AN # 192, Application Note
Getting Started With ATXMEGA and
BASCOM-AVR Part 1

By MAK3

This Application Note will not cover BASCOM-A VR programming basics so you should know BASCOM-
A VR Language Fundamentals.

http://avrhel p.mcsel ec.com/

http://avrhel p.mcsel ec.com/language_fundamental s.htm

This Application Note will not cover Analog 1/0 such as Analog Input, Analog Output or Analog Comparator.
There will be a Part 2 of Getting Started with A TXMEGA which will cover the Analog Part of XMEGA.

At first to get started with ATXMEGA there are alot of White Papers and Application Notes available from
ATMEL:

White Paper:
http://www .atmel.com/dyn/resources/prod documents/doc7926.pdf

Application Notes:
http://www .atmel.com/dyn/products/documents.asp?category id=163&family id=607& subfamily id=1965
http://www.atmel .com/xmega

Y ou can find samples for XMEGA in Bascom-A VR folder:
General samples \BASCOM-AVR\SAMPLES\XMEGA

Bootloader samplesin \BASCOM-AVR\SAMPLES\BOOT
Forxml128alin ... \BASCOM-AVR\SAMPLES\CHIPS

The ATXMEGA work with 3.3V so please do not connect something which output 5V . Use aLevel Shifter for
that. http://www.maxi m-ic.com/app-notes/index.mvp/id/3007

The maximum rating for aXMEGA Pinis3.6V.

When using the internal 32MHz oscillator you need at least 2.7V Vcc. The maximum CPU Clock Frequency is
12MHz when using the XMEGA with 1.6V Vcc.

All XMEGA have their registers at the same address. Some chips might not have all registers because the
hardware is not inside the chip, but all DA T filesaresimilar. And all hardware has afixed offset. Thisallows
to use dynamic code. For example Bascom-A VR can now use avariable for the UART and the code is only
needed once because all hardware has a fixed of fset.

* DAT filesaretheregister files. Theregister files are stored in the BASCOM-A VR application directory and
they all havethe DA T extension.

The register file holds information about the chip such asthe internal registers and interrupt addresses.
Theregister file info isderived from A TMEL definition files.

http://avrhelp.mcselec.com/
http://avrhelp.mcselec.com/language_fundamentals.htm
http://www.atmel.com/dyn/resources/prod_documents/doc7926.pdf
http://www.atmel.com/dyn/products/documents.asp?category_id=163&family_id=607&subfamily_id=1965
http://www.atmel.com/xmega
http://www.maxim-ic.com/app-notes/index.mvp/id/3007

Table of Contents

Manuals for ATXMEGA: Thereare 2 manualsavailable from ATMEL ..o 3
What you need to get started with ATXMEGA and BASCOM-AVR....ccooiiiiiieeeeeee e 3
Supported XMEGA Chipsin Bascom-A VR (Status of Bascom-AVR V ersion 2.0.7.2)ccceeveeeceeieecinenns 3
Supported Functions for XMEGA in Bascom-A VR (Status of Bascom-AVR V ersion 2.0.7.2) 3
The Program and Debug INLEITACE (PD1)cco ittt 4
0SS T TSRS 4
Now you can flash your first Bascom-A VR Program where you toggle an OUEPUL:ceevreererienneene. 6
The most important parts of an Bascom-A VR Program for XMEGA @€ooceveveiieniinieneee e 8
0 L RSSO 9
EXTEN@l PIN TNEEITUDL. ...ttt b et e s b e et e s ae e s beeseesaeesbeeneesneenreas 10
System Clock Options (internal and external osCillator OptioNS)...........ccevveeiieerenieseese e 11
ATXMEGA128A1 with EXTERNAL 0SCillator I6MHZcccooviiiieieeesese e 12
USART - Universal Synchronous and Asynchronous Serial Receiver and Transmitter...........cccevveeunenne. 13
UsiNg INtErTUPES WIth UART S ...ttt ettt ae st ae e nns 15
Using Dynamic Channels with XMEGA COM POIS.........ccooiiiiiieiieiesieseeie e see e 16
ATXMEGA @GN0 RS-8E.......ooiiieiecte sttt sttt estestesaesbesteaseeseese e e eeestessesbesseaseeseenennes 16
Using aBootloader With A TXMEGA ...ttt e e 17
USING EEPROIM ...ttt sttt e bt e se e st e et e e se e beemeeeaeenb e et e eneenbeentenneenen 25
How to initiate a software Reset Of A TXMEGA et 26
Using the Watchdog Of A TXMEGA ...ttt st s ee e nne s 26
TC - 16-DIt TIMEITCOUNTEYcoviiieiieesieeie ettt ettt e e e ae e b e e besneesbeebeeneesbeenbeeneesreeeenneas 27
Now we use the RTC - Real Time Counter for generating 1 Second TiICK:cccvviverienieenenieneesenns 28
Using config tcxx to easy configure a PWM With XMEGA ... 28
Easy Frequency Generation With XIMEGAoo ettt 30
XMEGA 12C bzw. TWI iNn MASTER MODEccoiiiieieiesieste ettt s sne e 31
USING @LCD WIth XIMEGA ...ttt sttt st b e st s be et e e se e s beebeeneesbeesesneesneennens 31
Reduce power consumption by setting Power Reduction REQISLEN:..........cccviieriinienieeeee e 34
Using the Event System (first @Xample):ooiiiieeeeee et 34
ATXMEGA 8S SPl IMIBSLENc.veitieieeiieiieieiesie ettt et e e ssestestestesseesesseeseeseessessessessesseaseeseensensensessesss 35
ATXMEGA @SSPl SLAVEttt sttt se e et e st e stentesseebesreeseesenneas 37
Using Dynamic Channels with XMEGA SP ... e 39
POWES MOUE OPLIONSeeieeiieiie sttt et sae e st eete s se e beeaeesseesbeeneesseesbeentesaeesbeeneesneenseeneas 39
VITTUBl PO REGISIEIS. ...ttt sttt sttt e b et e s se e s beebeeseesbeebesneesbeenseeneenaean 39

F N IS @4 V] o1 (0111, o L1 =SSR 40

DMA (DITECE MEIMOIY ACCESS)uviueeieeeesieesteeeasseestessesseessesesssesssesssesseassessssssesssesssesseessesssessesssesssessenns 42

Reading and Writing t0 A TXIMEGA REJISIEIScccueiiiieeiieie ettt see e sne e 47
Great existing Bastcom-AVR A TXMEGA PrOJECES:coiiiiiriiiieie ettt 48

Manuals for ATXMEGA: There are 2 manuals available from ATMEL

1. One Family Manual like for example for a ATXMEGA12&1 it is Atmel AVR XMEGA A Manual

2. Another Manual for the single chips like for example for an ATXMEGA128A1 it is the
ATxmega64A1/128A1/192A1/256A1/384A1 Manual. In this Manual you find for example the
Alternate Pin Functions. So you can find which Pin on Port C is the SDA and SCL Pin when you want to
use the 12C/TWI Interface of this Port.

What you need to get started with ATXMEGA and BASCOM-AVR

1. The latest Bascom-AVR FULL Version (The Demo Version of Bascom-AVR do not support XMEGA).

2. Anevaluation board like the Atmel AVR XMEGA® Xplained evaluation kit or any other XMEGA
evaluation board with PDI (Program and Debug Interface)header .

3. AProgrammer like AVRISP MKIIhttp://www.atmel.com/dyn/products/tools_card.asp?tool _id=3808or
any other PDI or JTAG programmer which support XMEGA.

4. Latest AVR-Studio 4.X http://www.atmel.com/dyn/products/tools_card.asp?tool id=2725mainly for
setting fuse bits and to flash Bootloader to ATXMEGA.

Supported XMEGA Chips in Bascom-AVR (Status of Bascom-AVR Version 2.0.7.2)

ATXMEGA16A4, ATXMEGA16D4, ATXMEGAS32A4, ATXMEGA32D4, ATXMEGAG4A1,
ATXMEGAG4A3, ATXMEGAG4D3, ATXMEGAG62D4, ATXMEGA128A1, ATXMEGA128A3,
ATXMEGA128D3, ATXMEGA128D4, ATXMEGA192A3, ATXMEGA192D3, A TXMEGA?256D4,
ATXMEGA256A3, ATXMEGA256A3B, ATXMEGA256D3

Supported Functions for XMEGA in Bascom-AVR (Status of Bascom-AVR Version 2.0.7.2)

ADC - Analog to Digital Converter
DAC - Digital to Analog Converter
AC - Analog Comparator

Analog Comparator

I/0 Ports

System Clock and Clock options
WDT - Watchdog Timer

Power Management and Sleep Modes
System Control and Reset
Real-time Clock

EBI - External Bus Interface

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3808
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725

Interrupts and Programmable Multi-level Interrupt Controller
DMA - Direct Memory Access Controller

TC - 16-bit Timer/Counter

RTC - Real Time Counter

AWeX - Advanced Waveform Extension

Hi-Res - High Resolution Extension

USART - Universal Synchronous and Asynchronous Serial Receiver and Transmitter
SPI - Serial Peripheral Interface

12C/ TWI - Two Wire Serial Interface

AES Crypto Engine

Memory Programming

1-WIRE functions

The Program and Debug Interface (PDI)

The Program and Debug Interface (PDI) isan Atmel proprietary interface for external programming and on-
chip debugging of adevice.

“The XMEGA doesn’t have the SPI based In-System Programming (ISP) interface for
external programming, which has been used for megaA VR. Nor does it have the
debugWIRE interface. These have been replaced by atwo wire “Programming and
Debugging Interface” (PDI).” [from Atmel App Note A VR1005]

Following the PDI Header Pin out (top view):
Important is also that the A VRISP MKII need 3.3V supply voltage from the Target.

0= g
=03
E; The red stripe marks pin 1(DATA) of
0z < an AVRSIP MKII.
568
Fuse Bits

“The Fuses are used to set important system function and can only be written from an external
programming interface. The application software can read the fuses. The fuses are used to configure
reset sources such as Brown-out Detector and W atchdog, Start-up configuration, JTAG

enableand JTAG user ID.....An unprogrammed fuse or lock bit will have the value one, while a
programmed flash or lock bit will have the value zero..” [ATXEMGA A Manual]

Y ou do not need to change any Fuse Bit to get started except you want to use a Bootloader.

In AVR-Studio select ~ Tools >>> Program A VR >>> Connect...
And choose the programmer:

Flatform:

AR OME! [
STEEDD -
[TEOO

SYRISE mkl| = [
STESOD
JTAGICE mkll .
AvA Dragon i (115200 =
AYRISP R

Connect...

Cancel

Baud rate:

Baud rate changes are
achive immediately.

Tip: To auto-connect to the programmer used lazt time, press the 'Programmer’
button an the toolbar.

Maote that & tool cannot be used for programming as long az it iz connected in
a debugging zeszion. In that caze, select 'Stop Debugging' first.

Digconnected Mode. ..

Then hit Connect... Button and select the XMEGA Type:

"AVRISP ikl m POl e

Main | Frogram I Fuzes | LockBitz I Advanced | Hif Settings | Hiaf |nfo I Ao |

Device and Signature Bytes

(Tmegei a1 8

Ox1E 0437 0x4C

Signature matches zelected device

Programming Mode and Target Settings

FDI miode - S_g_tti_ng_s._.

ISP Frequency:

After thisgo to Tab Fuses:

AVRISP mill in PDI mo

Fuse Y alue

T ol W WS Y

DWSDOM |:|

BOOTRST Boot Loader Reset
BODPD BOD Dizabled
RSTOISBL |:|

SUT 0 ms

WOLOCK

JTAGEM

BODACT BOD Dizabled
EESAVE

BODLYL A

|__Main | F'n:ugram| FUS_E_*S | LockBits | Advanced | Hw Settings | H! Info I Auto |

Now you can flash your first Bascom-AVR Program where you toggle an Output:

$regfile = "xml28aldef. dat"

$crystal = 32000000 ' 32MVHz
$hwst ack = 64

$swstack = 40

$f ranmesi ze = 40

$lib "xmega.lib"

$ext ernal _xnegafi x_cl ear

$ext ernal _xnegafix_rol _r1014

Config Osc = Enabl ed , 32nmhzosc = Enabl ed

"W use internal 32MHz

Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1 "Internal 32MHz, no prescal er

Config Porte.0 = Qut put
Porte.0 = 1
Do
Porte.0 = 0
Wai tus 100
Porte.0 = 1
Wai tus 100
Loop

End

"Porte.0 as Qut put

' 100uSec ON 100uSec OFF

"end program

Copy the example in the Bascom-A VR Environment and hit F7 to compileit.

i ssscownn st BT e
" *-HBSHE P ¥ : s VS T-DE. SEE .0 ? . 0F G,
b Fle Edit View Program Tools Options Window Help

nonamel |[&3

Sub * Label -
1l Sregfile = "zmlZBaldef . dat”
2 $cry=stal = 32000000 '32HH=
3 She=stack = 64
1 Sgw=stack = 40
5 Sframe=size = 40
&
7 $1ib "zEmega.lib"
8 Sexternal _zmegafix clear
9 Sexternal _xmegafix rol rl014
10 Config Oszc = Enabled . 3Zmhzosc = Enabled 'We uze internal 32MHz
11 Config Sy=clock = 3Zmhz . Prescalea = 1 . Prescalebc = 1_1 'Internal 32HHE., no prescaler
12
13 Config PORETE. 0 = Qutput 'Porte.] as Output
14 PORTE. O = 1
15 Do
16 FORTE.O = 0 "100pSec OH 100pSec OFF. | ..
17 Faitus 100
18 PORTE.O = 1
19 Faitus 100
20 Loop
21
22 End 'end program
23
24
25

Here is the screen shot how to program the HEX File generated by Bascom-A VR to the ATXMEGA:

[AVRISP mk in PDI mode with ATxmegal28A1 ==l i)
!E Frogram | Fuses | LockBits I Advanced | HW Settings | Hw! Info I At |
Device
I Eraze] [Erase &pplication "’]
[¥] Eraze device before flazh programming [¥] Verify device after programming
Flazh

[1ze Current Simulatar/Eriulator FLASH temaon
@ |lnput HEX= File C:MProgram FilesSBASCOM -0 BASAMPLE S WEMAK 34 EE E]

Frogram I I “erify] | Read]

EEPROM

The most important parts of an Bascom-AVR Program for XMEGA are:

1. The Register file for the Chip, crystal init and Stacks

$regfile = "xml28aldef. dat"

$crystal = 32000000 ' 32MHz
$hwst ack = 64

$swstack = 40

$f ranesi ze = 40

For more information on $hwstack , $swstack and $framesi ze please read Application Note:
AN #183 - “Reveal the secret of Stack” BASCOM-AVR - Part 1
http://www.mcsel ec.com/index.php?option=com content& task=view& id=286& ltemid=57

2. The xmega.lib and fix

The reason for xmega.lib and fix is following:

“Inthe XMEGA variant, the working register file is not mapped into the data address space; as such, it
is not possibleto treat any of the XMEGA's working registers as though they were SRAM. Instead, the
1/O registers are mapped into the data address space starting at the very beginning of the address space.”
[from Wikipedia)

When the normal libs cannot be used, the alternative special XMEGA code is placed in xmega.lib
For example the print and val/str use these external routines.

$lib "xnmega.lib"
$ext ernal _xnegafi x_cl ear
$external _xnegafix_rol _r1014

3. Enable and configure the oscillator of your choice:

Config Osc = Enabled , 32mhzosc = Enabl ed ' enable 2 MHz and 32 MHz internal oscillators

4. Select the oscillator source for the system clock and prescaler (this must match with $crystal =
XXXXXX). The following configure the internal 32MHz oscillator as system clock without prescaler
so the system clock is 32MHz which match with $crystal = 32000000.

Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1

5. If you intend to use interrupts you need to configure it before you use the Enable Interrupt command.
Bascom-A VR will automatically enable the medium level interrupt when Enable Interrupt is in the code
but not the low and high level interrupts.

Config Priority = Static , Vector = Application , Lo = Enabled , Med = Enabled , H = enabl ed

6. Also when you want to use EEPROM you need to configure it before you can use it:

Config Eeprom = Mapped "Setup nenory node for EEPROM i n XVEGA

7. After this you can add Enable Interrupts and your code in the Main Loop.

http://www.mcselec.com/index.php?option=com_content&task=view&id=286&Itemid=57

Port1/0
The Port pins will be configured set and reset like with ATTINY or ATMEGA devices

Config Porte.0 = Qut put
Config Pine.1 = |nput

And you read it with for example:

if PINE.O = 1 then
"This

El se
' That

end if

What's changed is how to configure for example Pull-up or Pull down:

The Pin Configuration register is used for additional 1/0 pin configuration.

(for example for Porte Pin O the register isPorte_pinOctrl)

A pin can be set in atotem-pole, wired-AND, or wired-OR configuration. It is also possible to enable
inverted input and output for the pin or slew rate l[imiting over this register.

In addition to that you can set the pin sense configuration like rising edge, falling edge or both edges ...

Enable Pull-up:

Porte_pi nOctrl &B00_011 000 ' Pullup

Or

Porte pinOctrl = Bits(3 , 4) ' Pullup

Enable Pull down:

Porte_pi nOctrl &B00_010 000 ' Pul | down

Or

Porte_pinOctrl = Bits(4) ' Pulldown

In the ATXMEGA Manual search forPINNCTRL - Pin n Configuration Register

For a single port you have 8 Register:

PORTE_PI NOCTRL
PORTE_PI N1CTRL
PORTE_PI N2CTRL
PORTE_PI N3SCTRL
PORTE_PI NACTRL
PORTE_PI N5CTRL

PORTE_PI N6CTRL
PORTE_PI N7CTRL

To set more or all register with the same setting you can use MPCMASK register before the Pin Control
register is written:

(MPCMASK - Multi-pin Configuration Mask Register)

The MPCMASK register enables several pins in a port to be configured at the same time.

Port cf g_npcmask = &B00000111 ‘Same setting for Pin 0, 1 and 2

See following Example which is also more readable by using constants for the single Bits:

Bit's of PINNCTRL Regi ster

Const 1scO =0 "I nput/ Sense Configuration O

Const Iscl =1 "I nput/ Sense Configuration 1

Const 1sc2 = 2 "I nput/ Sense Configuration 2

Const (pcO = 3 "Qut put and Pull Configuration O

Const (pcl = 4 "Qut put and Pull Configuration 1

Const pc2 =5 "Qut put and Pull Configuration 2

Const Inven = 6 "Inverted 1/0 Enabl e

Const Srlen =7 '"Slew Rate Limt Enable

Port cf g_npcmask = &B00000111 "Port F Mask

Portf_pinOctrl = Bits(opcl , OpcO , Iscl) ' opc[0. . 2] 011 --> Pull-up (on input)

"isc[0..2] 010 --> FALLING Sense falling edge

External Pin Interrupt
Example for using Pin 0 of Port E as external Interrupt on falling edge

At first enable the Interrupts:

On Porte intO Port e intO__isr
Enabl e Porte_int0 , Lo "Enable this Interrupt as Lo Level Interrupt
Enabl e Interrupts

Configure the Pin as Input:

Config Pine.0 = I nput "Set PINE. O as |nput

Porte_pinOctrl = &B00_011_ 010 " Enabl e Pul lup and reaction on falling edge
LIVAN N
"N Reaction on falling edge

LEVAN

" Enabl e Pul | up

Setup the Interrupt Mask:

Porte intOmask = &B0000_ 0001 "include PINO in INTO Mask

After this you only need a Main Loop and of course an Interrupt Service Routine called
port_E_int0__isr

"Port E INTO Interrupt Service Routine
port _E intO__isr:

Set Pine_0_int_flag
return

System Clock Options (internal and external oscillator options)
Up to now we used the internal 32MHz oscillator. Here we use the internal 2MHz and in addition also

a Prescaler of 2 ending in a 1MHz Clock for the XMEGA.
Don’t forget to set the $crystal = 1000000 according to the other settings.

$regfile = "xml28aldef. dat"

$crystal = 1000000 " 1MHz
$hwst ack = 64

$swstack = 40

$franesi ze = 40

$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol_r1014
Config Osc = Enabl ed

Config Sysclock = 2mhz , Prescalea = 1, Prescalebc = 1_2 ALY, 4

Config Conb = 9600 , Mode = Asynchroneous , Parity = None , Stopbits = 1, Databits = 8
Open "COVG: " For Binary As #1

waitns 5
Print #1
Print #1 , "1Miz Test"
Print #1 , "Prescaler Control Register =" ; Bin(clk_psctrl)
Do
I NOP
Loop
End "end program

After reset, the device will always start up running from the 2 MHz internal oscillator until it will be
changed by Config Osc and Config Sysclock.

That the reason why also following works with $crystal = 2000000 without Config Osc and Config
Sysclock.

But it is always recommended to use Config Osc and Config Sysclock.

$regfile = "xml28aldef. dat"

$crystal = 2000000 ' 2MHz
$hwst ack = 64

$swstack = 40

$f ranesi ze = 40

$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol_r1014

Config Conb = 9600 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COVG: " For Binary As #1
wai tns 5

Print #1

Print #1 , "After reset, the device will always start up running fromthe 2 Mi internal
oscillator"

Do
I NOP
Loop
End "end program
There are also additional nice features for the clock system:
A calibration feature (DFLL) is available, and can be used for automatic runtime calibration of the
internal oscillators.
OGsc_dfllctrl = &00000000 "The internal 32.768 KHz Osc is used for calibration
Set Dfllrc32mctrl.O "Enabl e DFLL and autocal i bration

A Crystal Oscillator Failure Monitor can be enabled to issue a Non-Maskabl e Interrupt and switch to internal
oscillator if the external oscillator fails. The External Clock Source Failure Monitor is

disabled by default, and it must be enabled from software before it can be used.

For this you need to set the OSC_XOSCFAIL Register and the according interrupt OSCFAIL

" enabl e change of protected Registers for following 4 CPU Instructi on Cycles
Cpu_ccp = &HD8
Osc_xoscfail .0 = 1

See also Manual for: XOSCFAIL - XOSC Failure Detection Register

ATXMEGA128A1 with EXTERNAL oscillator 16MHz

It iseasy to configure with Config Osc and Config Sysclock.

$regfile = "xml28aldef. dat"
$hwst ack = 64
$swstack = 40

$f ranesi ze = 40

$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol_r1014
$crystal = 16000000 ' 16MHz
'Enabl e the external oscillator with Range 12MHz.... 16MHz

Config Gsc = Disabled , Extosc = Enabled , Range = 12nmhz_16nmhz , Startup = Xtal _256c¢cl k
Config Sysclock = External , Prescalea = 1, Prescalebc =11 ' EXTERNAL 16MHz

Config Conb = 57600 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COVb: " For Binary As #5

DimB As Byte

Print #5 , "W use external 16MHz oscillator"

' HH B HH R] VA NLOOP] ##### B HHHHHHH TR R HHHHHH B HH A H R R
Do

Incr B
Print #5 , "Test " ; Str(b)
Wit 2
Loop
| fHH T R MAD NLOOP| ###HH T H T R

End "end program

USART - Universal Synchronous and Asynchronous Serial Receiver and Transmitter

Y ou can use and configure up to 8 UARTS with an ATXMEGA128A 1.

Config Coml = 19200 , Mbde = Asynchroneous , Parity None , Stopbits = 1, Databits = 8
Open "COML: " For Binary As #1
Config Conm2 = 19200 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COVR: " For Binary As #2
Config ConB8 = 19200 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COMB: " For Binary As #3
Config Comd = 19200 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COMA: " For Binary As #4
Config Conb = 19200 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COVb: " For Binary As #5
Config Con6 = 19200 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COMB: " For Binary As #6
Config Conv = 19200 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COW/: " For Binary As #7
Config ConB = 19200 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COMB: " For Binary As #8

You can use the serial buffer functionConfig serialin and Config serialout for COM1COM4.
Serial buffer for COM5...COM8 is not supported at the moment.

Don’t forget the interface number like(#3) in the UART functions for example:

| scharwai ting(#3)
I nkey(#3)

Regarding config Serialin and the BYTEMATCH option see following example:

Usi ng CONFI G SERI ALI N and BYTEMATCH wi t h XMVEGA

$regfile = "xnB2addef. dat"

$crystal = 32000000 ' 32MHz
$hwst ack = 64

$swstack = 40

$f ranmesi ze = 40

"include the following lib and code, the routines will be replaced since they are a workaround
$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol_r1014
Config Osc = Disabled , 32mhzosc = Enabl ed ' 32VHz

‘configure the systentlock
Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1

"Config Interrupts
Config Priority = Static , Vector = Application , Lo

Enabl ed ' Enabl e Lo Level Interrupts

" CONFI G coML
Config Coml = 38400 , Mode = Asynchroneous , Parity = None , Stopbits
Config Serialin = Buffered , Size = 20 , Bytematch = ALL

1, Databits

1
(o]

Enabl e USARTQ0_RXC, |o 'Enable Receive Interrupt for COVL

' CONFI G cOwe

Config Con2 = 19200 , Mbde = Asynchroneous , Parity
Config Serialinl = Buffered , Size = 20 , Bytemmtch
Open "COMR:" For Binary As #2

None , Stopbits
66

1, Databits = 8

Enabl e USARTCL_RXC, | o ' Enabl e Receive Interrupt for COWR

Print "----- CONFI G SERI ALI N and BYTEMATCH wi th XVEGA- - - - - "
Enabl e Interrupts

DimBuffer full As Bit
DmIl| As Byte

" HHHH R M NLOOP] ##t#H H R
Do

If Buffer_full =1 Then
Reset Buffer_full ' Reset Fl ag
Print "This is the buffer content: " ;
For I =1 To _rs_bufcountrQ
Print Chr(_rs232inbuf0O(i)) ; "Print the conplete Buffer
Next
Print
Clear Serialin 'O ear Buffer
End |f
Loop

" HHHH R M NLOOP] ###H HH R

' Label called when COML received a BYTE

Seri al Obyt er ecei ved: ' For Bytematch = ALL

Pushal |
Print Str(_rs_bufcountr0) ; " Byte in Buffer" ; "Don't use print in Interrupt Service
Routines. This is only for testing.
Print " Bufferhead = " ; Str(_rs_head_ptrQ) ;
Print " Buffertail =" ; Str(_rs_tail_ptr0)
If _rs_bufcountrO0 = 20 Then Set buffer _full
Popal |
Ret urn

' Label called when COW received a B

Seri al 1char mat ch:
Pushal |
Print #2 , "we got a B"
Popal |

Ret urn

End

Cl ose #2

Using Interrupts with UARTS:

Every of the 8 USART’s has for example a Receive Interrupt.

ATXMEGA128A1.:

COM1 --> UsartcO_rxc
COM2 --> Usartcl_rxc
COMS --> Usartd0_rxc
COM4 --> Usartdl_rxc
COMS5 --> Usarte0O_rxc
COMG --> Usartel _rxc
COM7 --> UsartfO_rxc
COMS8 --> Usartfl_rxc

At first you config the interface

Config Con2 = 19200 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COVR: " For Binary As #2

As with other Interrupts with XMEGA you configure the Receive Interruptthis way:

' Enabl e Receive Interrupt for COML
On Usartcl rxc Rxc_isr

Enabl e Usartcl rxc , Lo

Enabl e Interrupts

Then you need the Interrupt Service Routine:

Rxc_isr:

Rs232 = I nkey(#2)

‘do sonmething with rs232 data
Ret urn

It is important to know that the function Inkey is also resetting the Interrupt flag. So when you not use
Inkey you need to reset the Interrupt flag manual otherwise it fires again and again.

Using Dynamic Channels with XMEGA COM Ports

For the XMEGA UART, you may use a variable that starts with BUART. This need to be a numeric
variable like a byte. Using a variable allows you to use the UART dynamic.

$regfile = "xml28aldef. dat"

$crystal = 32000000 ' 32MHz
$hwst ack = 64

$swstack = 40

$f ranesi ze = 40

$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol_r1014
Config Osc = Disabled , 32nhzosc = Enabl ed ' 32MHz
Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1

Config Conl = 38400 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Config Con2 = 19200 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Config ConB = 9600 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Config Com4 = 38400 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Config Conb = 57600 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Config Conb = 57600 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Config Conv¥ = 57600 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Config ConB = 57600 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
"But when you want to open it then do it this way

Open "COMb: " For Binary As #buart_channel

"Dynamic COM Port Variable nmust start w th BUART

Di m Buart _channel As Byte "0 = COML 7 = COVB

"when using a variable, notice that the index is 0 based !

Buart_channel = 4 ' Channel 4 --> COWb

Print #buart_channel |, " New Li ne

Print #buart_channel , "This use al so COW"

For Buart_channel = 0 To 7

Print #buart_channel , "Hello " ; Buart_channel ; " notice that the index is 0 based" "print
Hello on every COM Port (with configured Baud rate)

VWaitnms 10

Next

End "end program

ATXMEGA and RS-485

CONFIG PRINTO = pin & for COM1
CONFIG PRINT1 = pin & for COM2
CONFIG PRINT2 = pin & for COM3
CONFIG PRINT3 = pin & for COM4

When you use RS-485 half duplex communication you need a pin for the direction of the data. The
CONFIG PRINT automates the manual setting/resetting. It will either SET or RESET the logic level of the
specified pin before data is printed with the BASCOM print routines. After the data is sent, it will
inverse the pin so it goes into receive mode.

You need to set the direction of the used pin to output mode yourself.

' RS- 485 on COWR
Config Con2 = 9600 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COMR:" For Binary As #2

Config Portc.5 = Qut put
Config Printl = Portc.5 , Mdde = Set "This will auto-enabl e/ aut o-di sabl e the
Transmitter (works for print function)

Using a Bootloader with ATXMEGA

Ensure you have set the Fuse Bit: BOOTRST to Boot L oader Reset

AVRISP mkdl in PDI mm:_ln'_ neg
Fuses | LockBits | Advanced | Hw Settings I H! Info I Auto |
Fuze " alue 5
D I e
DWSDOM |:|
BOOTRST Boot Loader Reset B
BODPD BOD Dizabled
RSTOISBL |:|
SUT 0 ms A
WOLOCK |:| 5
JTAGEM |:|
BODACT BOD Dizabled
EESAVE |:|
BODLYL 24 =
i | 1 |k

Here we use an Example for A TXMEGA 256A 3B:

In the datasheet of A TXMEGA256A3B you find underln-System Programmable Flash Program Memory
Where the Boot Section start & $loader = & H20000

Word Address

0 Application Section
(256 KB)
1EFFF
1F000 Application Table Section
1FFFF (8 KB)
20000 Boot Section
20FFF (8 KB)

Use the following Bootloader and flash it with for example ARVISP MKI|

AVRISP millin PDI mode with s

]ml Program | Fuzes | LockBitz | Advanced | Hiw! Settings | Hiaf Info I Ao |
Device
[Eraze] [Erase Application "] h
[/] Erase device before flash programming Yerify device after programming
Flazh

I1ze Current Simulator/E rmulator FLASH Memaony
@ Input HEX File :ga\@ ATHMEGAZBEAIB B ootloadefmegazBEA3E . hey [:]

I Frogram] [Werify] [Read]

[l ol e T})

Bootloader for ATXMEGA256A3B:

(c) 1995-2009, McS
Boot | oader Xnega256. bas
Thi s sanpl e denpnstrates how you can wite your own boot!| oader
i n BASCOM BASI C for the XMEGA

'The | oader is supported fromthe |DE

$crystal = 32000000 ' xmegal28 is running on 32 Mz
$regfile = "xm256A3Bdef . dat"
$lib "xmega.lib" ' add a reference to this lib

"first enabl ed the osc of your choice
Config Osc = Enabl ed , 32nmhzosc = Enabl ed "internal 2 Mz and 32 M4z enabl ed

"configure the systentlock

Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1.1 ' we will use 32 Mz and divide by 1 to
end up with 32 MHz

$l oader = &H20000 ' bootl| oader starts after the application

"this sanple uses 57600 baud and we use here COW

Config Conv¥ = 57600 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
"Portf.2 and Portf.3 is COW

Open "COWF:" For Binary As #1

"Config Portc.3 = CQutput "define TX as out put
"Config Pinc.2 = Input

Const Maxwordbit = 7 " Z7 is mexinmum bit
Const Maxword =(2 N Maxwordbit) * 2 '128

Const Maxwordshi ft = Maxwordbit + 1

Const Cdebug = 0 " leave this to O

"Dimthe used variabl es
DimBstatus As Byte , Bretries As Byte , Bm ncount As Byte , Bblock As Byte , Bbl ockl ocal As Byte
Di m Bcsunl As Byte , Bcsun? As Byte , Buf(128) As Byte , Csum As Byte

DmJ As Byte , Spntrval As Byte ' self program command byte val ue
DimZ As Long "this is the Z pointer word

DmWV As Byte , Vh As Byte ' these bytes are used for the data
val ues

Dmwd As Word , Page As Wrd "these vars contain the page and word
addr ess

Di sabl e Interrupts "we do not use ints

"We start with receiving a file. The PC nust send this binary file

'sone constants used in serial com

Const Nak = &H15
Const Ack = &H06
Const Can = &H18
$ti meout = 300000 'we use a timeout

"When you get LQOADER errors during the upload, increase the tinmeout val ue
"for exanple at 16 Mz, use 200000

Bretries = 5 : Bmncount = 3 "we try 10 tinmes and want to get 123 at
| east 3 tines
Do

Bstatus = Wit key(#1) "wait for the | oader to send a byte

If Bstatus = 123 Then "did we received value 123 ?

If Bm ncount > 0 Then
Decr Bm ncount

El se
Print #1 , Chr(bstatus);
CGot o Loader ' yes so run boot | oader
End | f
El se "we recei ved sone other data
If Bretries > 0 Then "retries left?

Bm ncount = 3
Decr Bretries

El se
Rampz = 0
Coto Proces_reset "goto the normal reset vector at
address 0
End | f
End | f

Loop

"this is the |l oader routine. It

Loader :
Do
Bst at us = Wi t key(#1)
Loop Until Bstatus = 0

Spntrval = &H0 : CGosub Do_spm

Bretries = 10

Do
Csum= 0
Print #1 , Chr(nak);
Do

Bstatus = Wit key(#1)

Sel ect Case Bstatus

is a Xnmodem checksum reception routine

erase all app pages

"nunber of retries

'checksumis 0 when we start
firt tinme send a nack

"wait for statuse byte

start of heading,
i ncrease | ocal
checksumis 1

' get bl ock

"get checksumfirst byte
'get 128 bytes

PCis ready to send
bl ock count

Case 1:
I ncr Bbl ockl ocal
Csum=1
Bbl ock = Wai t key(#1) Csum = Csum + Bbl ock
Bcsunl = Wi t key(#1) Csum = Csum + Bcsunil
For J = 1 To 128

Buf (j) = Waitkey(#1) Csum = Csum + Buf (j)

Next

Bcsun2 = Wi t key(#1)
If Bbl ockl ocal = Bbl ock Then

If BcsunR = Csum Then
Cosub Wit epage
Print #1 , Chr(ack);
El se
Print #1 ,
End | f
El se
Print #1 ,
End | f
Case 4.
transmtted

Chr (nak) ;

Chr (nak) ;

If Wd > 0 Then
page
wd =0
Spner val
End |f
Print #1 ,
Wai tns 20
CGot o Proces_reset
Case &H18:
CGot o Proces_reset
Case 123 : Exit Do
Case 124 : Exit Do
Case E se
Exit Do
End Sel ect
Loop
If Bretries > 0 Then
Wai tms 1000
Decr Bretries
El se
Got o Proces_reset
End | f
Loop

= &4 : Gosub Do_spm

Chr (ack) ;

"wite one or nore pages

' get second checksum byte
"are the bl ocks the sane?

"is the checksumthe sane?
'yes go wite the page

" acknowl edge
'"no match so send nak

" bl ocks do not match

' end of transmission, fileis

"if there was sonething left in the
"Z pointer needs wd to be 0
"wite page

send ack and ready

PC aborts transm ssion
r eady
was probably still

in the buffer

no valid data

attenpte left?

decrease attenpts

reset chip

Wit epage:

For J = 1 To 128 Step 2
M = Buf(j) : Vh = Buf(j + 1)
lds r0, {vl}
lds r1, {vh}

Spncrval = &3 : CGosub Do_spm
Wd = Wd + 2

LS bit of Zis not used
If Wd = Maxword Then

'we wite 2 bytes into a page
'get Low and H gh bytes
"store theminto rO and rl registers

"wite value into page at word address
wor d address increases with 2 because

page is full

wd =0 "Z pointer needs wd to be 0
Spnerval = &4 : CGosub Do_spm "wite page
Page = Page + 1 ' next page
End If
Next
Ret urn
Do_spm
Z = Page "make equal to page
Shift z, Left , Maxwordshift "shift to proper place
Z =7+ Wd "add word
I ds r30,{z}

I ds r31, {Z+1}

#if _ronsi ze > 65536
I ds r24, {Z+2}

sts ranpz,r24 ' we need to set ranpz also for the
ML28
#endi f
Nvm cnmd = Spntrval
Cpu_ccp = &H9D
spm "this is an asminstruction
Do_spm busy:

I ds r23, NVM STATUS
sbrc r23,7 ;if busy bit is cleared skip next instruc tion
rjnmp do_spm busy

Return

Proces_reset:
Ranmpz = 0
Goto _reset "start at address 0O

' How you need to use this program

"1- conpile this program

'2- programinto chip with sanple el ctronics progranmer

'3- select MCS Bootl oader from progranmers

"4- conpile a new program for exanpl e MB8. bas

'5- press F4 and reset your mcro
the programw || now be uploaded into the chip with Xnmodem Checksum
you can wite your own | oader.too

"A stand al one command |ine |oader is al so avail able

"How to call the bootl oader fromyour programw thout a reset ???
' Do
Print "test"
Vaitnms 1000
If Inkey() = 27 Then
Print "boot"
Got 0 &H1CO0
End If
' Loop

'"The GOTO wi Il do the work, you need to specify the correct bootl oader address
"this is the same as the $LOADER statenent.

After this you can use the Bascom-A VR Bootloader:

In Bascom-A VR >>> Options >>> Programmer
Select the MCS Bootloader, the COM Port and Baud rate of Bootloader (in this case 57600)

| | Eompilerl Eommunicationl Em-'iru:nnmentl Simulah:nr| Programmer | koritor | Printer
Prograrnmer [MES Bootloader "’]
Play sound | I
[T] Eraze warning Auto Flash 7] Autaverify Upload Code and D ata
[7] Pragram after compile [7] Set focus to terminal emulatar after programming

Senal | MCS Loader

STES00 ExE |"E:"~F'ru:ugram Files"a%F Taoolzb5 TEE00MSHRE00. exe" f@i]

use | D00200035555 < Timeout 100)

Dk X Cancel

Then goto MCS Loader Tab and choose the Bootsize and Reset

BASCOM-AVR Dptlon_sd . = sl - - -

—
| Cornpiler | Eu:ummuniu:atiu:unl Enviru:unmentl Simulatar | F'T'I'EITEITIITIET; Mu:unltu:url F'rlnterl

Praarararner [MES Bootloader 'l
Flay zound E]
il] Eraze waming [] &sata Flash [Aty [#] Upload Code and Data
[] Pragram after compile [T Set facus ta terminal emulator after prograrmming
E] MCS Loadsr
Boot zize 1024 B F!ESEt
e) MOME
) @ DTR
[¥] Cloze programmer window when read i
St Y |@nts |
[]&sk to send EEP if it exists FSoft @

!/ Ok x LCancel

Reset:

The boot |oader is started when the chip isreset. Thus you need to reset the chip after you have pressed
F4(program). But when you have connected the DTR line to the chip reset (with aMA X232 buffer) you can
reset the chip automatically. Y ou do need to set the 'Reset via DTR' option then. Y ou can also choose to use the
RTSline.

Soft-Reset:

When your program does not use the boot vector or need a special sequence to activate the loader, you can
chose the soft reset. To send ASCII characters you can embed them between brackets{}. For exampl e { 065}
will be sent asthe character A or byte with value 65.

The Soft-Reset needs to be implemented in your regular program so when Bascom-A VR send for example
“>@" the ATXMEGA will reset and jump according the BOOTRST Fuse Bit to the beginning of Boot-Section.

This here isan example for an UART Receive Interrupt Service Routine which check for the “>@” to be sent
from MCS Bootloader. When the defined 2 character received in arow the ATXMEGA will be reseted by
Software Reset.

Recei ve | SR of COVb
Rxc_el isr:
Conb_i n = | nkey(#6) ' Receive data from MCS Boot | oader

"Software Reset when ">@ is received from MCS Boot | oader
If Bootl oader_bit = 1 Then "if ">" was already transmtted
Reset Boot| oader bit
If Conb_in = 64 Then
Cpu_ccp = &HD8 ' enabl e change of protected Registers for
following 4 CPU Instruction Cycles

Rst _ctrl.0 =1
RST_CTRL Regi ster
End I f
End If

If Conb_in = 62 Then Set Bootl oader_b

' Debug out put
Print #5 , Chr(conb_in)
PC (just for testing)

Return

"Initiate Software Reset by setting BitO of

i t run

"print the received data over serial interface to

Now you can program your ATXMEGA d

] BASCOM-AVR IDE [2

irect from Bascom-A VR by click on Program Chip or F4

A-HE S B iy, Fa B . FE e ? =g

‘P Fle Edit View Programn Tools Options Window Help

nonamel.bas |3

|Sub * Label -

| 1 |' Frequency Generation with XMEGA Oﬁtput at PIND.QO
2 Sregfile = "z=nZ5AA3Bdef dat"
3 Scrystal = 32000000 '32MH=
41 Shw=tack = &4
E Szw=stack = 40
it Sframesize = 40
7
8 'include the following lib and code. the routines will be replaced since they arge a workaround
9 $1ib "z=Emega.lib" Sexternal _=zmnegafix clear Sexternal _=megafixz rol rl0ld
10 'fir=t enable the oz=c of your choice
11 Config O=c = Enabled . Fllosc = Di=abled ., Extosc = Disabled . 32khzosc = Dizabled . 32mhzosc = Enabled
12 'configure the =systemnclock
13 Comnfig Svy=clock = 3Zmhz Freszcalea = 1 Frescalebc = 1_1 ' 32MH=
14 'Config Interrupts
15 Config Priority = Static . Vector = Application . Lo = Enabled 'Enable Lo Lewel Interrupts
16 Config Com? = 57600 Hode = Asynchroneous . Parity = Hone . Stopbit=s = 1 Databit=s = 18 'Fortf . 2 ar
17 Open "COM7:." For Binarvy As #2
18
19 Config Esprom = Mapped " when using EEPREOM | add this config command
20 Dim & A=z Word
21 Config FORTD.O = Qutput "Output for Freguencw

Upload Dialog:

“ MCS Bootloader EENEERC

e =

Uploading...

ENNEEE

Loader returned : 123
ploading...

Finizh code : 0

Open COMZ20
Sending Init byte
Loader returned : 123
|Jploading...

m

1

Using EEPROM

After

Config Eeprom = Mapped

you can use following read and write functions for EEPROM.
Write to EEPROM:

My_byte = 11
Witeeeprom M/_byte , O
My_byte = 22

Witeeeprom M/_byte , 1

Read from EEPROM

Readeepr om Read_byte , O " Address O
Readeepr om Read_byte , 1 " Address 1

Or you can use ERAM BYTE:

$regfile = "xnl28aldef.dat" " ATXMEGA32A4 is used for this exanple
$crystal = 32000000

$hwst ack = 100

$swstack = 100

$f ranesi ze = 260

$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol_r1014
Config Osc = Enabl ed , 32nmhzosc = Enabled , 32khzosc = Enabl ed
Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1

" Configure UART for communication with PC (USB)

Config Conb = 57600 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COVG: " For Binary As #1

Config Eeprom = Mapped B

DimB As Byte

Di m Test byte As Eram Byte ' EEPROM Test byt e
Print #1 , "----Start----"

Testbyte = 10 ‘'wite to EEPROM
Wait 1

B = Testbyte ‘read from EEPROM
Print #1 , "B =" ; B "print it

End "end program

How to initiate a software Reset of ATXMEGA:
Before you can write the Software Reset Bit you need to release the write protection for this bit and
register.

" enabl e change of protected Registers for following 4 CPU Instructi on Cycles
CPU_CCP = &HD8

"Initiate Software Reset by setting BitO of RST_CTRL Register

Rst ctrl.0 =1 "When this bit is set a software reset occur

Using the Watchdog of ATXMEGA:

Y ou can use the watchdog between 8ms and 8seconds. The XMEGA watchdog usually need app. 1pA
to work. The drawback of thislow current watchdog is the accuracy so it isimportant to reset the
watchdog early. There is also awatchdog window mode where you need to reset the watchdog between
the specified window times.

$regfile = "xml28aldef. dat"
$crystal = 32000000

$hwst ack = 64

$swstack = 64

$f ranesi ze = 64

"include the following lib and code, the routines will be replaced since they are a workaround
$lib "xnmega.lib"

$ext ernal _xnegafi x_cl ear

$external _xnegafix_rol _r1014

"First Enable The Gsc O Your Choice

Config Osc = Enabled , 32mhzosc = Enabl ed

‘configure the systentlock

Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1

Config Coml = 19200 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8

Config Inputl = & , Echo = OIf ' CRis used for input, we echo back CR
and LF

Open "COML: " For Binary As #1

i ANNN - change from COVIL- COMB

Print #1 , "Xnmega revision:" ; Mu_revid ' make sure it is 7 or higher !'!l |ower
revs have many flaws
Config Wat chdog = 4000 "after 4 seconds a reset will occur if

t he watchdog i s enabl ed
' possi bl e value : 8,16, 32, 64, 125, 250, 500, 1000, 2000, 4000, 8000
'these val ues are clock cycles, based on a 1 KHz clock !!!
DmWAs Wrd , B As Byte
Do
W= W+ 1
Print W
Wait ns 500
B = I nkey()
If B="a" Then
Start Wat chdog
Print "start"
Elseif B = "b" Then
St op Wat chdog
Print "stop"
Elseif B = "c" Then
Confi g Wat chdog = 8000
Print "8 sec"
Elseif B = "d" Then
Reset Watchdog
Print "reset"
End |f
Loop

TC - 16-bit Timer/Counter

The following example show how to use the Timer for Periodic interrupt generation.
We configure the Timer CO as NORMAL (no wave generation) and with Prescaler 1024.

When using 32MHz internal osc the timer runs with 32MHz/1024 = 31250 Hz so every count takes 32us.
For the full 16-Bit it would count to 32us * 65536 = 2.097152 Second

For 1 second we choose TccO_per = 31250 so we have 32us* 31250 = 1 Second

$regfile = "xml28aldef. dat"

$crystal = 32000000 ' 32MHz
$hwst ack = 64

$swstack = 40

$f ranesi ze = 40

$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol _r1014

Config Osc = Disabled , 32mhzosc = Enabl ed "Init oscillator

Config Sysclock = 32nmhz '--> 32M1z

Config Priority = Static , Vector = Application , Lo = Enabled "Init Interrupts

"Serial Interface to PC
Config Conb = 57600 , Mbde = Asynchroneous , Parity = None , Stopbits =1
Open "COVb: " For Binary As #1

, Databits = 8

Print #1 , "Second Tick with Tiner C 0"

"Timer CO

Config TccO = Normal , Prescale = 1024

TccO_per = 31250 ' 32MHz/ 1024 = 31250 --> One Second Tick

On TccO_ovf TcO_isr "Setup overflow interrupt of Tinmer/Counter CO and
nanme | SR

Enabl e TccO_ovf , Lo " Enabl e overflow interrupt in LONPriority

Enabl e Interrupts

B R TR [Main LOOp]-------c-mcmmmmmm e e e oo
Do

I'nop
Loop

-------------------- [Main LOOp]-------c-mcmmmmmm e e e oo
End end program
-------------------- [Interrupt Service Routines]---------c-cmmmmooommonnnnnnoon
TcO_isr

Print #1 , "tick" "Only for testing

Ret urn

Now we use the RTC - Real Time Counter for generating 1 Second Tick:

The clock source option for the RTC are:

- Accurate Internal 32 kHz RC oscillator

- Ultra Low Power Internal 32 kHz RC oscillator
- External 32 kHz crystal oscillator.

And the according Bascom-AVR parameters:
1KHZ_INT32KHZ_ULP 1 kHz from internal 32 kHz ULP
1KHZ_32KHZ_CRYSTOSC 1 kHz from 32 kHz Crystal Oscillator on TOSC
1KHZ_INT32KHZ_RCOSC 1 kHz from internal 32 kHz RC Oscillator
32KHZ_32KHZ_CRYSTOSC 32 kHz from 32 kHz Crystal Oscillator on TOSC

Here we use the accurate internal 32KHz RC oscillatora 1KHZ_INT32KHZ_RCOSC:

$regfile = "xml28aldef. dat"
$crystal = 32000000

$hwst ack = 64

$swstack = 64

$f ranesi ze = 64

$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol_r1014

"First Enable The Gsc O Your Choice , nake sure to enable 32 KHz clock or use an external 32 KHz
cl ock

Config Osc = Disabled , 32nmhzosc = Enabl ed , 32khzosc = Enabl ed

Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1

Config Conb = 57600 , Mbde = Asynchroneous , Parity = None , Stopbits =1
Open "COVG: " For Binary As #1

, Databits = 8
Config Clock = Soft , Rc = 1lkhz_int32khz_rcosc " we select the internal 1 KHz clock fromthe
32KHz internal oscillator

Config Priority = Static , Vector = Application , Lo = Enabled ' the RTC uses LO priority
interrupts so these nust be enabled !!!

Enabl e Interrupts

Print #1 , "Second Tick TEST"

Do
If Rtc_intflags.1 = 1 Then
Set Ric_intflags.1 "Cear the Int Flag
Print #1 , Tinme$ " print the tine
End | f
Loop
End "end program

Using config tcxx to easy configure a PWM with XMEGA

Using PAM wi th XMEGA : Qutput at PIND. O

$regfile = "xnm256A3Bdef . dat"

$crystal = 32000000 ' 32MHz
$hwst ack = 64
$swst ack = 40

$f ranesi ze = 40

"include the following Iib and code, the routines will be replaced since they are a workaround
$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol_r1014

"first enable the osc of your choice
Config Osc = Enabled , Pllosc = Disabled , Extosc = Disabled , 32khzosc = Disabled , 32nhzosc =
Enabl ed ' 32MHz

"configure the systentlock
Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1 ' 32MHz

"Config Interrupts
Config Priority = Static , Vector = Application , Lo

Enabl ed "Enabl e Lo Level Interrupts

"COW = Port CPin 6 and Pin 7

"this sanple uses 57600 baud.

Config Conv¥ = 57600 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
"Portf.2 and Portf.3 is COW

Open "COWF:" For Binary As #2

Config Eeprom = Mapped ' when using EEPROM, add this config command
DmA As Wrd

Config Portd.0 = CQut put "Qutput for PWM

Config TcdO = Pwm, Prescale = 8 , Conparea = Enabled , Resolution = 16
' TcdO --> pwm--> pulse wi dth nodul ati on single slope

Prescale = 8 --> 32MHz/8 = 4MHz

Conpar ea = enabl ed --> Enabl e COWARE or CAPTURE A

Resolution = 16 --> 16-Bit Resol ution

N + +
I I

------ + fmocooooooods
@roococcoocooocancocaaac >

Peri od = 16, 38nfec

' SET Resol ution of PMWM (mn. = &H0003 max. = &HFFFF)

TcdO_per = &HFFFF 'Set Period = FFFF = 65535 --> 65535/ 4MHz =
16. 38nfec

TcdO_cca = 10000 ' 10000/ 4MHz = 2. 5nBec

Print #2 , "----Exanple PWWM w th XVEGA---- - "

Do

Wi t ns 500

' Change TCDO_CCA (Duty Cycle)

TcdO_cca = 20000 ' 20000/ 4MHz = 5ns

VWit ns 500

' Change TCDO_CCA (Duty Cycle)
TcdO_cca = 10000 ' 2. 5m8

Wait 2

"Duty Cycle fromO to 30000 = fromO to 7.5ns
Do

Incr A

TcdO_cca = A

Wai tus 100

Loop Until A = 30000

A=0

Wait 2

Loop

End "end program

Easy Frequency Generation with XMEGA

Frequency Generation with XVEGA : Qutput at PIND. O

$regfile = "xnm256A3Bdef . dat"

$crystal = 32000000 ' 32MHz
$hwst ack = 64

$swstack = 40

$f ranesi ze = 40

"include the following Iib and code, the routines will be replaced since they are a workaround
$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol_r1014
"first enable the osc of your choice

Config Osc = Enabled , Pllosc = Disabled , Extosc = Disabled , 32khzosc = Disabled , 32nhzosc =

Enabl ed ' 32MHz

"configure the systentlock

Config Sysclock = 32nhz , Prescalea = 1, Prescalebc = 1_1 ' 32MHz

"Config Interrupts

Config Priority = Static , Vector = Application , Lo = Enabl ed "Enabl e Lo Level Interrupts

Config Con¥ = 57600 , Mbde = Asynchroneous , Parity = None , Stopbits = 1
"Portf.2 and Portf.3 is COW
Open "COMF:" For Binary As #2

, Databits = 8

Config Eeprom = Mapped ' when using EEPROM, add this config command
DmA As Wrd

Config Portd.0 = Qut put "Qutput for Frequency

Print #2 , "----Exanple Digital Frequency Generation w th XVEGA----- "

Config TcdO = Freq , Prescale = 2 , Conparea = Enabled , Resolution = 16

'"TCD _PER i s not used in Frequency (Waveforngenerati on) node, only the TCX CCX Registers to set the
Peri od of the Digital Waveform

"Digital Wavef orm Generati on

N + +
I I

------ + focoocooooods
@ocococcoocoooconoocoaac >

Period = TCD CCA Regi ster

Prescale = 1 --> 32M+z

Frequency max with TCD_CCA
32MHz/ 4 = 8MHz

Frequency mn with TCD CCA = &HFFFF --> System C ock/2*Prescal er (CCA + 1) = 32MHz/ 2*2(65535 + 1)
= 32MHz/ 4*65536 = 122 Hz

0 --> System C ock/ 2*Prescal er(CCA + 1) = 32MHz/2*2(0 + 1) =

TcdO cca = 0 '"F =8 Miz
Wait 3

TcdO_cca = &HFFFF '"F = 122 Hz
End ‘end program

XMEGA 12C bzw. TWI in MASTER MODE

We use here the 12C/TWI interface of Port C (twt).

In addition the ATXMEGA128A1 also feature I12C Interface on Port D, Eand F.

You can run the different I2C interfaces also with different clock rates like one with 100KHz and the
other one with 400KHz.

Configure the Interface:

DimTw _start As Byte "This Variable is used by the |12C functions

Open "twic" For Binary As #2

"Portc.0 "SDA Pin of Port C (ATXMEGA128A1)

"Portc. 1 "SCL Pin of Port C (ATXMEGA128A1)

| 2cinit #2 "set i2c pins to right state , open collector , pull up activated
Config Twi c = 100000 "Set TW Baud Rate and Enable TW Master

After this you need to add the interface number in this case #2:

| 2cstart #2

| 2cwbyt e Schrei badresse , #2
| 2cwbyt e Spei cheradresse , #2
| 2cwbyte Byte , #2

| 2cstop #2

Or you can do it this way:

Array to wite(l) = Address_bhyte
| 2creceive Array_to wite(l) , 1, 3, #2 ‘Send one byte (address) and read 3 byte

Or:

| 2csend Address_byte , Array_to_send(l) , 4 , #2 ‘send 4 byte

Using a LCD with XMEGA:

Example: 3.3V EA DOGM162 in 4-Bit Mode (2x16 LCD)
http://www .| cd-modul e.com/products/dog.html

http://www.lcd-module.com/products/dog.html

Configurethe LCD

' Har dwar e Connecti ons accordi ng Datasheet 4-Bit Mdde 3.3 Volt and RFW--> G\D

Config Lcdpin = Pin, Db4 = Porte.5 , Db5 = Porte.4 , Db6 = Porte.3 , Db7 = Porte.2 , E = Porte.6 ,
Rs = Porte.7

Config Lcd = 16 * 2 , Chipset = Dogml62v3

Then you can write to the LCD:

Cursor O f Noblink

s

Locate 1 , 3 : Lcd "ATXVEGA128A1"
Locate 2 , 1 : Lcd "EA-DOGM 162 3. 3V"

Another example for using LCD with XMEGA is with a DOGM128x64:

Config VportO = D "Assign Port Dto Virtual Port O to get smaller
and faster code

$lib "gl cdeadognl28x6. | bx" ' specify the used lib
Config Graphlcd = 128 * 64eadogm, Csl = Port0.5, A0 = Port0.3 , Si = Port0.1, Sclk = PortO0.2 ,
Rst = PortO0. 4

' Connections:
"CS1 = PortD.5
" A0 PortD. 3
'Sl PortD. 1
"sclk = PortD. 2
'"Rst = PortD. 4

Then you can use LCDA T function to write to the Display:

"specify the font we want to use

Set font Font 8x8tt "W start with a sam |l er font
Lcdat 1, 1, Tinme$

Lcdat 1 , 64 , Date$

Or show a picture with:

Showpic 90 , 32 , Hone_snall ' Now we show a picture

The picture and font needs to be included after the END:

End "end program

"include the picture data
Home_smal | :
$bgf "hone_smal | . bgf"

"include used fonts
$i ncl ude "font 8x8TT. font"

ATXMEGA und 128x64 Graphic Display: 64128N SERIES from DisplayTech with ST7565R

(c) 1995-2011, MZS

xmL28Al- ST7565R. bas
Thi s sanpl e denpnstrates the ST7565R chip with an Xnegal28Al
Di spl ay used : 64128N SERIES from Di spl ayTech
this is a parallel display with read/wite options

$regfile = "xml28aldef. dat"
$crystal = 32000000

$hwst ack = 64

$swstack = 40

$f ranesi ze = 40

"include the following Iib and code, the routines will be replaced since they are a workaround
$lib "xnmega.lib"

$ext ernal _xnegafi x_cl ear

$external _xnmegafix_rol _r1014

"first enable the osc of your choice
Config Osc = Enabl ed , 32nmhzosc = Enabl ed

"configure the systentlock
Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1

Config Conl = 38400 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8

$lib "gl cdST7565r. | bx" ' specify the used lib

$lib "glcd. | bx" " and this one of you use circle/line etc
"the display was connected with these pins

Config Graphlcd = 128 * 64eadogm, dataport=portj, GCsl1l = Porth.0 , A0 = Porth.2 , rst= Porth.1 , w
= Porth.3 , Rd = Porth. 4, c86=porth.6

cls

Setfont Font8x8tt ' set font

dimy as byte

"You can use | ocate but the colums have a range from 1-128

"When you want to show sonthing on the LCD, use the LDAT comrand
'"LCDAT Y, CO., value

Lcdat 12, 1, "11111111"

Lcdat 2 , 1 , "ABCDEFGH JKL1234"

Lcdat 3, 1, "MCS Electronics" , 1 " inverse

Lcdat 4 , 1, "MCS Electronics"

Wai t ns 3000

Setfont M/12_16 ' use a bigger font

ds

Lcdat 1, 1, "112345678" "a bigger font
VWit ns 3000 " wait

Line(0O , 0) -(127 , 64) , 1 "make |ine
Vitns 2000 'wait 2 secs

Line(0O, 0) -(127 , 64) , O "renove line by inverting the color

For Y =1 To 20

Crcle(30, 30) , Y, 1 ' growing circle
Wai tns 100
Next

End

$i ncl ude "font 8x8TT. font"
$i nclude "ny12_16.font"

Reduce power consumption by setting Power Reduction Register:

"Wth Power_reduction you can shut down specific peripherals that are not used in your application
"Paranters:
aes, dmm, ebi, rtc, evsys, daca, dach, adca, adch, aca, acb, t wi ¢, usartcO, usartcl, spic, hiresc,tcc0O,tccl

Config Power _reduction = Dutmmy , Aes = Of , Twic = Of , Twid = Of , Twie = Of , Aca = Of ,
Adchb = Of , TccO = Of , Tccl = Of , D = Of

Using the Event System (first example):

The Event System in this example easy show after the event configuration that one Port Pin is routed to another
Port Pin. Y ou can see it works even during the W AIT 4 command and there are no PORT READ OR WRITE
commandsintheDo.... Loop! Soitisworking direct in hardware.

This example al so shows how to manual fire an Event

Notice: when you want to measure the Event on PortC.7 you need to know that an event is only one Clock
Cycle so you need an oscilloscope and atrigger to seeiit !

Using the new CONFI G EVENT_SYSTEM functi on

Bascom Versi on 2.0.4.0 or higher

PINC.0 (I NPUT FOR EVENT CHANNEL Q) ---------------- >>> PINC 7 (OUTPUT FOR EVENT CHANNEL O0)
$regfile = "xnB2addef. dat"
$crystal = 32000000 ' 32MHz
$hwst ack = 64
$swstack = 40

$f ranmesi ze = 100

$lib "xmega.lib" :$external _xmegafix_clear : $external _xnegafix_rol_r1014
Config Osc = Disabled , 32mhzosc = Enabl ed ' 32VHz
Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1 '"CPU O ock = 32MHz

Config Coml = 57600 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8

Print
Print "----------- START T--ccccmcmmeceaaas "

" Configure PQO for input, Event triggered on falling edge
Config Portc.0 = | nput

Portc_pinOctrl = &B00_011_ 010

N N

A React on falling edge (010)

U /A

"enabl e Pull up

Select PortC.0 as INPUT to event channel O

Digflt0 =8 --> Enable Digital Filtering for Event Channel 0. The Event nust be active for 8
sanmples in order to be passed to the Event system

Event Channel 1 INPUT = Tiner/Counter Q0 Overfl ow

Event Channel 2 INPUT = Anal og | nput Port A Channel 0

Event Channel 3 INPUT = Real Tiner overflow
Config Event _system = Dummy ,

MuxO0 = Portc.0 , Digflt0 =8, _
Mux1l = TccO _ovf , _

Mux2 = Adca _chO , _

Mux3 = Rtc_ovf

Config Portc.7 = Qut put
" Event Channel 0 Quput Configuration
Portcfg_cl kevout = &0 _0_01_0_0_00 "Qutput on PortC 7 /C ock Qut nust be disabl ed

Print "Minloop -->"

Do
"I MPORTANT: YOU WLL SEE THE PIN CHANGES ALSO DURING WAIT 4 BECAUSE | T USE THE EVENT SYSTEM
Wit 4
"This shows how to manual fire an Event
Set Evsys_strobe.O

Loop

End "end program

ATXMEGA as SPI Master

This sample demonstrates the Xmegal28A1 SPI master mode

There are 4 SPI interfaces on the XMEGA.. Y ou need to specify SPIC, SPID, SPIE or SPIF for SPIx. The value
must be HARD.

The SPI settings for the XMEGA differ from the SPI settings for normal AV R chips.

In order to be able to use the four different SPI interfaces the XMEGA uses a channel which you need to OPEN.
After you have opened the device, you can send/receive datausing PRINT and INPUT.

The SS pin, MOSI and CLOCK pins are set to output mode automatic in master mode.

The SS pin is also made high. The SS pin isonly configured when you have selected SS=FAUTO.

See datasheet for Alternate Pin Functions. For example for SPI on Port E the SSPinis PINE.4

If you need to use adifferent pin for SSor when you need to switch the logic level yourself for SS, and thus you
use the SS=NONE option, you must setup the SS pin, even if you do not useiit, yourself.

Y ou must prevent that the SS pin will be made low in input mode since that will set the SPI into SLA VE mode,
even while it wasin MASTER mode.

When SSisin auto mode, the SS pin will be made low before each SPI transfer and be made high when the SPI
transfer isfinished. SS can be used when multiple slaves are used, or to synchronize data packets.

In Master Mode you can set the SPI Clockrate up to 16MHz with Clockdiv = Clk2 and when using the 32MHz
Clock.

Config Spie = Hard , Master = Yes , Mode = 0, Qockdiv = (k2 , Data order = Msb , Ss = Auto

XVEGA SPI MASTER
xnmega_spi _nast er. bas

Thi s exanpl e should be used with xmega_spi _slave.bas or w th xnega_spi_slave_interrupts. bas

$regfile = "xml28aldef. dat"

$crystal = 32000000 ' 32MHz
$hwst ack = 50

$swstack = 50

$f ranmesi ze = 200

$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol_r1014

TR E LR ELETR GOV C YR G E e e S A E S e A S R E A S S S B R E RS A S E R

Config Osc = Disabled , 32mhzosc = Enabl ed ', 32khzosc = Enabl ed '32MHz and 32KHz
enabl ed
Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1 '"CPU O ock = 32MHz

"Init and enable the DFLL (Digital Frequency Locked Loop) for automatic run-tinme calibration of the
internal 32MHz GCscil | ator

Gsc_dfllctrl = &00000000 "The internal 32.768 KHz Gscillator is used for
calibration

Set Dfllrc32mctrl.O ' Enabl e DFLL and auto calibration

Config Priority = Static , Vector = Application , Lo = Enabled "I nterrupt Setup

B T CONFI GURE TI ME, DATE AND RTC FOR SECOND TICK--------------
Config Date = Dny , Separator = .
Config Clock = Soft , Rc = 1lkhz_int32khz_rcosc "Internal 32KHz

"COM Interface to PC (COVW is PINE. 6 and PINE. 7)
Config Conb = 57600 , Mbde = Asynchroneous , Parity = None , Stopbits =1
Open "COVG: " For Binary As #1

, Databits = 8

config porte.4 = out put 'Sl ave Select Pin
set porte. 4

Dim Sel ect _bit As Bit
Reset Select bit "W start with O

" CONFI G SPI MASTER on Port E

Config Spie = Hard , Master = Yes , Mode = 0, Cockdiv = (k32 , Data _order = Msb , Ss = None

Open "SPIE" For Binary As #10

Dim Array(10) As Byte

"Array(1l) = incremented
Array(2)
Array(3)
Array(4)
Array(5)
Array(6)
Array(7)
Array(8)
Array(9)
Array(10) = 10

O©CoONOUTR~WN

Const Start_of frame = 111

Do
' Second Tick from RTC
If Rc_intflags.1 = 1 Then
Set Ric_intflags.1 "Cear the Flag
Incr Array(1)
" SEND 10 BYTE ARRAY TO SLAVE
Reset Porte. 4 ' Sel ect Sl ave
Print #10 , Start_of _frame ; Array(1l) , 10 "SEND Start Byte then ARRAY WTH 10 BYTES
Set Porte. 4 ' Desel ect Sl ave
Print #1 , Array(1) "Print Bto Serial PC connection
End If
Loop
End "end program

ATXMEGA as SPI SLAVE

The max. SPI Clock Ratein SLAVE MODE is32MHz/CLK4 = 8MHz

' SPI SLAVE US| NG | NTERRUPTS

xmega_spi _sl ave_interrupt. bas shoul d be used with xmega_spi _master. bas

"This here is the Qutput of this exanple (when used with xmega_spi_naster.bas):

------ XMEGA AS SPI SLAVE using Interrupts------
Received Array = 111,212,2,3,4,5,6,7,8,9, 10
Received Array = 111,213,2,3,4,5,6,7,8,9, 10
Received Array = 111,214,2,3,4,5,6,7,8,9, 10
Received Array = 111, 215,2,3,4,5,6,7,8,9, 10
Received Array = 111,216, 2,3,4,5,6,7,8,9, 10
Received Array = 111,217,2,3,4,5,6,7,8,9, 10
Received Array = 111,218,2,3,4,5,6,7,8,9, 10

")

$regfile = "xnB2addef. dat"

$crystal = 32000000 ' 32MHz
$hwst ack = 100

$swstack = 100

$f ranesi ze = 100
$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol _r1014
Config Osc = Enabl ed , 32nmhzosc = Enabl ed

Config Syscl ock = 32nhz '--> 32MHz
Config Priority = Static , Vector = Application , Lo = Enabl ed

"Serial Interface to PC

Config Conl = 57600 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8

CONFI G SPI SLAVE on Port C

d ock cones from SPI Master (Maximumclock rate a XMEGA Sl ave can handl e i s when MASTER C ock
rate i s CLK4)
Config Spic = Hard , Master = No , Mode = 0 , Data_order = Msb ' XMEGA SPI SLAVE
Open "SPIC' For Binary As #10

Print "------ XMEGA AS SPI SLAVE using Interrupts------ "

On Spic_int Spi_data_avail able
Enable Spic_int , Lo
Enabl e I nterrupts

Di m Spi _data(11l) As Byte

DmB As Byte , | As Byte
Dim Spi _data_ready As Bit

Do
If Spi_data_ready = 1 Then
Reset Spi _data_ready
Print "Received Array = " ;
For B =1 To 10
Print Spi_data(b) ; "," ;
Next
Print Spi_data(11)
End If
Loop
End "end program

"SPI Port C lInterrupt Service Routine
Spi _data_avai |l abl e:
Incr |
Spi _data(i) = Spic_data 'Read the SPI Data Register

If | =11 Then
] =20
Set Spi_data_ready
End |f
Ret urn

Using Dynamic Channels with XMEGA SPI

TouseaV ariable as Dynamic Channel you must DIM a byte which start with BSPI.
Bspivar =0 ----> SPI Port C
Bspivar = 1 ----> SPI Port D
Bspivar =2 ----> SPI Port E
Bspivar = 3 ----> SPI Port F

In case of Bspivar = 1itis SPI of Port D.

Di m Bspi var As Byte , Ar(4) As Byte , WAs Wrd

Bspivar =1

Config Spic = Hard , Master = Yes , Mode = 0, Cockdiv = O k2 , Data_order = Msb
Config Spid = Hard , Master = Yes , Mode = 1, Cockdiv = (k8 , Data_order = Lsb
Config Spie = Hard , Master = Yes , Mode = 2 , Cockdiv = (k4 , Data_order = Msb
Config Spif = Hard , Master = Yes , Mode = 3, Cockdiv = (k32 , Data_order = Mb
Open "SPIC' For Binary As #10

Open "SPI D' For Binary As #11

Open "SPIE" For Binary As #12

Open "SPIF" For Binary As #13

Open "SPI" For Binary As #bspivar ' use a dynami c channel

'SPl channel only suppor PRI NT and | NPUT

Print #10 , "to spi" ; W
| nput #10 , Ar(1) , W
Print #bspivar , W

| nput #bspivar , W

Power Mode Options

Sleep modes enables the microcontroller to shut down unused modules to save power. When the device enters sleep
mode, program execution is stopped and interrupts or reset is used to wake the device again.

Only Asynchronous Port Interrupts and TWI(I2C) Address match interrupts can wake up an ATXMEGA from PowerDown
mode.

Examples:

Power power down

or

power Power Save

PowerDown mode with All Functions Disabled at 3.0V olt Vcc need just 0.1p4A current consumption.

Virtual Port Registers

“Virtual port registers allow for port registersin the extended 1/0 memory space to be mapped virtually
in the I/0 memory space. When mapping a port, writing to the virtual port register will be

the same as writing to the real port register. This enables use of 1/0O memory specific instructions

for bit-manipulation, and the 1/0 memory specific instructions IN and OUT on port register that
normally resides in the extended I/O memory space. There are four virtual ports, so up to four

ports can be mapped virtually at the same time. The mapped registersare IN, OUT, DIR and
INTFLAGS.” [from ATXMEGA A Manual]

$regfile = "xml28aldef. dat"
$crystal = 32000000

$hwst ack = 64

$swstack = 40

$f ranesi ze = 40

$lib "xmega.lib" :$external _xmegafix_clear :$external _xmegafix_rol_r1014
Config Osc = Enabled , 32mhzosc = Enabl ed
Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1

Config Coml = 19200 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Print "Map VPorts"

"map portD to virtual portO, map portE to virtual portl, map portC to virtual port2
"map portRto virtual port 3

Config Vport0O = D, Vportl = E, Vport2 =C, Vport3 =R

"Each virtual port is available as PORTO, PORT1, PORT2 and PORT3

‘"data direct is available as DDRO , DDR1L, DDR2 and DDR3

"PINinput is available as PINO , PINL, PIN2 and Pl N3

' The advantage of virtual port registers is that shorter asminstruction can be used which also use
only 1 cycle

Dim Var As Byte

'"Real Port Direction

Ddr1 = &B0000_0000 ' Port E = I NPUT
DdrO = &B1111_ 1111 ' Port D= QUTPUT
' Continously copy the value from PORTE to PORTD using the virtual ports.
Do
Var = Pinl 'Read Virtual Port O
Port0 = Var "Wite Virtual Port 1
Loop

End 'end program

AES Crypto Module

“The AES Crypto Module encrypts and decrypts 128-bit data blocks with the use of a 128-bit key.
The key and data must be loaded into the module before encryption/decryption is started. It
takes 375 peripheral clock cycles before encrypted/decrypted data can be read out.” [XMEGA A Manual]

This function only works for XMEGA chips that have an AES encryption unit 128 bit encryption is used.

Keydata must hold the 16 Byte key.

Ar(1) isthe Array of data which you want to encrypt. This array also hold the encrypted data after encryption.
The 32 isthe number of bytes which you want to encrypt. It is important that this is a multiple of 16 soonly 16,
32,48....... is valid.

AESENCRYPT Keydata , Ar(1) , 32

AESDECRYPT key, var , size

Y ou can also use it as a function. Then the variable targ will contain the encrypted/decrypted data.

targ = AESDECRYPT (key, var , size)

targ = AESENCRYPT (key, var , size)

" (c) 1995-2010, MCS
' xml28- AES. bas
' This sanpl e denonstrates the Xnegal28Al AES encryption/ decryption

$regfile = "xml28aldef. dat"
$crystal = 32000000

$hwst ack = 64

$swstack = 40

$f ranesi ze = 40

"include the following lib and code, the routines will be replaced since they are a workaround
$lib "xnmega.lib"

$ext ernal _xnegafi x_cl ear

$external _xnegafix_rol _r1014

"first enable the osc of your choice
Config Osc = Enabled , 32mhzosc = Enabl ed

‘configure the systentl ock
Config Sysclock = 32nmhz , Prescalea = 1, Prescalebc = 1_1

Config Coml = 38400 , Mbde = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8

' $external _aes_enc

Di m Key(16) As Byte ' roomfor key
Dim Ar(34) As Byte

Dim Arenc(34) As Byte

DimJ As Byte

Print "AES test"

Rest or e Keydat a
For J =1 To 16 ' load a key to nenory
Read Key(j)

Next

‘| oad sone data

For J =1 To 32 "' fill sone data to encrypt
Ar(j) =1J

Next

Aesencrypt Keydata , Ar(1) , 32
Print "Encrypted data"

For J =1 To 32 "' fill sone data to encrypt
Print Ar(j)
Next

Aesdecrypt Keydata , Ar(1) , 32

Print "Decrypted data"

For J =1 To 32 "' fill sone data to encrypt
Print Ar(j)

Next

Print "Encrypt function"
Arenc(1l) = Aesencrypt(keydata , Ar(1l) , 32)

For J =1 To 32 "' fill sone data to encrypt
Print Ar(j) ; "-" ; Arenc(j)
Next

Print "Decrypt function"
Ar (1) = Aesdecrypt(keydata , Arenc(l) , 32)

For J =1 To 32
Print J; ">" ; A(j) ; "-" ; Arenc(j)
Next

End

Keydat a:
Data1, 2, 3, 4,5,6, 7,8, 9, 110, 11, 12, 13, 14 , 15, 16

DMA (Direct Memory Access)

“The Atmel XMEGA Direct Memory Access Controller (DMAC) isahighly flexible four channel
DMA Controller capable of transferring data between memories and

peripherals with minimal CPU intervention. While the CPU spends time in low-power

sleep modes or performs other tasks, the XMEGA DMA offloads the CPU by taking

care of mere data copying from one area to another.” [XMEGA AppNote]

The DMA has four independent channels which can be set over separate control and status registers.

This can be done in one configuration.with Config DmachX:

‘you can configure 4 DVA channel s

Config DmachO = Enabled , Burstlen = 1 , Chanrpt = Enabled , Tci = Lo, Eil = Lo, Singleshot =
Enabled , _

Sar = Burst , Sam= Fixed , Dar = Transaction , Dam= Inc , Trigger = &HAB , Btc = Array_size ,
Repeat = 0 , Sadr = Varptr(usartfO_data) , Dadr = Varptr(receive_array(1l))

Burstlen =1 & 1 byte burst mode. The DMA transfer start after each byte.
Chanrpt = Enabled & In repeat mode, this bit is cleared by hardware in the beginning of the last block transfer.

Tci=Lo, Eil =Loa Low Level Interrupts for Channel Transaction Complete and for DMA Channel Error
The Transaction isin this example is completed when all 8 Bytes are transferred in 1-Byte single shot transfers.

Singleshot = enabled & By enabling Single Shot each trigger will compl ete one data transfer instead of a block
transfer. The channel will do aburst transfer of Burstlen bytes on the transfer trigger (in this example each
trigger will generate atransfer of 1 Byte from USART EO to SRAM (Receive_Array)).

Sar = Burst & Source Address Reload after each Burst. In this example here after each Byte.

Sam = Fixed & Source Address Mode: The source address remains the same (it isthe USART FO Data)

Dar = transaction & Channel Destination Address Reload: DMA destiny address register is reloaded with initial
value at the end of each transaction (it start again with receive_array(1))

“For applications where dataisto be stored in an array, the DMAC can be configured to increase or decrease
the destination address after each byte access. Similarly, when datais to be retrieved from an array, the DMAC
can be configured to increase or decrease the source address after each byte access.” [A TMEL AVR1304]

Dam = Inc & Destination Address Mode: INC means he address is incremented by one. In this example we
want to fill the Receive Array byte by byte.

Trigger = &HAB & Inthefollowing example the DMA should be started by a Receive Compl ete trigger of
USART FO. Tofind the value search forDMA Trigger Sourcesinthe ATXMEGA A Manual.

There you find the TRIGSRC base V alue in case of USART FO DMA triggers base value = & HAB

Then you need to add the DMA Trigger sources offset V alue. For the Receive Complete (RXC) it is &HO0O so
thetrigger is& HAB.

Btc = Array_sizea Block Transfer Count: The BTC represents the 16-bit value TRFCNT.

“The concept of aBlock Transfer in this context refers to the operation of performing all datatransfers
necessary to transfer the number of bytes given by the block size” [ATMEL A VR1304]

This 16-Bit Register allows up to 64Kbyte Block Transfer Count. Y ou can extend this 64K byte with the Repeat
Counter.

Repeat = 0 & REPCNT counts how many times a block transfer is performed. For each block transfer this
register will be decremented.

Sadr = V arptr(usartfO_data) & Source Address is the address of the DMA source. With V ARPTR(X) you get
the address of avariable in this case the address of the usartfO_data register.

Dadr = V arptr(receive_array(1)) & Destination address. The destination address in this case it the address of
Reiceive _array(1).

Block Transfer Count (TRFCNT)
BTC= Array_size=8

|

I'l
T

Burst = 1-Byte (can be 1,2,4 or 8)
Burstlen=1

! |
l')

DMA Transaction is in this case 8 Byte

(Repeat =0)
SOURCE ADDRESSING DESTINATION
USART FO Receive Array(1)
Receive Data (Byte)

Receive_array(8)

Receive array(4
Receive array(3
(2
(

Receive array(1

Receive array

)
)
)
)

UART DATA BYTE DMA Channel 0

No Source Address increment Destination Address is incremented
Needed. It is always the same

address.

Inc

DMA Transaction

A complete DMA read and write operation between memories and/or peripheralsiscalled aDMA transaction.
A transaction is done in data blocks and the size of the transaction (number of bytes to transfer) is selectable
from software and controlled by the block size and repeat counter settings. Each block transfer isdivided into
smaller bursts Block Transfer and Repeat The size of the block transfer is set by the Block Transfer Count
Register, and can be anything from 1 byte to 64 KBytes.

A repeat counter can be enabled to set anumber of repeated block transfers before atransaction is compl ete.
The repeat is from 1 to 255 and unlimited repeat count can be achieved by setting the repeat count to zero.

With Burstlen = 1 the DMA Channel start on every Byte that comesin over USART FO.

Four-byte burst mode Block size: 12 bytes Repeat count: 2

/ i

/ K
|| ¥ e — i i =
. A . A
T V
Data Transfer Block Transfer
. o

”
DMA Transaction

Burst Transfer

Asthe AVR CPU and DMA controller use the same data buses a block transfer is divided into smaller burst
transfers. The burst transfer is selectableto 1, 2, 4, or 8 bytes.

This meansthat, if the DMA acquires a data bus and atransfer request is pending it will occupy the bus until all
bytes in the burst transfer is transferred.

A bus arbiter controls when the DMA controller and the A VR CPU can use the bus. The CPU always has
priority, so aslong as the CPU request access to the bus, any pending burst transfer

must wait. The CPU requests bus access when it executes an instruction that write or read datato SRAM, 1/0
memory, EEPROM and the External Bus Interface

UART FO over DNA to SRAM

Serial Input Buffer over DVA

The Data over UART FO will be stored in receive_array with array_size

Every (array_size = 8) 8 Bytes the DVA Trasaction Conplete Interrupt is fired and you can
anal yze the data with for exanple a term nal program

So there is no interrupt or CPU interventi on needed during receiving bytes from UART which is

especially nice with big data streans from Serial Interfaces
In this exanple a DVA interrup is initiated after 8 Bytes

"$regfile = "xnl28aldef. dat"

$regfile = "xnR56a3bdef. dat"

$crystal = 32000000 ' 32MHz
$hwst ack = 64

$swstack = 40

$f ranmesi ze = 40

$lib "xmega.lib" : $external _xmegafix_clear : $external _xnegafix_rol _r1014

Config Osc = Enabl ed , 32nmhzosc = Enabl ed
Config Syscl ock = 32nhz '--> 32MHz
Config Priority = Static , Vector = Application , Lo = Enabl ed "Interrupts

"Serial Interface to PC
Config Con¥ = 57600 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Open "COWF:" For Binary As #1

Print #1 , "UART FO (COW) over DVA to SRAM
const array_size = 8

dimreceive_array(array_size) as byte
di mdna_ready as bit

di m dna_Channel _O_error as bit

dimx as byte

" DVA Interrupt
On Dre_chO Dma_chO_int
"Interrupt will be enabled with Tci = XX in Config DVAX

Config Dma = Enabl ed , Doubl ebuf = Disabled , Com = ChOrr 123 ' enabl e DVA,

"you can configure 4 DVA channel s

Config DmachO = Enabled , Burstlen = 1 , Chanrpt = Enabled , Tci = Lo, El = Lo, Singleshot =
Enabl ed ,

Sar = Burst , Sam = Fixed , Dar = Transaction , Dam= Inc , Trigger = &AB , Btc = Array_si ze ,
Repeat = 0 , Sadr = Varptr(usartfO_data) , Dadr = Varptr(receive_array(1l))

" USART FO DVA triggers base value = &HAB + Receive conplete (RXC) &HOO --> &HAB
"Note that unlimted repeat count can be achieved by enabling repeat node and setting the repeat
count to zero (Chanrpt = Enabl ed and Repeat = 0)

'Destination Address of Array will be reloaded after each Transaction (Dar = transaction)

Enabl e I nterrupts

if dma_ready = 1 then
reset dna_ready

print #1 , "--------- "
' Do sonething with the data here.....
" like Print Results back to COML
for x =1 to array_si ze
Print #1 , Chr(receive_array(x)) ; "/" ;

Next
Print #1 ,
end if
Loop
End "end program

" Dma_chO_int is for DVA Channel ERROR Interrupt A N D for TRANSACTI ON COVPLETE I nterr upt

Wi ch Interrupt fired nust be checked in Interrupt Service Routine
Dma_chO_int:

If Dra_intflags.0 = 1 Then ‘Channel 0 Transaction Interrupt Fl ag
set Dna_intflags.0 'dear the Channel 0 Transaction Conplete flag
Set Dma_r eady

end if

If Dra_intflags.4 = 1 Then 'Channel 0 ERROR Fl ag
set Dna_intflags.4 'Clear the flag
set dma_Channel 0 _error " Channel 0 Error

end if

Ret urn

If you run this example and use aterminal program you can send 8 characters like “ 12345678 and when you
typethe“8” the DAMA transaction complete will be set and the characters will be print back separated by “/”

SirnpleTerm S
7 Simp x|

File Actions Options 7

Be e A Y

Connect Dizconnect Settings... Gluit About...
INCOMING TERT
TART FO (COM7) ower DMa to 3RAM

Liz/3/d750a7/8/)

COUTGOIMG TERT
12345678

Connected to 'S\ ACOMZ20" ATE00,8.M.1 wMone - SwcMon

Reading and Writing to ATXMEGA Registers

If you want or need to write or read A TXMEGA Registers direct you just need to find the name by using the
ATXMEGA DAT file.

For example if you want to read the ATXMEGA Revision there is the register Mcu_revid

Inthe DAT Fileyou find it under MCU —MCU Control

EEE S R Rk o Rk S Rk Ik kR R R R I ok kR
’

** MCU - MCU Control

EEE S R Rk I o Rk S R Rk b bk kR Rk kS kR Rk
’

MCU_DEVI DO
MCU_DEVI D1

144 ; Device ID byte O
145 ; Device ID byte 1

MCU DEVID2 = 146 ; Device ID byte 2
MCU REVID = 147 ; Revision ID
MCU JTAGUID = 148 ; JTAG User ID

MCU MCUCR = 150 ; MCU Control
MCU_EVSYSLOCK = 152 ; Event System Lock
MCU AVEXLOCK = 153 ; AWEX Lock

Then you can read it for example with:

Sel ect Case Mcu_revid

Case O:

Print #1 , "Rev = A"
Case 1:

Print #1 , "Rev = B"
Case 2:

Print #1 , "Rev = C'
Case 3:

Print #1 , "Rev = D'
Case 4.

Print #1 , "Rev = E"
Case 5:

Print #1 , "Rev = F"
Case 6:

Print #1 , "Rev = G
Case 7:

Print #1 , "Rev = H'
Case Else

Print #1 , "Rev = > H' ; Mu_revid
End Sel ect

Take care with protected registers. Before you can write to this registers you need to release it like with
Software Reset:

" enabl e change of protected Registers for following 4 CPU Instructi on Cycles

CPU_CCP = &HD8
Rst ctrl.0 =1 "When this bit is set a software reset occur

If you have feedback or a question regarding this App Note go to Bascom-A VR Forum:
http://www .mcsel ec.com/index2.php?option=com_forumé& Itemid=59

Great existing Bascom-AVR ATXMEGA Projects:

Following isavery nice ATXMEGA project:
AN #187 - kiXAHRS ONE: Atmel Xmega Al and Sensors Xplained
http://www.mcsel ec.com/index.php?option=com_content& task=view& id=295& Itemid=57

TFT Display 240x320 65536 Colorswith Controller 1L19320 or SPFD5408
By user SIX1

http://www .koecher-web.de/media/12-Display 320x240.zip

AVI Soft

http://www.six1.net/bascom/____AVI.zip

http://www.mcselec.com/index2.php?option=com_forum&Itemid=59
http://www.mcselec.com/index.php?option=com_content&task=view&id=295&Itemid=57
http://www.koecher-web.de/media/12-Display_320x240.zip
http://www.six1.net/bascom/___AVI.zip

ATXMEGA Bootloader with AES Encryption

By user reinhars

http://www.mcsel ec.com/index2.php?option=com_forumé& Itemid=59& page=viewtopic& p=47902#47902
(Y ouwill find thisalso in the Bascom-A VR Samples folder)

List of References:

http://bascom-forum.de/showthread.php?2198-A TXMEGA -kl ei nes-einmal ei ns-Erste-Schritte-mit-A Txmega
www .amtel.com

MAK3

ATMEL Manuals and Application Notes

MWS

http://www.mcsel ec.com/index2.php?option=com_forumé& Itemid=59

http://www.mcselec.com/index2.php?option=com_forum&Itemid=59&page=viewtopic&p=47902#47902
http://bascom-forum.de/showthread.php?2198-ATXMEGA-kleines-einmaleins-Erste-Schritte-mit-ATxmega
http://www.amtel.com
http://www.mcselec.com/index2.php?option=com_forum&Itemid=59

