, device with default PID&VID 85
 3.8.6 USB interface, device with your own PID&VID 86
 3.9 Motors 87
 3.9.1 Stepper motor 87
 3.9.2 PWM controlled DC motor 88
4. Other programming methods 90
 4.1 Programming with STK200/300 dongle 91
 4.2 Programming with Wiazania USP ISP 92
 4.3 Reprogramming the bootloader 93
Annex 1 STK200/300 ISP dongle 96
Annex 2 ASCII Table 97
Annex 3 7 segment display pin outs 100
Annex 4 EDB schematics 101
Copyright and Disclaimer 104

 5

Introduction

n the late 80’s of the past century microcontrollers where relatively expensive and
could only be found in computers and consumer electronics (TV’s and stereo
sets). Due to the large demand for easy and flexible electronics, microcontrollers
became more and more affordable. Nowadays microcontrollers are available for

everyone with an interest in electronic development.

The Educational Development Board (EDB) brings you an introduction to the world
of electronics and microcontrollers. The board along with this manual will teach you
the elements of electronics and microcontrollers. You will learn this elements by
carrying out experiments. The experiments follow up in a logical, constructive order
which will keep you encouraged to continue to the next experiment.

In the experiments the emphasis is laid on mixing ordinary components such as
resistors and LED’s with a microcontroller. Where needed a simple explanation of the
components and the theory of the microcontroller will be given.

Don’t panic if you don’t understand the microcontroller, in the first couple of
experiments we will consider the microcontroller as a “black box”. Further on we will
give you some theory on the controller’s basics and links to the Internet.

We also like to mention the EDB-CD that is provided with this manual, on the CD
you can find the source-code for the experiments, solutions for the exercises as well as
Visual Basic examples, datasheets and application notes. You can find an overview of
the entire CD in the “Contents of CD.pdf” file in the root of the CD.

We at MCS Electronics wish you much fun while experimenting and welcome all your
comments on this and our other products. For additional information or to contact us
please visit our website at www.mcselec.com.

Introduction

I

 6

T

1. Experience
 This chapter describes which skills are preferred if you
 wish to start with the Educational Development Board.

he Educational Development is meant for people who have little or no
experience with the use of microcontrollers. But you should have some
experience with assembling and soldering “electronic kits” , so you can
build your own Educational Development Board. Basic knowledge of

computer usage is needed.

1.1 Hardware requirements

To run Bascom AVR you will need a PC running Windows 95, 98, NT, 2000 or XP. In
this manual we will use the serial port to program the chip. If you don’t have a serial
port you can use an STK200/300 dongle to program the chip or the Wiazania USB
ISP programmer. You can find how to use the STK200/300 dongle and the Wiazania
USB ISP programmer in chapter 4.

1.2 Beware of un-programmed chips!

The ATMega88 microcontroller supplied by MCS Electronics has already been
programmed to enable serial programming. If you (accidentally) erase the chip or if you
buy a new one, you will need to (re)program it with the STK200/300 dongle or the
Wiazania USB ISP programmer you can find the procedure to do this in chapter 4.

Chapter

1

 7

P
2. Getting started
 This chapter explains how to get started with your EDB.

lease take the paragraphs in chapter 2 step by step. Doing so will give
you a smooth way of starting with the experiments of chapter 3 without
any unpleasant surprises.

2.1 Assembling your PCB

Chapter 2.1 will take you thru the assembling of your EDB. Soldering the
components can be done best in the order of the part list found on page 8.

On the PCB you will find pads like this:

When soldering IC’s, the square pad marks pin 1. For LED’s and Capacitors the square
pad marks the positive (+) pole. Here are some drawings that may help you
understand the position of the components:

LED CAPACITOR IC

RECTIFIER

 BOXHEADER

Chapter

2

+ +

+

1 1

1 1

+

+

1

 8

RESISTORS

Resistors don’t have poles so it does not matter which pin is connected to which pad.
However you need to place the right value resistor at the right position on the PCB.
To find the value of a resistor you may want to use an OHM-meter or you can read the
color code that is printed on the resistor.

Color codes for
resistors:

Value
Ring one and two

Value
Ring three multiplier

Black 0 x1
Brown 1 x10

Red 2 x100
Orange 3 x1000
Yellow 4
Green 5
Blue 6

Violet 7
Grey 8
White 9

An example how to read the color code:

The fourth ring is the tolerance ring, gold means that the resistor has a 5% tolerance.

Thus 1000 OHM = 1kOHM

 9

PARTLIST

Component Description Value

R1,R5 RESISTOR 1/4 W 330E
R4 RESISTOR 1/4 W 220E
C3,C4,C9,C10,
C11,C12,C13

CERAMIC CAPACITOR

100N

R2 RESISTOR 2W 47E
U1 IC SOCKET DIP28 for U1
U3 IC SOCKET DIP16 for U3
U4 VOLTAGE REGULATOR 7805
R3 POTENTIOMETER 10K
G1 BRIDGE RECTIFIER
D1,D2,D3 LED 3mm
X15 SW. UART FEM. HEADER 1x2
X5,X6, X7 FEMALE HEADER HDR2X5
X3,X4 FEMALE HEADER HDR1X24
X12 FEMALE HEADER LCD HDR1X16
X13 USB CONNECTOR B TYPE FEMALE
X9 ISP HEADER BOXHDR 10
X1

POWER

POWER
CONNECTOR

C5,C6,C7,C8 ELCO RADIAL 1U
C2 ELCO RADIAL 100U
C1 ELCO RADIAL 220U
RESET RESET SWITCH SW_SPST
X16 DB9 CONNECTOR FEMALE DB9FL
X2 POWER SCREW HEADER
X10 PS2 KEYBOARD MINIDIN6
S1 USB/UART SWITCH SWITCH
- BREAD BOARD 7x7 CM

Do not solder these yet:
1x ATMega88 (U1) + 1x USB MODULE SDM-USB-QS1-S (U2)

 10

ADVISEMENT

We advise you to use IC sockets rather than soldering the IC’s directly to the PCB.
You may want to use low quality IC sockets for the ATMega88, since it is easier to
(re-) insert IC’s into low quality sockets then into high quality (turned) sockets.

The USB module can only be soldered directly, do not solder it yet.
Also do not insert the IC’s and display at this time.

POWER OPTIONS

There are two power options, you can apply an external power supply on X2 or an
adapter to X1. You can also use the EDB USB-BUS powered, you then have to
solder a wire into X14 USB power. BEWARE if you use USB-BUS power you
may not place U4 LM7805 and you may not apply power to X1 and/or X2.

Beware to draw no to much amps from the USB-BUS. (MCS Electronics cannot
be held responsible for damage to your computer due to USB-BUS power issues.)

BOARD LAYOUT

To find the right position of the components you may want to reference this
drawing that shows the board layout. It is also printed on the PCB itself and
available (enlarged) in annex 4.

 11

BEFORE YOU CONNECT THE POWER

Once you have soldered all parts, check the PCB for small solder dots between
tracks and remove them.

Measure the resistance between the following pins.
X2.1 and 2.2 should be around 18M OHM
X3 and X4 should be around 2k6.

If you measure a resistance of around 0 OHM you have a short somewhere. Do
not connect the power! Check again for solder dots and check if you placed U4
and G1 right

If you measure infinite ohms you probably have not soldered the connector X2,
X3 or X4 sufficiently. Re-solder the connectors.

It is possible that the values above are a bit different on your EDB, just make sure
you are in a limit of ± 10% of the values mentioned above.

If that worked out fine connect a power supply (or USB power). The (external)
power must be in the range from 9-15 Volt DC. The polarity is not important
since a diode bridge is used.

The power LED should light now. Measure the voltage between pin 2 and 3 of
U4. The measured voltage must be 5V.

If the voltage is not right disconnect the power and check the board.

If the voltage is OK, disconnect the power supply and insert the MAX232 serial
buffer chip. Also insert the ATMega88 and finally solder the USB module

Solder a single male header into the LCD module... you can place the LCD into
connector X12 (just connect the LCD with male header into X12).

 12

2.2 Installing Bascom AVR

To program the ATMega88 microcontroller on the Educational Development
Board you need Bascom AVR. You can choose between a free demo version of
Bascom AVR that can compile up to 4kB of code or you can obtain a full version.
Both versions are available from www.mcselec.com.

Installation procedure for the full version

The full version comes on a CD. Normally it will start automatically if you insert
the disc, if it does not just navigate to your CD-ROM drive and double click
setup.exe. You can now proceed to page 11.

Installation procedure for the demo version

- Download the installation files (bcavrd.zip) from www.mcselec.com.

- In Windows XP you can open ZIP files by default. Make sure you extract all

the files to the same directory. If your cannot open the ZIP files you might
want to install WinZip. (Download at www.winzip.com)
Do not run setup.exe from the ZIP file!

- After extraction you will have a folder containing the setup.exe file.

- Run setup.exe to start the installation.

Proceed to the next page.

 13

 The following window will appear:

Press the Next button.

The following window will appear:

Press the Next button.

 14

 The following window will appear:

Press the YES button

The following window will appear:

You can select a drive and directory. You can also press the Next button for the
default drive and directory. Press the Next button after you have selected the
target installation directory.

 15

 The following window will appear:

In this windows you can select if you would like to make a back up of all files that
will be replaced. Normally there will no files be replaced since they do not exist
yet. But select Yes and click the Next button.

This will make the following window to appear:

 16

You can select in which program group BASCOM will be installed.
Press the Next button after you have selected or entered a program group.

 The following window will appear:

The setup program now knows everything to perform the installation.
Press the Next-button to start the installation.

 17

During installation the window above is shown.

BASCOM-AVR is now ready to use.

When you install BASCOM on Windows NT, Windows 2000 or XP, you will need
Administrator rights during setup. You also need administrator rights the first time
you run BASCOM. After that you can use BASCOM as any user.

 18

2.3 Programming the controller
thru the serial port (Boot loader procedure)

This chapter describes how you can configure Bascom to program the
microcontroller thru the serial port.

The method that programs the controller thru the serial port is called “Boot
loader”. A boot loader is a piece of software that loads your application into
the controller’s memory. (The bootloader itself is also placed in the controllers
memory, but MCS Electronics already took care of that.)

For programming the EDB thru the serial port you can use the serial cable that is
supplied with the KIT. But you may use any straight cable that connects pin 2->2,
pin 3->3, pin4->4 and pin 5->5.

Connect the serial cable to the serial port of the computer and connect the other
end to connector X16 (DB-9) marked “RS-232” on the Educational Development
Board.

In Bascom click on “Options” and “Programmer” now you should see this screen:

● Select the “MCS Bootloader” from the drop down box (A).

● Select the right COM-port and press the OK-button.

A

 19

“Now let’s program the flash”

Before you can program the chip you first need to open and compile the test program.
You can find the test program on the EDB-CD. Open the EDBtest.bas file in
Bascom AVR. (Click “File” > “Open”)

Now open the chip options menu (“Options” > “Compiler” > “Chip”)

You should see this menu:

● Select m88def.dat from the “Chip” drop down menu(A).

● Do not change the other options and press OK

● Now press F7 to compile the test program

● Press F4 to auto program the chip.

If everything went good you should now see a flashing LED on the EDB board.

If you use an ATMega88 that is not provided by MCS Electronics or if you have
changed the fuse bits please read chapter 4.3 before contacting support.

● Do you see D3 (PD7) LED flashing?
If the answer is YES, congratulations! Continue to Chapter 3
If the answer is No, don’t worry... continue to next page.

A

�����������	
��������� ��
����������	
�������������������

����������	�������	����
�����	������������

�������
����	�
���	���	����	������������
�

��	����������� ��� � ��!�
��	
� 	���
���"#����

$���������	���	�������
�����������
��%&������
���

#�"'

���������	
��������	������������	�

���
������	�

�������
����	���������������	����
��
�������

�������

(��
����	���������"�	�)

����������	
�������������������

��������������������������

����������	�������	�������
�������������
������

%*"'�����
��+���,���	��������	�������
	�
���

�	�������-��������

���������������������	������

.� 	������
������*"����
�����	������
�����
��

(��
����	���������"�	�)

����������	
��

$�����
����	�
����	��
����	�
��������
	��/0�%(
���	�������1234�	��
���

����56��67+�1�34'��+����	�
���	������"���	�������8�"#����
�9�1���:���

#���	�������;��	��:�������	��������	����4����

������	����	���������� !

+����	 �	���
��	������ ���
��	
������	��
�����	�
��������
	��	��4����

.�������	���/0���
������1234�

������������������������������������

(��/0���	��������
��	����	������������	�
��	 �������	���	��:$!��

�	�����������
���:$!��	����	�
<�	������	
������� 	���
�� ����������
��

������������������������������� !"#

(���	���������	����
������
�	����������
	�
�����!�����	����
��
��(��

����	�
����� ����
	�������	�=��������
	�������	�
���	���������	�
��(��

��	�
����� 	���
�����	�
��(���	
���	�
����������/0�

����������	�����
�����!�	�����	���	����
����

��������

67

67

67

����������	
���������������

:������������
���
��������	��
�	��%����"�	���	��
�����	���

�	����
���
	��	�������-�����������
���#�"'�	��
����	��	�����

�	 �	���
��	��
���:$!�

/"�>9�5+���02

/��>9��5?#�#

���>9����

$4@�A@�1@�2�>9�"�B���$7

���������	���������	��������������

(���	��������������	����	 �	���
�@��������
�� ��(��
���

	����

�	������	
�����
��� 	���
����	 �	���
����������
�

��������
��

(��
����	���������"�	�)

C�&

(��
����	���������"�	�)

67

&	���@�
�����	��� ��	������������
�����	
�

����	�������
��
����
�	������		
����

�����������	
��������������������
�����

�������������������
���
��
����������
���

��������������)

.�
���
����
����	�����
���#��

�	����	�� ����
���5+����

C�&

C�&

C�&

����$�%���������������������&�������	
�

D����	����	�� ���
���5+����������������

������
���#��)��(���	�������	
��������	�
�
��	��

(���	����
�!��	 ����	�E

'(���)������)����&��$���*+

:������������	���������������������7D��

 �
����$	����
�	�����	�����������#�>9�����#@�

������>9������@����0�>9�����0��������4�
	�����4��(��

�����	����
�	�������	
� ������
	���
�� �

��������	��������

$���������	������
�������
��������	�
�	���	���:$

5����	��������!��	 ���������
���#�������

(���	�����	
��	 �����
���
��
���	�� ��	���	���

��������!
��
�����������	 ����� ��������	

6	����
���
	���	�� �
�������������$��
���#����

67

��������������)

67

&	���@�
�����	��� ��	������������
�����	
�

����	�������
��
����
�	������		
����

�����������	
���������
���������
�����

�������������������
���
��
����������
���

$	���
��
�	��F

+�����	��� �����	������	������	��

�	�
�����
	����
�����

C�&

C�&

��������	
��������

 21

3. Experiments

 This chapter will teach you the elements of electronics and
 microcontrollers.

ow you have assembled and tested your Educational Development Board,
you can start experimenting. The experiments follow up in a logical,
constructive order which will keep you encouraged to continue to the next

experiment.

The experiments are placed in these subcategories,

● Basic I/O

● Serial communication with the UART

● Display output (LCD, 7 segment)

● Keyboard input (PS/2, Matrix, RC5 remote control)

● Advanced I/O

● A/D conversion

● Other controller features

● Other interfaces (I²C, USB)

● Motors

Chapter

3
N

 22

BREAD BOARD

A bread board is used to make solder less connections between components and wires
in an experimental stage. You can use it to build the experiments. If you haven’t used
one before, take a look at this drawing that shows the internal connections of the bread
board.

The copper colored areas show the internal connections of the board. You can insert
all components with a 2,54 mm spacing between the pins. Use wires between 0,3 and
0,8 mm in diameter. Never force wires or components into the board.

 DANGER! RISK OF SERIOUS INGURIES
OR DEATH

 The bread board is not suitable for
connections on/to the electricity net.

Never connect the electricity net to the bread board

 23

3.1 Basic I/O Experiments

I/O means “input and output”. Inputs are usually connected to input pins of a
microcontroller while output usually is connected to output pins. (A bidirectional
pin of you’re microcontroller can be configured as input or output.) I/O can
present itself in many ways the easiest forms are a LED output and a switch input.

3.1.1 LED output, switch input

Part list Goals
1x Resistor 1k - Understanding basic
1x Resistor 330E input and output
1x LED (I/O)
1x Switch or a wire
6x Bread board wires

ow let’s build the circuit shown below. It shows how to connect a switch
and a LED to your microcontroller. If you don’t have a switch you can
also use a plain wire. There is also a suggested breadboard set up.

N

Experiment

1

 24

You can also use a switch supplied by MCS Electronics the board would then look
like this:

Now open the EDBexperiment1.bas file from the EDB-CD.
It looks like this:

Program this code in your controller just as you did with the test program from
chapter 2.3 (Under “Now let’s program the flash”). Test the functionality of this experiment by
pressing the switch. (The led should light up if you keep the switch down)

 25

3.1.2 Shifting LED’s

Part list Goals
8x Resistor 330E - Understanding the rotate statement,
8x LED - Understanding basic (I/O)
9x Bread board wires

nother example of basic I/O, a rotate operation.

A suggested bread board set up:

A

Experiment

2

You don’t have to place any

connections to ground.
The ground will be supplied

thru the controller.

 26

Now open the EDBexperiment2.bas file from the EDB-CD.
It looks like this:

Program this code in your controller just as you did with the test program from
chapter 2.3 (Under “Now let’s program the flash”). You now see one led moving from the left
to the right over your bread board.

Change the line:

Rotate Portd , Right , 1
into:
Rotate Portd , Right , 2

Can you describe the difference?

Now find out yourself how to change the direction of the rotating LED’s from right to
left. You can find help by moving the cursor to the rotate statement and pressing F1.

 27

3.1.3a Output with transistor or FET

Part list Goals
1x BC547 NPN transistor - Basic understanding of the electrical
1x LED properties of the microcontroller
5x Bread board wires - Basic transistor and FET usage
1x Resistor 330, 47k ohm

xperiments 1 and 2 use “direct I/O” that means we directly connect the
switch/LED to the controller. A simple solution but there are dis-
advantages. First of all you cannot draw much current from the micro-

controller port pins. Secondly direct I/O brings risks of damaging the controller
by electro static discharge (ESD). (ESD is discussed briefly in chapter 3.1.5.

The current drawn from a microcontroller pin may not exceed specific values.
These values can be found in the ATMega88 datasheet available from
www.atmel.com. The currents can be found under “Electrical Characteristics”.
An example of the Electrical Characteristics can be found on the next page.

First note the table titled “Absolute Maximum Ratings” the values in this table
are as said Absolute Maximum, that means that if you stay below this values the
device will not be damaged. It does not say anything about the functionality of your
application. (So if you draw 40 milliamps from one port pin, Atmel guarantees that
you will not destroy the controller. Atmel does not guarantee the functionality of
the device while you draw that 40 milliamps)

What currents can you draw?
If you draw current from a pin that is at 0V level:
1. The sum of all pins for ports C0 - C5, ADC7, ADC6
 should not exceed 100 mA.
2. The sum of all pins, for ports B0 - B5, D5 - D7, XTAL1, XTAL2
 should not exceed 100 mA.
3. The sum of all pins, for ports D0 - D4, RESET should not exceed 100 mA.

If you draw current from a pin that is at 5V level:
1. The sum of all pins, for ports C0 - C5, D0- D4, ADC7, RESET
 should not exceed 150 mA.
2. The sum of all pins, for ports B0 - B5, D5 - D7, ADC6, XTAL1, XTAL2
 should not exceed 150 mA.
All this with a total current of 200mA for the entire device (Absolute Max.)

Please refer to the latest datasheet for the full characteristics. And also since the
values mentioned above were derived from a preliminary datasheet.

E

Experiment

3a

Theory

 28

 29

You can use a transistor if you want to draw more current than can be supplied by
the controller. The drawing below shows how to use a transistor as switch.

Open the EDBexperiment3.bas file from the EDB-CD and program it into the
ATMega88.

Online resources:
BC547: http://www.fairchildsemi.com/pf/BC/BC547.html
ATMega88: http://www.atmel.com/dyn/products/product_card.asp?part_id=3302

BC547

 30

3.1.3b Output with FET

Part list Goals
1x BS170 N-channel enh. FET - Basic FET usage
1x LED
5x Bread board wires
1x Resistor 330, 47k ohm

sing a MOSFET instead of a “classic” BC547 transistor has some
advantages. A MOSFET can give more power and has a gate
current close to 0 mA.

This drawing shows a way to connect a FET to your microcontroller.

If you programmed the ATMega88 in experiment 3a you don’t have to reprogram
it. If you did not, open EDBexperiment3.bas from the EDB-CD and program it
into the ATMega88. Do not remove the components from the board.

Online resources:
BS170: http://www.fairchildsemi.com/pf/BS/BS170.html

U

Experiment

3b

BS170

 31

3.1.3c Output with relay

Part list Goals
1x BS170 N-channel enh. FET - Learning how/why to use a relay
1x Relay (Schrack PE014-005)
7x Bread board wires
1x Resistor 1k ohm
1x Diode 1N4148

OSFET’s and transistors are both semiconductors. The ones you have
used in the passed experiments can only switch DC. You can use a relay
if you want a potential free contact. That also gives you the possibility to

switch AC and/or currents from the electricity net.

You need a FET to switch the relay...

If you programmed the ATMega88 in experiment 3a or 3b
you don’t have to reprogram it. If you did not, open
EDBexperiment3.bas from the EDB-CD and program it into
the ATMega88.

Online resources:
Relay: http://relays.tycoelectronics.com/

M

Experiment

3c

1N4148

K

A

Example of a Relay
But beware there are many
different types!

 NEVER connect
the electricity net
to the Bread Board

 32

3.1.4 Output with a ULN2803

Part list Goals
1x ULN2803 or equivalent - Learning how to use an ULN2803
2x LED
7x Bread board wires
2x Resistor 330E

n a lot of applications just one output doesn’t do the job. Imagine the bunch
of components you would need if you wanted 7 or 8 transistor outputs! (See
chapter 3.1.3a) Not only would that be expensive it would also be unreliable.

To solve this issue you can buy transistor arrays in DIL package. The ULN2803
has 8 build in “ports” that you can use for currents up to 30 mA per pin.

I

Experiment

4

8x
 B
C

 33

Build the drawing shown below:

Open the EDBexperiment4.bas file from the EDB-CD and program it into the
ATMega88.

In this experiment we have only connected 2 ports of the ULN2803. Of course it is
possible to connect 8 LED’s. You could also connect relays, make sure not to draw to
much amps. Refer to the datasheet for more information.

Online resources:
ULN2803: http://focus.ti.com/docs/prod/folders/print/uln2803a.htm

 34

3.1.5 I/O with Opto coupler

Part list Goals
1x PC817 or SFH601 or equivalent - Learning how/why to use an Opto-
1x LED Coupler
7x Bread board wires - Knowing the existence of ESD
1x Resistor 330E, 820E

f you ever got a spark when touching something or someone, you have
experienced electro static discharge(ESD). Semiconductors are very sensitive
for damage due to ESD. ESD is not only formed by human beings and it

cannot always be seen or felt.

Designing ESD-proof electronics is not easy and it lays far beyond the scope of
this manual. However we will show you how to obtain galvanic isolation with an
opto-coupler.

An opto-coupler is a special transistor that has a build in LED. The transistor does
not need a BASE pin. If a current flows thru the LED, the light emitted by the
LED will create the BASE current that normally is applied thru the BASE pin of a
normal transistor. Creating a situation that can be seen here:

There are also types that do have a BASE pin, in that case you can use the
transistor using the LED and/or the BASE pin, like this:

I

Experiment

5

Theory
ESD

 35

For this experiment you can use the PC817 or the SFH601 or another opto-
coupler. Let’s say you use the PC817 take a look a the datasheet that can be found
on the EDB-CD. Check figure 4, it shows which current needs to be applied.

To be safe you better apply a current of about 5mA. Let’s say that the voltage
falling over the LED is 1,3V (Forward Voltage) and the VCC level is 5V the
voltage over Rd should be 5-1,3= 3,7V. Then Rd should be Rd = 3,7V / 5mA =
740 OHM.

740 OHM is not a value that can be found in the E24 resistor array. The nearest
value is 820. That would give us a current of 4,5 mA which is 120% thus OK.

Online resources:
SFH601: http://www.vishay.com/optocouplers/list/product-83663/

 36

Open the EDBexperiment3.bas file from the EDB-CD and program it into the
ATMega88.

As you can see the LED flashes again. ESD can occur thru all sorts of conducting
material. So in the drawing above the PD1 pin is secure. But ESD can also come
thru the GND and + lines and destroy the controller anyway. To prevent this you
have to make full galvanic isolation like this:

‘Just take a look at it, you don’t really have to build this now.

The same principle can
be used to secure inputs.

PC817

 37

3.2 UART Data communication

e have now seen Basic I/O that’s solves a lot of simple problems for us.
We can let a user press a key and confirm a key press with a LED. But
what if we would like a user to enter his name and then display his

name?

This chapter tells you the most popular way of data communication in the world
of microcontrollers.

3.2.1 The UART

Part list Goals
1x RS232 cable - Learning how to use the serial
1x Computer with COM port connection

UART means Universal Asynchronous Receiver and
Transmitter. You can use a UART to send and receive data
between your PC and your EDB.

A UART looks a lot like the COM-port on the back of your computer. The big
difference is that your COM-port uses RS232/V24 signal levels (+15 and -15V)
while the UART uses TTL levels (5V) or LVTTL (3V or less). To make the UART
work with the PC we use a MAX232 level shifter (U3). The MAX232 is an IC that
generates voltages used to communicate with the computers COM-port.

For this experiment you need to connect a straight serial cable between X16 (the
DB-9 connector marked “RS-232”) on the EDB and the COM-port on your PC.

At least the cable should connect
 pin2 to pin2,
 pin3 to pin3
 pin4 to pin4 and
 pin5 to pin5.
Make sure switch “S1 USB/RS232” on the EDB is set to RS232.

After you have connected the cable start Bascom AVR and open the Bascom

build-in Terminal emulator by clicking on .

W

 Theory

Experiment

6a

 38

You should see this:

Click “Terminal” and “Settings”

Select the COM port you have used on your PC and select 19200 for baud rate.

If you have a PC without a COM port you can buy an USB to Serial adaptor and use
that as a virtual com port.

Close the terminal emulator window.

 39

As said, we use a UART to send and receive data between the on board
microcontroller and the PC. Let’s define de direction of data as follows:

Seen from the EDB:
Send data means -> data from the EDB to the PC and
Receive data means -> data from the PC to the EDB.

Basically the data looks the same, but we need to be specific so you can
understand what we mean. The data can be variables, register values, constants
(Text or numbers) or results of calculations. You can also let the controller print a
line to show what routines of your program-code is being executed in debug-
phase.

Data can also been send from keyboards allowing an end user to enter messages or
use a menu. We will explain later.

Experiment 6a

Open the EDBexperiment6a.bas file from the EDB-CD and program it into the
ATMega88. Please read the remarks that can be found in the
EDBexperiment6a.bas file they tell you how to initialize and use the UART.

After you have programmed the controller and connected the serial cable, open

the terminal emulator by clicking on in Bascom.

You should see the EDBexperiment6a.bas program printing “Hello World” to the
screen of your PC like this:

 40

Experiment 6b

Make sure switch “S1 USB/RS232” on the EDB is set to RS232.
Open the EDBexperiment6b.bas file from the EDB-CD and program it into the
ATMega88. After you have programmed the controller and you connected the

serial cable, open the terminal emulator by clicking on in Bascom.

Follow the instructions that are given on the screen by the EDBexperiment6b.bas
program:

Please note that with an RS232 connection you can also connect PC’s to PC’s and
microcontrollers to microcontrollers.

Please read some more theory on the next page.

Online resources:
UART Hardware
MAX232: http://www.maxim-ic.com/quick_view2.cfm/qv_pk/1798

Experiment

6b

 41

ASCII

As you could have seen in the EDBexperiment6b.bas file we use the PRINT
statement to send something to the UART. Actually we do not send just text.
We send ASCII characters. ASCII means American Standard Code for
Information Interchange. Basically ASCII is a list of 127 characters.

ASCII Table (Incomplete)

Decimal Hex Binary Value
------- --- ------ -----
 000 000 00000000 NUL (Null char.)
 008 008 00001000 BS (Backspace)
 009 009 00001001 HT (Horizontal Tab)
 010 00A 00001010 LF (Line Feed)
 012 00C 00001100 FF (Form Feed)
 013 00D 00001101 CR (Carriage Return)
 048 030 00110000 0
 049 031 00110001 1
 052 034 00110100 4
 065 041 01000001 A
 066 042 01000010 B
 067 043 01000011 C

You can find a complete ASCII table in Annex 2.

CARRIAGE RETURN (CR) AND LINE FEED (LF)

As you could have seen in the EDBexperiment6b.bas file we use the PRINT
statement to send something to the UART. You can also see that a second print
statement always prints the printed text to the following line. This is caused by the
fact that the print statement always adds the CR and LF characters.

Basically if we state:
Print “ABC”
We send 65 66 67 13 10 to the UART. (In binary format)

The carriage return character (13) returns the cursor back to column position 0 of
the current line. The line feed (10) moves the cursor to the next line.

Print “ABC” ;
When we type a semicolon (;) at the end of the line...
Bascom does not send a carriage return/line feed, so you can print another text
after the ABC on the same line.

Print “ABC” ; Chr(13) ;
This would send only ABC CR. The next print would overwrite the ABC.

Theory
continued

 42

3.2.2 The Software UART

Part list Goals
1x RS232 cable - Learning how to use the software
1x Computer with COM port UART

The previous examples used the hardware UART. That means the compiler uses
the internal UART registers and internal hardware (portd.0 and portd.1) of the
ATMega88. Sometimes we want to use more than one UART or we wish to use
both USB and RS232. (USB is explained in chapter 3.8.2 and further.)

The Bascom compiler makes it easy to “create” additional UART’s. Bascom
creates software UART’s that can be created on virtually every port pin.

Make sure switch “S1 USB/RS232” on the EDB is set to USB.
We will not use an USB interface now, but if the switch is set to USB the hardware
UART pins portd.0 and portd.1 are disconnected from the MAX232 level shifter.

With S1 set to USB the level shifter is situated like this:

Experiment

6c

 43

What we now have to do is connect the port pins we like to use as software UART
to X15.

Connect the X15 pin that is closest to S1 to portc.1.
Connect the other pin of X15 to portc.2.

Note: if you use the bootloader to program your EDB, you will have to set switch
S1 (USB/RS232) to RS232 while programming and you will have to set it back to
USB to test the software UART. (Press the reset button after you switched to
USB, that way you will not miss messages in the terminal window)

Open the EDBexperiment6c.bas file from the EDB-CD and program it into the
ATMega88. Please read the remarks that can be found in the
EDBexperiment6c.bas file they tell you how to initialize and use the software
UART.

After you have programmed the controller and you connected the serial cable,

open the terminal emulator by clicking on in Bascom.

You should see the EDBexperiment6c.bas program asking for an alphanumerical
input, and it should print the input back to the terminal.

 44

3.3 Display output

ot always we want to use a PC to display something. Let’s for instance say
you just wanted to print only a couple of lines. For that purpose we have
a way better solution, an LCD display.

3.3.1 HD44780 LCD

Part list Goals
1x HD44780 LCD - Learning how to use an LCD
1x Computer with COM port display

Open the EDBexperiment7.bas file from the EDB-CD and program it into the
ATMega88. Please read the remarks that can be found in the
EDBexperiment7.bas file they tell you how to initialize and use the LCD.

Make sure you have placed the LCD to connector X12 on the EDB.

After you placed and programmed your chip you should see the “Hello World”
message again on your LCD display.

Also try the real hardware simulator for this program. Make sure you still have

opened the EDBexperiment7.bas file. Click on in Bascom.

Then click in the AVR simulator window. Now click the play and “step-into-
code” buttons. (a couple of times) You should the see:

Online resources:
Hitachi Semi is now Renesas
LCD manufacturer: http://www.renesas.com/
LCD background: http://home.iae.nl/users/pouweha/lcd/lcd.shtml

N

Experiment

7

 45

Exercise

The best way of learning controllers is to do it yourself. Create a program that ask
for “Your name” via the UART but then display the name on the LCD instead of
on the computer screen. (Solution can be found on the EDB-CD Exercise1.bas)

Exercise

1

 46

3.3.2 7 segment display

Part list Goals
1x 7 Segment display - Learning how to use an 7-segment
 (Common Anode SL119-OS516HWA) display
 Conrad 146536 or equiv
8x Bread board wires

There are 2 disadvantages if you use an LCD, first they can be expensive and
second they are not as robust as the good old LED. If you only need to display
one character. You can use a 7 segment display.

A 7 segment display is nothing more then some LED’s, molded in to a plastic case
in a way the LED’s can form a character if you switch them on or off. They come
in 2 types generally. Common anode and common cathode.

Common anode displays have a common POSITIVE pole, that means you will
have to supply VCC to the common pin. And your controller needs to apply a
0V/GND signal to light a LED.

Common cathode displays have a common NEGATIVE pole, that means you will
have to supply 0V/GND to the common pin. And your controller needs to apply
a +5V/VCC signal to light a LED.

Common anode is used most because microcontrollers can switch more current to
the ground then to VCC.

Online resources:
Application note for multiple 7 segment displays:
http://www.maxim-ic.com/appnotes.cfm/appnote_number/3210

Experiment

8

 47

Build the drawing below:

Open the EDBexperiment8.bas file from the EDB-CD and program it into the
ATMega88. After programming you should see a hexadecimal counter on the
display. (0....9 A....F)

Please read the remarks that can be found in the EDBexperiment8.bas file.
Check if understand the Data and Read statements.

The pin outs are
available in Annex 3

 48

3.4 Keyboard input

t would be nice if we could connect a PS2 or AT keyboard directly to our
microcontroller instead of connecting it to our PC. (and then read the keys
thru the UART.) In this chapter you will see that interfacing a keyboard is easy

with the EDB and Bascom.

3.4.1 PS2 or AT Keyboard

Part list Goals
1x HD44780 LCD - Learning how to connect a
1x PS2 or AT keyboard PS2 or AT Keyboard
1x Optional a PC with COM port

The EDB has already been provided with a standard PS2 interface. That means
you can directly connect a standard PS2 keyboard to X10 (marked PS2) on the
EDB. You can also connect an older AT keyboard, but if you decide to do so, you
will need an adapter that converts your DIN42524 connector to mini DIN PS2.

The drawing below shows you the interface and the pin-outs of the DIN
connectors that can be found on your keyboard.

Keyboard interface Pin-outs

Source: Atmel Application Note “AVR313: Interfacing the PC AT Keyboard”

Online resources:
Atmel Application notes:
http://www.atmel.com/dyn/products/app_notes.asp?family_id=607

I

Experiment

9

 49

Connect your keyboard, see the drawing above and connect the CLK to PD.7 and
DAT to PD.0. Then open and program the EDBexperiment9.bas file.

Now type some text on your keyboard and press enter, your text should now show
on the LCD.

Keyboard here

Leave
Bread board

empty

 50

3.4.2 Matrix keyboard

Part list Goals
1x Matrix Keyboard - Learning how to connect a
 Conrad 709840 matrix keyboard
1x Computer with COM port
8x Resistor 470E

The ATmega88 AVR is (at the time of writing this manual) on of the most recent
devices in the AVR family. In addition to the regular AVR features it has more
interrupt sources than its predecessors. As you will see throughout this
experiment a matrix keyboard is a keyboard with 16 or 9 switches. Connected to
the AVR like this:

 Source: Bascom Help

As you can see there are only 8 I/O lines to detect 16 keys. There are 2 ways of
checking whether a user has pressed a key. The first way is polling, that means we
continuously let the software check for a key press. (A do...loop structure) The
problem with this option is, that your controller can’t perform much additional
tasks while checking the matrix..

The second way is using interrupts. As said almost every pin on the ATMega88
can be selected as interrupt source. When using interrupts the “matrix read’
routine is only executed after a user has pressed a key. (Typically the “matrix read’
routine inside the interrupt routine is the same as when we used polling, only with
the use of interrupts we will only execute the “read matrix” routine once per
interrupt/key press.)

Brief general explanation of interrupts on the next page.

Experiment

10

Theory

 51

INTERRUPTS

An interrupt is an event that stops the execution of your program and jumps to a
certain interrupt routine. Interrupts can be triggered from I/O pins but also the
UART RxD pin and the Timers/Counters can generate interrupts.

After an interrupt is handled your program will continue at the statement that
should have been executed if no interrupt was generated.

You can use interrupts if you wish to add priority to certain tasks in your system.

We will not give a suggested bread board set up for this experiment, because the
matrix does not fit on the bread board. You will have to make the connections as
you could see on the previous page.

Connect Pin1 of the matrix with a resistor of 470 Ohms to portb.0,
Connect Pin2 of the matrix with a resistor of 470 Ohms to portb.1, etc, etc...

Now program the ATMega88 with EDBexperiment10.bas and connect the serial
cable between your EDB and your computer.

You should be able to read the value 16 in your terminal, if you press a key you
should see the value change to a value < 16.

Read the remarks in the EDBexperiment10.bas file and see if you understand the
Getkbd statement and the way we initialize and use the interrupts.

This experiment can only be carried out if you use Bascom version 1.11.8.1
or higher.

See also the EDBexperiment10polling.bas that also reads the matrix keyboard, but
without interrupts. Check if you understand the difference between both ways.

If you use an older version of Bascom you can download a more recent demo
version from www.mcselec.com or you can use the polling matrix example
EDBexperiment10polling.bas.

 52

3.4.3 Remote control with RC5

Part list Goals
1x TSOP1736 or equivalent - Learning how to use
1x Computer with COM port an RC5 remote control
1x RC5 Remote control

It can be discussed whether a “remote control” chapter belongs inside the
“keyboard input” section. Anyway we can use a remote control as input device.

Nowadays every household has dozens of remote controls. Some of these remote
controls use the RC5 protocol. The RC5 protocol is integrated in Bascom AVR.
Therefore remote control functionality can easily be added to the EDB.

If you like to know more about the RC5 protocol, check this application note
provided by Philips:

http://www.semiconductors.philips.com/acrobat_download/applicationnotes/AN10210_2.pdf

The TSOP1736 module is an infra red receiver module, this drawing shows a
standard interface for the TSOP1736.

Source: Vishay Semiconductors

(The TSAL diode is inside the remote control)

You can also use a different infra red receiver module (such as the SFH506 or the
SFH 5110-36). If you use another one make sure to check the pin outs before
connecting the module to the EDB.

Experiment

11

GND VCC OUT
TSOP1736

VCC = +5V

 53

A suggested bread board lay out for this experiment

What you now have to do is search for an RC5 remote control. Most Philips
remote controls use the RC5 protocol but also most universal remote controls can
use the RC5 protocol.

After you found an RC5 remote control or if you are in doubt, open en program
the EDBexperiment11.bas file. Connect the serial cable between your EDB and
your PC. Then aim with your remote control at the spherical side of the Infra Red
receiver module. If you press a key on your remote, you should be able to see
numeric values on your computer screen. (terminal window)

This experiment can only be carried out if you use Bascom version 1.11.8.1
or higher.

Read the remarks in the EDBexperiment11.bas file and see if you understand what
happens.

Online resources:
Background on RC5: http://www.clearwater.com.au/rc5/
 http://www.epanorama.net/links/irremote.html

 54

3.5 Advanced I/O

e will now discuss some more advanced I/O questions that cannot
easily been understood if we did not use the UART. (Hence the order of
the chapters.) In chapter 3.5.1 we will first see that switches are not

ideal, further on we will see how to detect the wiper position of a potentiometer
and how to use an LDR to detect the dark. We will end this chapter generating
tones with a speaker.

3.5.1 Counter with anti bounce input

Part list Goals
1x LED - Learning about non-ideal switches
1x Switch or a wire - Anti bounce by use of software
6x Bread board wires
1x Resistor 330E, 1k

Switches are not ideal. That means that if you connect a switch to a
microcontroller as you did in experiment 1... you could get a non accurate
program. That is not a big problem if you connect a LED, but it can be a problem
if you want to make a counter.

Let’s rebuild the schematic of experiment 1:

W

Experiment

12

 55

Program the ATMega88 with EDBexperiment12a.bas and connect the serial cable
between your EDB and your computer.

The EDBexperiment12a.bas program “counts” the number of times you make
contact with the switch. You can see the count in your terminal window. If you are
lucky you will see the program count once every time you make contact.

Now replace the switch with a plain wire and then close and open the contact
(wire) a couple of times and observe the counter. As you can see this gives an
inadequate count. That is it counts correct but sometimes it counts multiple times
for each time you make contact.

What happens is this; every time you make contact the contact will not directly be
stable. In other words it bounces like this:

 5V

0

This is called bounce effect. The contact will become stable in milliseconds, but the
microcontroller runs on about 8 MHz giving it the possibility to detect falling and
rising edges in times of microseconds. If you press the switch in the situation
above, the controller would count 4 instead of one.

The solution is to create a dead time in which the controller does not notice
changes in the voltage level. Creating dead time can easily be done by adding a
“Waitms 100” just after the line where you ask the controller for the input.

You can now program the EDBExperiment12b.bas file into the microcontroller,
check the remarks and take notice of the “Waitms 100” line. If your controller still
counts inadequate you can change the value of the Waitms statement in 250.

Adding the “Waitms” statement to provide accurate input counts is called
“software anti bounce protection”

 56

3.5.2 The GetRC Statement

Part list Goals
1x Ceramic capacitor 100nF - Learning the GetRC statement
1x Potentiometer 10k
7x Bread board wires

The GetRC statement in Bascom gives us the possibility to read a potentiometers
wiper position. It can only be used if no accuracy is needed.

Build the drawing shown below:

The text on the capacitor shows the value in pico Farad.

So 100 nF = 100000 pF. The last digit found on the capacitor is the
number of ‘0’ ’s. (So 104 on the capacitor = 100000 pF = 100 nF)

The potentiometer does not fit on some bread boards, if it does not, you will have
to solder 0,5mm wires to the potentiometer before you are able to connect it.

Program the ATMega88 with EDBexperiment13.bas and connect the serial cable
between your EDB and your computer. You should be able to read values in your
terminal, you should be able to change the values by turning the potentiometer.
Read the remarks in the EDBexperiment13.bas file and see if you understand what
happens.

Experiment

13

100 nF CAP
”104”

 57

3.5.3 Siren with the SOUND statement

Part list Goals
1x Speaker RS267-6968 or equiv. - Learning the SOUND statement
1x Elco ≈ 100uF
1x Resistor 120E
7x Bread board wires

The SOUND statement gives you the possibility to generate various tones with a
speaker. It’s ideal if you have an application in which you want to prompt the user
specific situations. (OK or Error beep etc.) The SOUND statement is not meant
to generate accurate frequencies, use a timer (Chapter 3.7.3) if you wish to do that.

For this experiment you can use an ELCO of about 100uF (but 47uF, 220uF will
work as well) You can use an old PC speaker or you can order RS 267-6968. In
most cases the speaker cannot be placed on the bread board so you will have to
solder a wire to the speaker. Use a massive copper wire of about 0,5 mm.

Build the drawing shown below:

Program the ATMega88 with EDBexperiment14.bas and see if you understand the
program code. You should here a siren alarm.

Experiment

14

 58

3.6 AD and DA conversion

lthough microcontrollers are digital, they can perform analog to digital
conversion and digital to analog conversion. This gives you the possibility
of measuring analog signals. But also to create “analog” outputs. This

chapter learns you how to convert and create analog signals.

3.6.1 PWM output

Part list Goals
1x MOSFET IRF520 or equiv. - Learning about PWM
1x Light bulb 6V
6x Bread board wires

PWM is a form of digital output, however we can use it as analog output.

PWM signals are digital DC signals that look like this:

Imagine that we apply a signal like this to a light bulb. If we now increase time t
the average voltage on the bulb will also increase. We choose time T so that we
cannot see the light flashing. So it looks like if the bulb was controlled analog.

If you use something else then a light bulb, adding a capacitor to the PWM output
is usually enough to create the analog signal.

The system described above is called Pulse Width Modulation (PWM). PWM is
integrated on most AVR devices and it is supported by Bascom.

This experiment will show an example of PWM.

A

Experiment

15a

 59

Build the drawing shown below:

The components do not fit on the breadboard so you may have to solder some
wires.

Program the ATMega88 with EDBexperiment15a.bas and connect the serial cable
between your EDB and your computer.

The light produced by the light bulb should vary and you should be able to read
the PWM values in your terminal.

Read the remarks in the EDBexperiment15a.bas file and see if you understand
what happens. The EDBexperiment15a.bas program uses a timer, we will tell you
more about timers in chapter 3.7.3.

Online resources:
PWM Background: http://www.netrino.com/Publications/Glossary/PWM.html
 http://www.4qdtec.com/pwm-01.html

IRF520:_http://ec.irf.com/v6/en/US/adirect/ir?cmd=catProductDetailFrame&p
roductID=IRF520

 60

3.6.2 AD conversion with LDR

Part list Goals
1x LDR NSL19-MS51 - Learning how to use the AD
 RS596-141 converter
1x Computer with COM port
2x Resistor 2k2 - Learning about LDR’s

This chapter shows an AD conversion application, and prepares you for exercise 2
“the LDR light switch”.

LDR’s are Light Dependant Resistors, that means that the resistor value of an
LDR is influenced by the amount of light falling on the LDR. For this experiment
most LDR’s can be used.

The LDR NSL19-MS51 has a resistance of 5k in daylight (without bright sun). A
resistance of 1M2 in twilight and a resistance of >35M in complete darkness. For
this experiment most types of LDR’s can be used. If you use another type you will
read different values in your terminal.

First build the drawing below:

Experiment

15b

Connect LDR
to port C !

 61

Program the ATMega88 with EDBexperiment15b.bas and connect the serial cable
between your EDB and your computer.

You should be able to read values in your terminal, you should be able to change
the values by holding you hand above the LDR or shine on it with a flashlight.

Read the remarks in the EDBexperiment15b.bas file and see if you understand
what happens.

> Connect PC1 to ground and observe, then connect PC1 to VCC = +5V and
observe.

Online resources:
LDR Background: http://www.radio-electronics.com/info/data/resistor/ldr/
light_dependent_resistor.php

http://www.technologystudent.com/elec1/ldr1.htm

 62

Exercise 2, LDR light switch

Test your knowledge of the previous chapters by building this exercise.

Build an LDR Light switch,

● Connect a LED or a light-bulb (such as you can find in your bicycle) to your
 microcontroller. Make sure not to connect it directly, use a BS170 to switch
 the relative large current.

● If you have connected your bulb check if you can switch it on and off with a
 simple program such as you have seen in experiment 1.

● Now use the LDR from the previous chapter, and switch the light bulb on when
 it gets dark and switch it off when it is not dark. If you succeeded,
 congratulations!! If not, you may want to take a look at the solution of this
 exercise . It can be found on the EDB-CD filename: Exercise2.bas.

Exercise

2

 63

3.6.3 Low cost voltmeter

Part list Goals
1x Computer with COM port - Learning how to use the AD
1x Resistor 1k2, 3k9 converter
1x Potentiometer 10k - Learning an AD Application
1x Voltmeter

If you observed the AD values in your terminal in experiment 15, you could have
found that a voltage of 0V gives an AD value of around 0 and a voltage of 5V
gives a value of around 1024. Actually AD value 1024 is already reached at voltage
level 1,1V.

Now let’s build a voltmeter for voltages between 0 and about
5,0V with a 0,1V resolution.

Since we can only measure 1,1V we need to add a couple of
resistors as voltage dividers. This way we let a voltage of 1V
measured by the controller represent a 5V input signal.

The drawing on the left side of this page, shows which
resistors you could use for the voltage divider.

The conclusion is that we have to divide 1024 thru 11
(1024/11) this equals 93,09. It is preferred to work with
integers because microcontrollers cannot divide to well.
(That is controllers can divide, but with remainder,
1024:11 = 93 remainder 1)

So we are going to round 93,09 off to 93. When we now
calculate the AD values for each volt, we can find the
translation table that you see on the right.

Now let’s say that we connect a voltage to the port C.1 pin and the AD value
is 190. 190 is not a value that is in the table... so we have to round off somewhere.

Let’s say that all values below 93 are 0,0V.
Values from 93 to 185 are 0,1V,
values from 186 to 278 are 0,2V, etc, etc...

The only thing we then have to do is write a program that tests whether the AD
value lays within a specific range.... like this:

V
AD

Value
1,1 1024
1 931

0,9 838
0,8 745
0,7 652
0,6 559
0,5 465
0,4 372
0,3 279
0,2 186
0,1 93
0 0

Experiment

16

Theory

 64

 Test_value = 93 ‘(The initial value “11” because everything below 11 is 0,0V)
 AD_value = 190
 Voltage = 00

 Not_ready:
 If AD_value ≤ Test_value then goto ready
 Test_value = Test_value + 93
 Voltage = Voltage + 1
 goto not_ready

 Ready:
 Print Voltage

So in our example the AD_value was 190, the initial value for Test_value was 93.
So the IF-statement is FALSE... so we add 93 to test value and 1 to the voltage.
(We have now concluded that the measured voltage is not 0,0V.)

The Test_value is now 186 the IF is still false so the measure voltage is not 0,1V.
So again we add 93 to test value and 1 to the voltage.

The Test_value is now 279 the IF is TRUE! We now jump to the Ready tag. If we
Print the Voltage variable we would see 0,2V. We know have successfully
interpreted the AD value without using division.

If we used the program as mentioned above, the readout would be 0 to 1,1 V.
Dividing all values by 4 would give us a readout to the full scale.

Program EDBexperiment16.bas into the controller, connect the serial cable and
build the drawing below. Verify if the controller works according to the theory
above by turning the wiper of the potentiometer and measuring the voltage
between GND and PC1 with a voltmeter.

V

 65

Exercise 3, Voltmeter with bar graph read out

Test your knowledge of the previous chapters by building this exercise.

Build a bar graph readout for the voltmeter of the previous experiment.

● Connect 8 LED’s to Port B. If voltage = 5V all the LED’s should be on,
 if the voltage is 2,5V the LED’s on PD0...4 should be on etc, etc.

Hint:

Select Case AD_value
 Case Is < 128 : Portb = &B11111110
 Case 128 To 256 : Portb = &B11111100
 Case 256 To 384 : Portb = &B11111000
 Case 384 To 512 : Portb = &B11110000
 Case 512 To 640 : Portb = &B11100000
 Case 640 To 768 : Portb = &B11000000
 Case 768 To 896 : Portb = &B10000000
 Case Is > 896 : Portb = &B00000000
End Select

● Also connect an LCD and display the voltage.

If you succeeded, congratulations!! If not, you may want to take a look at the
solution of this exercise . It can be found on the EDB-CD filename:
Exercise3.bas.

Exercise

3

 66

Exercise 4, A variable light source

Test your knowledge of the previous chapters by building this exercise.

Build a variable light source... more specific: you should be able to change the light
produced by the bulb by turning the wiper of the potentiometer.

● Connect a light-bulb (such as you can find in your bicycle) to your
 microcontroller. Make sure not to connect it directly, use an IRF520 to switch
 the relative large current.

● If you have connected your bulb check if you can switch it on and off with a
 simple program such as you have seen in experiment 1.

● Use the PWM functionality to change the light produced by the light bulb.

● Use a potentiometer in combination with the A/D conversion seen in the
 previous experiment to regulate the light produced by the
 bulb.

If you succeeded, congratulations!! If not, you may want to take a look at the
solution of this exercise . It can be found on the EDB-CD filename:
Exercise4.bas.

Exercise

4

 67

3.7 Other controller features

n this chapter we will discuss some common features that are often used, but
not seen in one of the other experiments. You will see how to use the
memory, the watchdog and the controllers internal timers.

3.7.1 About the memory

Part list Goals
- none- - Learning to know the memory

The ATMega88 microcontroller has 3 kinds of memory.

• FLASH -> Bootloader FLASH
 Application FLASH

• RAM
• EEPROM

The FLASH memory (8 kilobytes) can only be programmed with an external
programmer such as the STK200/300 dongle or the Wiazania USB STK
programmer (chapter 4).

However there is one exception, the bootloader. When you use the bootloader
option you divide the FLASH into 2 sections. The bootloader itself resides in the
Bootloader FLASH and is programmed with the STK programmer. The
Application FLASH can then be programmed with the serial cable (chapter 2.3).

In the Application FLASH we store the program/firmware we want to execute.
If you don’t use the bootloader the entire FLASH is available for the program
code. The FLASH is non volatile that means that it will be preserved when the
chips power is cut.

Where FLASH stores your program/instruction codes, RAM memory is used to
store the inputs and results of arithmetic and logic operations. Also bytes that need
to be send/received from the UART are first loaded to the RAM. Also the return
address of JUMP instructions are stored by Bascom in RAM.

RAM (Random Access) memory is a form of temporary storage. After the
operation ends you need to store or trash the data. RAM is volatile that means that
it will be lost when the chips power is cut.

I

Theory

 68

A special form of memory is the EEPROM memory (Electrically Erasable/
Programmable Read Only Memory) Don’t let this term fool you, in the old days
EEPROM could only be READ... it was then called ROM memory and it could
NEVER be erased by the controller itself. You could only program the ROM by
use of a ROM programmer and you could erase the chip with an UV light box.
(Chips had a transparent window).

Nowadays the controller can electrically erase and program the EEPROM, giving
you the possibility of storing data even when the power is cut. This is thus non
volatile.

EEPROM is especially handy when your application has user programmable
settings. Imagine what would happen if you had to program your tv-channels
every time you switched it on.... you don’t have to, because there is an EEPROM
in you TV.

Connect the serial cable between your EDB and your computer, program the
EDBexperiment17.bas file and start the Bascom Terminal.

This program will prompt you to enter an alphanumerical character, and it will
store the data... follow the instructions on the screen and observe what happens
after you unplug and re-apply the power source.

Did you see that the values of the EEPROM are preserved?

Online resources:
Atmel AVR family:
http://www.atmel.com/dyn/products/param_table.asp?family_id=607

Experiment

17

 69

3.7.2 Watchdog

Part list Goals
- none- - Learning to know the Watchdog

A watchdog timer is a safety feature that prevents runaway software. If your
software runs correct you should reset the timer periodically.

Now if the controllers gets stuck inside a piece of meaningless code (after an
electrical problem) or if there is external hardware that does no longer work,
the watchdog timer will no longer be reset. When this happens the watchdog will
overflow and reset your controller. The microcontroller will then restart and begin
executing your code from the beginning.

A typical watchdog implementation looks like this:

Config Watchdog = 2048 'reset after 2048 mSec
Start Watchdog 'start the watchdog timer

 Do
 ‘Print “Hello”
 Reset Watchdog
 ’Your program code goes here, repeat the Reset Watchdog statement
 Loop
End

If you want, you can experiment with the watchdog, you can find the
Watchdog.bas file on the EDB-CD. Uncomment the “Print “Hello” line and
comment the “reset watchdog” line. You will notice the reset on your terminal.

The maximum watchdog time for the ATMega88 = 8 seconds. But for most
applications it is recommended not to use a time that long. Take 2048 or 1024
instead.

Theory

 70

3.7.3 Using a timer

Part list Goals
-none- - Learning how to use the timer

The ATMega88 has a build in timer. You can use it to measure time intervals or if
you want to make your own wait routine. You will now see an example of a
seconds timer.

Connect the serial cable between your EDB and your computer, program the
EDBexperiment18.bas file and start the Bascom Terminal.

You will now see a seconds counter on the Terminal display. Read the comments
in the EDBexperiment18.bas file and see if you understand what happens.

Note:
The EDBexperiment18.bas program is accurate for about 10 minutes, it uses the
internal RC Oscillator of the ATMega88. If you want a more accurate time you
better use a real time clock, such as the Maxim Dallas DS1307 Real Time Clock
IC. The DS1307 has an I²C interface. You will learn how to use I²C in the next
chapter.

OVERVIEW OF AVAILABLE TIMERS

The ATMega88 has these on board timers:

8-bit Timer/Counter0 with PWM
16-bit Timer/Counter1 with PWM
8-bit Timer/Counter2 with PWM and Asynchronous Operation

You can find how to initialize these timers and which interrupt sources they have
in the Bascom help. Press F1 in the Bascom AVR IDE window and look for
“CONFIG TIMER” in the index.

Experiment

18

 71

3.8 Other interfaces

eside the UART there are other interfaces that are commonly used. In this
chapter you will see how to use the I²C protocol and we will see how we
can use the USB module that is available for the EDB board.

3.8.1 The I²C bus
Part list Goals
1x DS1624 - Learning about the I²C bus
2x Resistor 4k7
1x Computer with COM port

The DS1624 is a digital thermometer that measures temperatures from -55°C to
+125°C. It is connected by use of an I²C bus. I²C is a serial two-wire protocol.
The two wires are Serial DAta (SDA) and Serial CLock (SCL).

In I²C the microcontroller is called MASTER and the DS1624 is a slave. The
master is the device that generates the SCL clock. You can connect lots of slaves
but only one master.

Please build the drawing below:

I²C (2-wire serial data bus) Theory

B

Theory

Experiment

19

 72

If you wish to know more on the theory of the I²C bus, we like to suggest you read
the DS1307 datasheet of Maxim/Dallas semiconductor. The DS1307 is not the
same chip as we use in this experiment but it uses the same bus protocol. And the
DS1307 datasheet is better if you wish to understand I²C.

The DS1307 datasheet can be found on the EDB-CD or can be downloaded from
www.maxim-ic.com. Please begin reading from page 5 section “2–WIRE SERIAL
DATA BUS” and do not read page 9 and further on. (Keep in mind that we use a
different chip, so the principle is the same but the address- and command bytes
are not the same.)

Program the ATMega88 with EDBexperiment19.bas and connect the serial cable
between your EDB and your computer.

You should be able to read the temperature in your terminal.

Read the remarks in the EDBexperiment19.bas file and see if you understand what
happens.

Online resources:
I2C Background:
http://www.semiconductors.philips.com/markets/mms/protocols/i2c/

I2C Interface Support in Windows:
http://www.microsoft.com/whdc/archive/i2c.mspx

 73

3.8.2 USB Interface

lthough most computers are equipped with USB ports these days, not
often developers take the step to implement USB into their systems. This
chapter will give you an introduction to USB development.

First of all you need to know that there are 3 options if you wish to design your
own USB equipped hardware.

1. USB device as virtual COM port

This is the easiest option if you want USB, you connect your device to the
computers USB port and the operating system will treat your device as if it was
a COM port.

Advantages:
- Easy
- Compatible with terminal programs and existing software

Disadvantages:
- User sees the COM port which is not to professional.
- COM port can be configured wrong.
- User has to install 2 drivers.

2. USB device with default VID&PID and driver

 In general: Applications do not access USB ports, they access devices
 with a certain VID&PID (Vendor & part ID) on the bus.

With this second option you can use the drivers provided by Linx
Technologies (www.linxtechnologies.com) to access your device.

Advantages:
- Relatively easy in use

Disadvantage:
- You’ll have to use the VID&PID that are registered by Linx.

A

 74

3. USB device with your own VID&PID and driver

With this option you can actually create your own device. If you buy your VID
from MCS Electronics you also will receive a software tool that writes the *. inf
installation file for you. If you choose not to buy your VID thru MCS, take in
account that you may have to write the *.inf file yourself.

Advantages:
- You can use your own VID&PID

Disadvantage:
- You will have to buy your VID from MCS or the USB consortium
- You need to write your own *.inf file.

USB devices are primarily used to interact with computers, therefore you almost always
have to write computer applications in addition to your microcontroller code. That and
the costs of the USB module (and optional VID) can form obstructions for the
implementation of USB. It the future COM-ports are no longer available on computer
systems and USB modules will become more affordable. That is the reason why we
added this USB chapter to the EDB manual.

A comprehensive lecture of the USB bus lays beyond the scope of this manual.
(www.usb.org/developers) We will describe how to connect the EDB as described in
option one and two. We will also show some Visual Basic 6 code and Windows
scripting examples.

The third option will not be described, we will only introduce a tool to write the USB-
modules EEPROM to change the VID&PID.

Online resources:

USB module: http://www.linxtechnologies.com/
USB chip inside Linx module: http://www.ftdichip.com/Products/FT232BM.htm
USB general : www.usb.org
Get your own vendor ID: www.mcselec.com

 75

3.8.3 Installation procedure

If you want to use option 1 (virtual com) please follow the installation as
described in chapter 3.8.3.1. For the other options follow the instruction of
chapter 3.8.3.2.

If you wish to switch from option 1 (virtual com) to option 2, 3. Or if you wish to
switch from option 2, 3 to option 1 (virtual com) you first need to remove your
old device driver. Driver uninstall instructions can be found in chapter 3.8.3.3

Make sure your computer has an operational USB port. USB ports will not work under
Windows NT and some versions of Windows 95. We advise to use the same USB port
every time you connect your EDB, this way you don’t have to reinstall the drivers.

3.8.3.1 Installation procedure Virtual Com Port Windows

Connect the power to your EDB and connect the USB-A to USB-B cable between the
EDB and your computer.

You should then see this screen:

Select “No, not this time” and click “Next”

A type
 B type

 76

(After a moment) You should see this screen:

Select “Install from a list or specific location (Advanced)” and click “Next”

(After a moment) You should see this screen:

Insert the EDB-CD and use “Browse” to select folder
Your CDrom drive:\USB_Module\Virtual_COM_Drivers\ and click “Next”

 77

(After a moment) You should see this screen:

This window is simply a warning that the driver has not gone through Microsoft’s
certification process and could potentially pose a problem for the system. The drivers
provided for the USB module have been independently tested and should not pose any
problems unless modified by the user. Thus click “Continue Anyway”.

After a moment there will be a window with the message “The wizard has finished
installing the software for Linx SDM-USB-QS-S” click finish.

Do not unplug the USB or power connector now, the installation is not finished yet.

Then the computer will again detect new hardware. Actually it now finds the Virtual
COM port. To install the Virtual COM port you will have to redo all the steps
mentioned on the previous pages. (begin reading from 3.8.3.1 from “Found new
hardware wizard”)

The Virtual COM port is now installed.

-> Continue reading in chapter 3.8.4

 78

3.8.3.2 Installation procedure USB Device Windows

Connect the power to your EDB and connect the USB-A to USB-B cable between the
EDB and your computer.

You should then see this screen:

Select “No, not this time” and click “Next”

(After a moment) You should see this screen:

Select “Install from a list or specific location (Advanced)” and click “Next”

A type
 B type

 79

(After a moment) You should see this screen:

Insert the EDB-CD and use “Browse” to select folder
Your CDrom drive: \USB_Module\Direct_Drivers\ and click “Next”

 If you have programmed your own VID&PID,
 you have to specify your self written driver here.

 80

(After a moment) You should see this screen:

This window is simply a warning that the driver has not gone through Microsoft’s
certification process and could potentially pose a problem for the system. The drivers
provided for the USB module have been independently tested and should not pose any
problems unless modified by the user. Thus click “Continue Anyway”.

After a moment there will be a window with the message “The wizard has finished
installing the software for Linx SDM-USB-QS-S” click finish.

The USB device is now installed.

-> Continue reading in chapter 3.8.5

 81

3.8.3.3 Driver uninstall

If you wish to switch from option 1 (virtual com) to option 2, 3. Or if you wish to
switch from option 2, 3 to option 1 (virtual com) you first need to remove your old
device driver. This chapter tells you how to uninstall.

First insert your EDB-CD.

If you have installed the Virtual COM port driver.
Use your file explorer to navigate to your CD-rom drive.
Open the “VCP Drivers folder” and open “FTDIUNIN.EXE”

USB_Module\Virtual_COM_Drivers\FTDIUNIN.EXE

You should see this:

Click “Continue” and then after a moment “Finish”. If you whish you can install the
direct driver see chapter 3.8.3.2.

If you have installed the DIRECT driver.
Use your file explorer to navigate to your CD-rom drive.
Open the “Direct Drivers” and open “FTD2XXUN.EXE”

USB_Module\Direct_Drivers\FTD2XXUN.EXE You should see this:

Click “Continue” and then after a moment “Finish”. If you whish you can install the
direct driver see chapter 3.8.3.1.

 82

3.8.4 USB interface, device as Virtual COM port

Part list Goals
1x USB-A to USB-B cable - Learning to interface a device as
1x Computer with USB port Virtual COM port

This experiment can only be carried out if you installed the drivers as described in
chapter 3.8.3.1. Make sure switch “S1 USB/RS232” is set to USB.

Open the EDBexperiment6a.bas file from the EDB-CD and program it into the
ATMega88. We use the same program as in Experiment 6a to test the Virtual
COM port. After you have programmed the controller and you connected the

USB cable, open the terminal emulator by clicking on in Bascom.

The settings should still be 19200 baud, no parity, 8 data bits, 1 stop bit
Make sure you use the appropriate (Virtual) COM port, you can find the
appropriate COM port in the configuration panel. (System, Hardware Tab, and
Device Manager)

In this case you should use COM5 but it is probably different in your system.

Experiment

20

 83

You should see the EDBexperiment6a.bas program printing “Hello World” to the
screen of your PC like this:

It is possible to write your own application software for Windows/Linux etc.
If you use Windows you can use Visual Basic (Basic as in Bascom AVR). You can
also use a language that support other operating systems, for example C++
Borland Builder, Pascal or any other language that supports the use of ActiveX
components.

We use an ActiveX (software-)component to send and receive data from the
COM-port to an application in Windows/Linux etc. I suggest you use the royalty
free OCX component (mcscomm.ocx) supplied by MCS Electronics. (Microsoft
supplies mscomm32.ocx but the MS OCX does not work with events.)

You can find sample programs in the Visual Basic folder on the EDB-CD. The
mcscomm.ocx file can also be found in that folder.

 84

3.8.5 USB interface, device with default PID&VID

Part list Goals
1x USB-A to USB-B cable - Learning to interface a device with
1x Computer with USB port default PID&VID

This experiment can only be carried out if you installed the drivers as described in
chapter 3.8.3.2.

Make sure switch “S1 USB/RS232” on the EDB is set to USB.

Open the EDBexperiment6a.bas file from the EDB-CD and program it into the
ATMega88. We use the same program as in Experiment 6a to test the USB
interface default PID&VID.

Now open the “USB Terminal” program from the “Visual_Basic\USB_Terminal”
folder on the EDB-CD.

Click “Setup USB”, you should now see the program printing “Hello World” on
the computer screen. Also try EDBexperiment6b.bas.

It is possible to write your own USB
application software for Windows/Linux
etc. If you use Windows you can use Visual
Basic (Basic as in Bascom AVR). You can
also use a language that support other
operating systems, for example C++
Borland Builder, Pascal or any other
language that supports the use of DLL
components.

We use a DLL (software-)component to
send and receive data from the USB-port to
an application in Windows/Linux etc.

You can find sample programs in the Visual Basic folder on the EDB-CD.
The DLL file can also be found in that folder. More samples in different languages
can be found on the FTDI website
http://www.ftdichip.com/Projects/CodeExamples.htm.

Experiment

21

 85

3.8.6 USB interface, device with your own PID&VID

This chapter is meant for advanced developers only, the chapter only gives a brief
summary of the advanced possibilities. It is not a step-by-step guide which tells
you all the steps you have to take to create your own PID device.

WARNING: Changing the EEPROM (PID&VID) of the USB module may
cause the chip to be inaccessible. Changes made to EEPROM and drivers
are at your own risk. MCS Electronics does not provide support for issues
caused by changes in the EEPROM nor does it support for issues caused
by modified device drivers.

EEPROM programming can only be carried out if you installed the drivers as
described in chapter 3.8.3.2.

The USB interface is realized with the SDM-QS-S1-S USB module from Linx
technologies which has an FT232xx chip from FTDI on board.

You can find the Linx website here: www.linxtechnologies.com
You can find the FTDI website here: www.ftdichip.com

You can read and write the EEPROM of the USB SDM-QS-S1-S USB module.
This gives you the possibility of changing the modules PID&VID.

We strongly recommend you to visit the websites mentioned above to read the
designers manuals before your do any EEPROM programming. You can find the
EEPROM programming application in the “USB Module” folder on the EDB-CD
but also on the manufacturers websites.

Before you can use your own PID device with Windows/Linux, etc. you first need
to modify the *.inf device driver files. Read the *.inf files that can be found on the
EDB-CD as example.

Online resources:
Get your own vendor ID: www.mcselec.com

 86

3.9 Motors

esides human interfacing and data communications, microcontrollers also
interface actuators. The most common actuators are DC and stepper
motors. This chapter shows you how to use DC and stepper motor’s.

3.9.1 Stepper motor
Part list Goals
1x Bi-polar Stepper Motor - Learning to use a stepper motor
1x Quasar Stepper Motor Driver

For this experiment we use the Quasar Bi-Polar Stepper Motor Driver 3158, more
information can be found at the Quasar website www.quasarelectronics.com/kit-
files/3000/3158.pdf.

If you haven’t got a stepper motor you can use a stepper
motor from a floppy disk drive. They are mostly not bi-
polar so it is only good for experimenting (in combination
with this driver), but not for use in a real application.

Connect the stepper motor to the “TO MOTOR”
connectors on the driver.

Connect Portd.0 to the “STEP + ” pin,
Connect Portd.1 to the “DIR +” pin,
Connect GND from the EDB to “STEP -“ and “DIR-“

Connect 8...30 V to both power connectors on the driver.
Start with a low voltage if you haven’t got your motor’s
specifications. (galvanic isolation is possible, see the 3158
pdf file for details.)

If you used a floppy disk stepper motor, you might only have 3 wires to connect
the motor. You then must leave one “TO MOTOR” connector pin free.

Program the ATMega88 with EDBexperiment22. You should see the motor
running to one side and then back to the other.

Read the remarks in the EDBexperiment22.bas file and see if you understand what
happens.

B

Experiment

22

 87

3.9.2 PWM controlled DC motor

Part list Goals
1x DC Motor - Learning to use a DC motor
1x Quasar Stepper Motor Driver

For this experiment we use the Quasar Bi-Polar Stepper Motor Driver 3158, more
information can be found at the Quasar website www.quasarelectronics.com/kit-
files/3000/3158.pdf.

If you haven’t got a DC motor you can use a DC motor
from a tape deck..

Connect the DC motor to one of the to the “TO
MOTOR” terminals on the driver.

Connect Portd.0 to the “STEP + ” pin,
Connect Portd.1 to the “DIR +” pin,
Connect GND from the EDB to “STEP -“ and “DIR-“

Connect 8...30 V to both power connectors on the driver.
Start with a low voltage if you haven’t got your motor’s
specifications. (galvanic isolation is possible, see the 3158
pdf file for details.)

Program the ATMega88 with EDBexperiment22. You should see the motor
running to one side for a while and then back to the other side.

Read the remarks in the EDBexperiment22.bas file and see if you understand what
happens.

Online resources:
Motor driver: http://www.quasarelectronics.com/motor_controllers_drivers.htm

Experiment

23

 88

 89

4. Other programming methods

 This chapter explains how to program the ATMega88 using the
 parallel or the USB port.

ou can also program the ATMega88 using the parallel or USB port. There
are three reasons for doing this.
1. You don’t have a serial port,
2. You want to program a blank/erased microcontroller,
3. You want to program the full memory space.
 This cannot be done with a boot loader since the boot loader itself uses
 memory space of the controller.

Chapter 4.3 describes how to reprogram the bootloader.

Chapter

4
Y

 90

4.1 Programming with STK200/300 dongle

You can obtain an STK200/300 dongle from MCS Electronics, but you may also
build your own. The schematics for the STK dongle can be found in annex 1.

- Before you continue please verify that the parallel port BIOS setting is set
 to ECP mode. The dongle does not work in some other modes for example the
 bi-directional mode.

Now connect the STK200/300 dongle to the parallel port of the computer and
connect the flat cable of the STK200/300 dongle to connector X9 marked “ISP”
on the Educational Development Board.

In Bascom click on “Options” and “Programmer” now you should see this screen:

● First select the “STK200/STK300 Programmer” from the drop down box (A).

● Then select your LPT-address. If you use LPT1 this is “378” by default and
 for LPT2 choose “278”.

● Now press the OK-button.

If you wish to reprogram the boot loader please continue to chapter 4.3 otherwise
you can program your code as described in chapter 2.3 from the line “Now let’s
program the flash”.

A

B

 91

4.2 Programming with Wiazania USP ISP

You can obtain a Wiazania USB ISP programmer dongle from MCS Electronics.
The USB ISP programmer has the same possibilities as the STK200/300 dongle
only uses it the USB port instead of a parallel port.

Connect the USP-ISP programmer to one of the USB ports of the PC, connect
the flat cable of the USB-ISP programmer to connector X9 marked “ISP” on the
Educational Development Board.

In Bascom click on “Options” and “Programmer” now you should see this screen:

● Select the “USB-ISP Programmer” from the drop down box (A).

● Now press the OK-button.

If you wish to reprogram the boot loader please continue to chapter 4.3 otherwise
you can program your code as described in chapter 2.3 from the line “Now let’s
program the flash”.

A

 92

4.3 Reprogramming the bootloader

 Using the programming methods of chapter 4.1 or 4.2.

● Open the bootloader.bas file (EDB-CD) in Bascom AVR.

● Compile the boot loader (press F7)

● Make sure you use one of the STK dongles described in chapter 4.1 and 4.2
 and program into chip (F4)

● Program the fuse bits of the ATMega88 as described hereunder.

● And finally select “MCS Bootloader” from programmers as described in
chapter 2.3

Programming the fuse bits

The ATMega AVR family uses fuse bits to set advanced features of the chip. In
normal condition they are only programmed once, although they can be programmed
many times. You can program the fuse bits with the Bascom build in programmer.

You only need to follow the steps on this page if one of the conditions mentioned
hereunder are true.

1. You are not using an ATMega88 provided by MCS electronics or you have
changed the lock bits of the chip provided by MCS electronics.

2. Programming of the chip as described on the previous page did not work.

You need an STK200/300 dongle or Wiazania USB programmer to program the fuse
bits.

These steps will set the fuses back for use of the ATMega88 on the EDB.

Open the Bascom IDE, open a *.bas or an empty file.

Open the programmer like this:

 93

Select the “Lock and Fuse Bits” tab and maximize the programmer window.

Make sure that the fuse and lock bits are set in the way you see above, press the
“Refresh” button to see the actual settings. Fusebit Q should be set to BOOT.

Warning pay attention to Fusebit KLA987 which sets the oscillator options, it
should be 100010: Int. RC Osc.... SUT = 1. If you change this option the device will
no longer run and you cannot change it back without an external frequency oscillator.
(frequency generator). Make sure you only set 100010.

You can write the bits with the “Write XXX” buttons that become available if you
have changed an option (drop down box) and clicked an other fuse/lock bits section.

 94

 95

Annex 1 STK200/300 ISP dongle

Annex 1

 96

Annex 2 ASCII Table

Decimal Hex Binary Value
------- --- ------ -----
 000 000 00000000 NUL (Null char.)
 001 001 00000001 SOH (Start of Header)
 002 002 00000010 STX (Start of Text)
 003 003 00000011 ETX (End of Text)
 004 004 00000100 EOT (End of Transmission)
 005 005 00000101 ENQ (Enquiry)
 006 006 00000110 ACK (Acknowledgment)
 007 007 00000111 BEL (Bell)
 008 008 00001000 BS (Backspace)
 009 009 00001001 HT (Horizontal Tab)
 010 00A 00001010 LF (Line Feed)
 011 00B 00001011 VT (Vertical Tab)
 012 00C 00001100 FF (Form Feed)
 013 00D 00001101 CR (Carriage Return)
 014 00E 00001110 SO (Shift Out)
 015 00F 00001111 SI (Shift In)
 016 010 00010000 DLE (Data Link Escape)
 017 011 00010001 DC1 (XON) (Device Control 1)
 018 012 00010010 DC2 (Device Control 2)
 019 013 00010011 DC3 (XOFF)(Device Control 3)
 020 014 00010100 DC4 (Device Control 4)
 021 015 00010101 NAK (Negative Acknowledgement)
 022 016 00010110 SYN (Synchronous Idle)
 023 017 00010111 ETB (End of Trans. Block)
 024 018 00011000 CAN (Cancel)
 025 019 00011001 EM (End of Medium)
 026 01A 00011010 SUB (Substitute)
 027 01B 00011011 ESC (Escape)
 028 01C 00011100 FS (File Separator)
 029 01D 00011101 GS (Group Separator)
 030 01E 00011110 RS (Request to Send)(Record Separator)
 031 01F 00011111 US (Unit Separator)
 032 020 00100000 SP (Space)
 033 021 00100001 ! (exclamation mark)
 034 022 00100010 " (double quote)
 035 023 00100011 # (number sign)
 036 024 00100100 $ (dollar sign)
 037 025 00100101 % (percent)
 038 026 00100110 & (ampersand)
 039 027 00100111 ' (single quote)
 040 028 00101000 ((left/opening parenthesis)
 041 029 00101001) (right/closing parenthesis)
 042 02A 00101010 * (asterisk)
 043 02B 00101011 + (plus)
 044 02C 00101100 , (comma)
 045 02D 00101101 - (minus or dash)
 046 02E 00101110 . (dot)
 047 02F 00101111 / (forward slash)
 048 030 00110000 0
 049 031 00110001 1
 050 032 00110010 2

 97

Decimal Hex Binary Value
------- --- ------ -----

 051 033 00110011 3
 052 034 00110100 4
 053 035 00110101 5
 054 036 00110110 6
 055 037 00110111 7
 056 038 00111000 8
 057 039 00111001 9
 058 03A 00111010 : (colon)
 059 03B 00111011 ; (semi-colon)
 060 03C 00111100 < (less than)
 061 03D 00111101 = (equal sign)
 062 03E 00111110 > (greater than)
 063 03F 00111111 ? (question mark)
 064 040 01000000 @ (AT symbol)
 065 041 01000001 A
 066 042 01000010 B
 067 043 01000011 C
 068 044 01000100 D
 069 045 01000101 E
 070 046 01000110 F
 071 047 01000111 G
 072 048 01001000 H
 073 049 01001001 I
 074 04A 01001010 J
 075 04B 01001011 K
 076 04C 01001100 L
 077 04D 01001101 M
 078 04E 01001110 N
 079 04F 01001111 O
 080 050 01010000 P
 081 051 01010001 Q
 082 052 01010010 R
 083 053 01010011 S
 084 054 01010100 T
 085 055 01010101 U
 086 056 01010110 V
 087 057 01010111 W
 088 058 01011000 X
 089 059 01011001 Y
 090 05A 01011010 Z
 091 05B 01011011 [(left/opening bracket)
 092 05C 01011100 \ (back slash)
 093 05D 01011101] (right/closing bracket)
 094 05E 01011110 ^ (caret/circumflex)
 095 05F 01011111 _ (underscore)
 096 060 01100000 `
 097 061 01100001 a
 098 062 01100010 b
 099 063 01100011 c
 100 064 01100100 d
 101 065 01100101 e
 102 066 01100110 f
 103 067 01100111 g
 104 068 01101000 h

 98

Decimal Hex Binary Value
------- --- ------ -----

 105 069 01101001 i
 106 06A 01101010 j
 107 06B 01101011 k
 108 06C 01101100 l
 109 06D 01101101 m
 110 06E 01101110 n
 111 06F 01101111 o
 112 070 01110000 p
 113 071 01110001 q
 114 072 01110010 r
 115 073 01110011 s
 116 074 01110100 t
 117 075 01110101 u
 118 076 01110110 v
 119 077 01110111 w
 120 078 01111000 x
 121 079 01111001 y
 122 07A 01111010 z
 123 07B 01111011 { (left/opening brace)
 124 07C 01111100 | (vertical bar)
 125 07D 01111101 } (right/closing brace)
 126 07E 01111110 ~ (tilde)
 127 07F 01111111 DEL (delete)

 99

Annex 3 7 segment display pin outs

Pin out for the SL119 or OS516HWA 7 Segment display

 100

Annex 4 EDB schematics

Page 1 of 2 (24-Oct-2005)

EDB.UTSCH - Power

A A

B B

C C

D D

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

1 USBDP2 USBDM3 GND4 VCC5 SUSP_IND6 RX_IND7 TX_IND8 485_TX 9DTR

10CTS

11RTS

12D_OUT

13D_IN

14DSR

15DCD
16RI

U2

USB SDM-QS-S1-S

1C1+

2V+

3C1-

4 C2+

5 C2-

6V-

7T2_OUT

8R2_IN9 R2_OUT

10T2_IN

11T1_IN

12R1_OUT 13R1_IN

14T1_OUT

15

GND

16

VCC

U3
MAX232

VCC

2

1 C8
1u

+

2

1C5
1u

+

GND VCC

2

1C6
1u

+

2

1

C7
1u

+
1
2
3
4
5
6
7
8
9

X16

DB9 SERIAL RS232

PAGE: OF:

PROJECT:

PCB:

24 OCT. 2005

CONTROLLER

1 2

1

MCS ELECTRONICS - BASCOM

MCS

BARRY DE GRAAFF

DESIGN:

REV: DATE: ENG:

EDUCATIONAL DEVELOPMENT BOARD (EDB)

WWW.MCSELEC.COM

GND

GND

GND

RX

C9

100n

C10

100n

C11

100n

GND

VCC

28PC5 27PC4 26PC3 25PC2 24PC1 23PC0

22GND 21AREF 20AVCC

19PB5 / SCK 18PB4 / MISO
17PB3 / MOSI 16PB2 15PB114 PB0

13 PD7

12 PD6

11 PD5

10 PB7 / XTAL2

9 PB6 / XTAL1

8 GNC

7 VCC

6 PD4

5 PD3

4 PD2

3 PD1 / TXD
2 PD0 / RXD
1 PC6 / RST

U1

ATMEGA48

PB1
PB2
PB3
PB4
PB5

PC0
PC1
PC2
PC3
PC4
PC5PC6

VCC
AREF
GND

PD0
PD1
PD2
PD3
PD4

VCC
GND

PB0

PB6
PB7

PD5
PD6
PD7

1
2
3
4
5
6
7
8

X7

PD0...7

PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7

1
2
3
4
5
6
7
8
9

10

X9

ISP HEADER

TX

RESET
GND

VCC

X14

1
2

X15

SOFTARE UART

--|

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

X12

HD44780 DISPLAY

GND

VCC

R3

10k

GND

VCC

GND
PB0

PB1

PB2
PB3
PB4
PB5

GND

R2

47
E

VCC

1
2
3
4
5
6
7

X10

PS2 KEYBOARD

1
2

X11

PS2
CLK
DAT

PD0

R
4

220E

D2

LED
VCC

PC6

PD1

BO2
BO1

4
3
2
1

X13

USB B-TYPE

C1
11
12

C2
21
22

S1

USB / RS232

1
2
3
4
5
6
7
8
9

10

X6

PC0...6 / AD

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6

C
12

10
0n

C13

100n

GND
AREF

VCC

GND

GND

PB3
VCC

GND
PC6
GND
PB5
GND
PB4
GND

VCC

GND

GND

1
2
3
4
5
6
7
8
9

10

X5

PB0...7

VCC
GND

D3

LED TEST OR

R
5

330E

VCC
PD7

R
S

T

R
S

T

R
S

TPC6

BOOTLOAD

Page 2 of 2 (24-Oct-2005)

EDB.UTSCH - Power

A A

B B

C C

D D

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

D
1

LE
D

2

3

4 1

G1

BRIDGE R1

33
0

IN GND OUT

U47805

C4

100n

C3

100n

GND

VCC

C2

100u

1
2

X2

POWER

C1

220u

12V

PAGE: OF:

PROJECT:

PCB:

24 OCT. 2005

POWER

2 2

1

MCS ELECTRONICS - BASCOM

MCS

BARRY DE GRAAFF

DESIGN:

REV: DATE: ENG:

WWW.MCSELEC.COM

EDUCATIONAL DEVELOPMENT BOARD (EDB)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

X3

VCC

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

X4

GND

1
2
3

X1

POWER

Copyright Notice

The contents of this document are subject to national and international
copyright laws and are the property of MCS Electronics © 2005 except for:

Paragraph 3.1.3a “ATMega88 Datasheet” which is property of Atmel corporation,
Paragraph 3.1.5 “Current Transfer Ratio” which is property of Sharp Semiconductor,
Paragraph 3.4.1 “AN AVR313” which is property of Atmel corporation,
Paragraph 3.4.3 “TSOP Interface” which is property of Vishay Semiconductor,
Annex 1 “AVR ISP Dongle” which is property of Beyondlogic.org.

MCS Electronics gives you permission to reproduce this document for
Personal/Educational or Non Commercial use only. In any other case
this document may not be reproduced, copied, stored, manipulated in
any way, or used whole or in part of a derivative work, without the
written permission of MCS Electronics.

Terms and product names used in this document may be trademarks of
others.

Disclaimer of warranties and liability

The information in this document is provided "as is" and "where is" without
any express or implied warranty of any kind, including, without limitation,
warranties of merchantability, title, non infringement of intellectual property
rights, or fitness for any particular purpose.

You agree that in no event will MCS Electronics be liable for any damages
whatsoever (including, without limitation, damages for loss of profits or
business interruption and/or consequential, punitive, exemplary, special or
incidental damages) arising out of the use of the information in this
document, even if MCS Electronics has been advised of the possibility of such
damages.

MCS Electronics is not liable for any damage caused by the use of the
information in this document nor is MCS Electronics liable for damage caused
by EDB hardware. (including, PCB and components) Use of materials
(hardware and software) from MCS Electronics is at your own risk.

MCS Electronics does not warrant the accuracy or completeness of the
information, text, graphics, links or other items in this document. MCS
Electronics may make changes to such information, text, graphics, links or
other items in this document at any time without notice. MCS Electronics
makes no commitment to update such information, text, graphics, links or
other items.

No rights can be claimed out of the contents of this document.

MCS Electronics © 2005 All rights reserved.

	Table of Contents
	Introduction
	1. Experience
	1.1 Hardware requirements
	1.2 Beware of un-programmed chips!

	2. Getting started
	2.1 Assembling your PCB
	2.2 Installing Bascom AVR
	2.3 Programming the controllerthru the serial port (Boot loader procedure)
	2.4 Troubleshooting

	3. Experiments
	3.1 Basic I/O Experiments
	3.1.1 LED output, switch input
	3.1.2 Shifting LED’s
	3.1.3a Output with transistor or FET
	3.1.3b Output with FET
	3.1.3c Output with relay
	3.1.4 Output with a ULN2803
	3.1.5 I/O with Opto coupler

	3.2 UART Data communication
	3.2.1 The UART
	3.2.2 The Software UART

	3.3 Display output
	3.3.1 HD44780 LCD
	3.3.2 7 segment display

	3.4 Keyboard input
	3.4.1 PS2 or AT Keyboard
	3.4.2 Matrix keyboard
	3.4.3 Remote control with RC5

	3.5 Advanced I/O
	3.5.1 Counter with anti bounce input
	3.5.2 The GetRC Statement
	3.5.3 Siren with the SOUND statement

	3.6 AD and DA conversion
	3.6.1 PWM output
	3.6.2 AD conversion with LDR
	3.6.3 Low cost voltmeter

	3.7 Other controller features
	3.7.1 About the memory
	3.7.2 Watchdog
	3.7.3 Using a timer

	3.8 Other interfaces
	3.8.1 The I²C bus
	3.8.2 USB Interface
	3.8.3 Installation procedure
	3.8.3.1 Installation procedure Virtual Com Port Windows
	3.8.3.2 Installation procedure USB Device Windows
	3.8.3.3 Driver uninstall

	3.8.4 USB interface, device as Virtual COM port
	3.8.5 USB interface, device with default PID&VID
	3.8.6 USB interface, device with your own PID&VID

	3.9 Motors
	3.9.1 Stepper motor
	3.9.2 PWM controlled DC motor

	4. Other programming methods
	4.1 Programming with STK200/300 dongle
	4.2 Programming with Wiazania USP ISP
	4.3 Reprogramming the bootloader

	Annex 1 AVR STK ISP Dongle
	Annex 2 ASCII Table
	Annex 3 7 segment display pin outs
	Annex 4 EDB schematics
	Copyright and Disclaimer

