@EEEECEEEEEECECEECECAREACAEEECEERERECEEEECACAEEREREEERECAEEERPEPERECEEREREEPEERE
@EEEEEEEEERECECEECEEEEREEAEP @EEEEREEEEREEEERECEEEEREEEEEE
@EEEEEEEEECERECEREREREEEEE@ [Speck Drum AR7212] (EEEEEEEEEEEEEEEEEEEEEEEEEEEE
@EEEEREEEEPECECEEEEEAEEEEA@ by Kiedro 2009-2010 @EEEEECEEEECEEEEEECEEEECEEEEEE
@EEEEREEEERECECEECEEEEREEAE @EEEEREEEEREEEERECEEEEREEEEEE
(EEEECECRERECACEECACAEEACAEEECECRERECECEECACEERACAREERECAEEECAERERACRERACREEEERR

Brief legal notice: No responsibility is taken by the author whether the software
is operative and applied in a legal and peaceful context. The author appreciates
a notification of bona fide applications at Natalius (without space) 272 (at)
yahoo (dot) de. For commercial applications: Contacting the author is a must.

Please direct technical questions on the software and hardware of this project
to the Bascom AVR forum at MCS Electronics. Always use the term AR7212 in the
subject line of your contribution. I'm happy to help (if I can) - things are
at the forum however.

—————————————————————————————————— [Purpose]--------------““- oo
"An Atmega 1280/2560 takes the input from 2 Spektrum Remote Receivers (satellite
'receivers bound to a single DX7 radio before) to compute 12 servo output channels
'at high resolution (16 bit fast PWM).

'The DX7 may be used "off the shelf". After having entered the model name, set it
'to basic ACRO. No further programming is required. All intelligence

''is onboard, and all programming (servo center position, servo travel limiters,

'mixer adjust) is done with the help of the AR7212 programmer, a PC program con-
'nected to the board via USB while on ground. EXPO and DUAL RATE functions may
"however be set on the DX7.

'As the code for Speck Drum AR7212 was developened from what I call Cell-RC project
"the board software can be expanded to act as a UAV GPS autopilot sending and

''receiving data to a ground station either via GSM or via a 433 MHz ISM link.

'These extensions will be the subject of a future application note at MCS.

———————————————————————————————— [Applications]------------------------ -
'Large full-house RC sailplanes and motorized aircrafts with 7-12 servo channels

'"required. FPV controlled RC planes with 5.8 GHz equipment. Robotic applications of

'Spektrum radio links. UAV applications based on Spektrum radio links.

---------------------- [Development boards and clock speed]--------------------
'Note that the AR7212 has been implemented using a number of different boards.
'The original design is based on a commercially available module (Crumb2560)
'connected to a breadboard servo connector via flat ribbon cable. It needs both,
'5V for the 2560 and 3.3V for the Spektrum satellite receivers. The Crumb2560-
"based AR7212 runs with 14.7456 MHz clock speed and has been tested in the air
'for more than 15 hours using a motorized Tangent Alpina 4001 CME. No failure or
'malfunction during 29 flights in the 2009 season. Soldering instructions can
'be found below, no Autopilot extensions however.

'Three AR7212 boards for Autopilot entensions were developed by Ralf Kull. The
"first (AR7212_A) is a two voltage solution providing the 3.3 V exclusively to
'the Spektrum satellites, while operating the ATmega 2560 at 14.7456 MHz and 5 V.
'The 2nd board (AR7212_B) is a single voltage solution which provides 3.3V to
'all external and onboard components. The board allows JST-ZH connector plug-in
"for 2 Spektrum satellites, GPS, a 2nd link, 2 FMA Copilot CPD4 IR-Sensors, and
'further analog sensors. It is based on the Atmega 1280 running at 11.0592 MHz
'clock speed, viz. slightly overclocked. While the clockspeed-voltage ramp of
"the 2560 allows frequencies above 8 MHz at 5V only, the 1280 benefits from a
'later fab process resulting in a more flexible frequency voltage ramp.

'Thus slight overclocking is expected to be "in range" for almost any 1280 chip
'brought to the market today. We nevertheless recommend to do extensive air
'tests on planes of the MPX-Cularis class before moving to advanced platforms.
'"NOTE THAT AR7212_B IS DESCRIBED IN THE APPLICATION NOTE 17.. AT MCS ELECTRONICS.
'The latest board (RX-12) is a redesign of AR7212_B with respect to the port

'"assignments, the voltage regulator, the servo connector and JST-ZH plug in. The

'board does not anymore allow direct plug-in of Spektrum satellites and is meant
'to serve as a platform for those who would like to adopt the software for non-
'Spektrum based satellites.

"An AR7212 based on the Xmegal28Al is currently in development.It makes use of
'a commercially available module (Xmega-Al-USB). The code for the Xmega below is

'"currently only operative for servo PWM synthesis. Support for high speed UART

'"communication will be added later once serial ring buffers are supported by Bascom.

'o== ==> SET UP THE BOARD AND CRYSTAL HERE <==
' =============== > THIS IS THE ONLY THING YOU NEED TO DO <=========
'Const Ver_board = 0 'Crumb 2560
'$regfile = "m2560def.dat"

'Const Ver_board = 1 "AR7212_A Ralf Kull (2560)

'$regfile = "m2560def.dat"

Const Ver_board = 2 'AR7212_B Ralf Kull (1280)

$regfile = "ml28@def.dat"

'Const Ver_board = 3 'Xmega-Al-USB
'$regfile = "kixml128Aldef.dat"

'Const Ver_board = 4 'AR7212_C Ralf Kull (1280)

'$regfile = "ml280@def.dat"

'Const Ver_cryst = 0 '14.745600 MHz
Const Ver_cryst =1 '11.059200 MHz
'Const Ver_cryst = 2 '16.000000 MHz

'Const Ver_cryst = 3 '32.000000 MHz

'Const Ver_uarto = 0 '"USB and Telit GM862 as 2nd
link

Const Ver_uarte =1 'USB and HAC UM96 as 2nd link
'Const Ver_press = 0 'MPX4115

Const Ver_press =1 'SPC1000-PO1 (SPI)

'Const Batadc = © 'not used right now

B T [Software Extensions in preparation]-----------------------
''Extension 1: GPS, pressure sensor (altitude) and 2 Co-Pilot sensor modules
""from FMA direct for flight stabilization and radio controlled waypoint setting.
''""Stay where you are"/airparking option. "Return home" option. "Learn to fly"
''option. PC only required at home.

'"Extension 2: 2 x Hac UM96 modules or other 2nd links and PC interface.

'"All options of extension kit 1 plus PC control with telemetry, course re/setting

'"and GPS tracking on anything that is covered by Google Maps. 500 m range limitation.

'"Autothermaling and autonomous lift finding option. PC required at field.
'"Extension 3: 2 x Telit GSM/GPRS modules and PC interface. Range limitation
''only by cell phone coverage. OBEYING THE VISUAL FLIGHT RULES IS A MUST.

'"Note that the above extensions were tested on a MPX Easystar using a pre-AR7212
''board earlier (actually already in 2006-2007), but need more testing here and
'"thus will be published AFTER the test-phase IN THE AIR.Note that the definition
''of constants and global variables als well as the declaration of subs and
'"functions are already included here.

B e [Mode of operation]-----------------cmmme -
''The basic idea is about an intelligent RX that can be programmed via USB from
''a PC. At the PC side there is the AR7212 programmer, viz. a little program
''allowing to read, edit and write 2 tables that are stored in the EEPROM of
'"the board and independantly on PC disk. All tables have been encoded as 1d
"'word or integer arrays, due to the lack of 2d arrays in Bascom.

''First comes the servo data table (Table 1)

''"The rows are:

'(#01) for servo 1
'(#02) for servo 2

' (#03)
' (#04)
' (#05)
' (#06)
' (#07)
' (#08)
'(#09) ..
' (#10). .
"(#11)..
"(#12)..

'The columns are:

'(a) servo
'(b) servo
'(c) servo
'(d) servo
'(e) servo
"(f) servo

channel name (1-12), eg. MOTO, RUDD, ELEV, AILR, AILL,

center. Pressing on < or > will affect the SELECTED servo accordingly.
normal high: This sets the upper value of the normal travel range.
normal low: The opposite position.

maximal high: Maximal travel limiter for one direction.

maximal low: The opposite direction.

'Next comes the mixer data table (Table 2).

'The rows a

re:

'(#01) for servo 1
'(#02) for servo 2

' (#03)
' (#04)
' (#05)
' (#06)
' (#07)
' (#08)
'(#09) ..
'(#10)..
Y(#11)..
"(#12)..

'The columns are as found on the DX7 plus offset and delay.

'(a) THRO
"(b) AILE
"(c) ELEV
'(d) RUDD
'(e) GEAR
"(f) FLAP
'(g) offset
"(h) delay

'Under these settings three DX7-switches act as controls: GEAR, FLAP, and AUX2

'AUX2 is kept as a general control channel - allowing to switch between manual

'and autonomous flight. From GEAR (2 position switch) and FLAP (3 position switch)

'six flight modes can be encoded. Table 2 thus needs to be defined for all 6 fltmodes.
'The AR7212 programmer supports an easy way to copy and paste of edit the tables.
'Flightmodes may be clones, slightly changed copies of other flightmodes, or completely
"independant. Examples:

(1) Flight
'(2) Flight
'(3) Flight

'(4) Flight

'(5) Flight

*(6) Flight

Mode
Mode
Mode
Mode
Mode

Mode

1:

2:
3:

4:

5:

6:

e.g.
g. Normal flight (GEAR @, FLAP 1): Throttle controlls motor
e.g.

e.

Start (GEAR @, FLAP N): Throttle stick controls motor

Camera pan/tilt (GEAR ©, FLAP 2): Throttle and rudder stick
control camera for FPV while elevator and aileron the airplane

. Landing (GEAR 1, FLAP N): Motor off,

Throttle controls Butterfly plus airbrakes

. Landing (GEAR 1, FLAP 1): Motor off,

Throttle controls just airbrakes

. Thermal/speed flight: (GEAR 1, FLAP 2) Motor off,

Throttle controls camber

'One is completely flexible here. A beginner will appreciate to have just one
'flight mode viz. fltmode 1. He will program the other flight modes as clones of
'flight mode 1. An experienced pilot may even control two airplanes simultaneously,
'plane 1 with 3 fltmodes and servo channels 1-6, plane 2 with 3 fltmodes and servo

'channels 7-12 using a second AR7212. Let's call this air juggling. Never do this
'with hotliners!!! Only for Zagi's, Easystars, etc.

'Computing the servo signals for each slave channel j is a straightforward task:
''(a) determine the flight mode and read the offsets.

"(b) add to the offsets the sum of products of master(i) * mixer(i,j)

"(c) If delay (Table 1) is zero remember the value for channel j. If not compute

v the difference between to be and is-value, divide it by the number of
increments, add the servo increment, and repeat addition in next cycles

until to be is established.

'(d) Take the result for channel j and correct if outside range (servo maxlimiters in
v table 1). Update the 12 servos directly after the last operation is finished.

'Breaking it down to Bascom with 1d table limitation: Define Master(i) array
'(=DX7) and Slave(j) (=Servo) array as integer. Mixdat(k) array has the Dimension
''of 12x6=72 for each fltmode. The resolution of Master channels from DX7 is a
''little less than 10bit setting an integer range of -384 to +384. Servo PWM
'"resolution depends on the crystal frequency and is 2000/ms at 16 MHz (not
''recommended), while 1842/ms and 1382/ms at 14.75 and 11.06 MHz clock speed,
'"respectively. The latter crystals are baud rate crystals recommended to achieve
''0% baud rate errors at 115200 bps needed for the Spektrum satellites.

------------------------------ [Mixer types]--------------mm e
'The AR7212 currently distinguishes the following mixer types stored in byte
''arrays MixTyp() and MixTypml()..MixTypm6(). Values are:

''" @ for normal linear mixers (positive and negative slope)
'" 1 for J-mixers
'" 2 for F-mixers
'" 3 for L-mixers
'" 4 for T-mixers

JFLT-mixers are bimodal linear mixers whose outputs are neutral before or after
the respective stick-center position, while proportional to the stick move in
the other direction.

The boxes below represent corresponding input-output relations:

+---+ +---+ +---+ +---+ +---+ +---+
t | /] [\ | | /1 [N |
"' out|] @ | out| @ | out|-0| out| @-] out| ©-|] out|-0 |
B [/ | [\ [[/ | . [\
v +---+ +---+ +---+ +---+ +---+ +---+
v in in in in in in

B normal------ --- I F---- --- L---- --- T----

represents the center of the coordinate system.

represents a positive slope, viz. mixer values > ©
represents a negative slope, viz. mixer values < ©
represents a zero slope , viz. mixer values = 0

I SN

Mixer (slope) values are stored in byte arrays MixDat() and MixDatml()..MixDatmé().
Offset (intercept) values are stored in byte arrays offset() and offsetml()

'L .offsetm6().

The slope-direction of normal mixers is determined just by the sign,

while in the case of JFLT mixers slope direction is determined by characters,

J and F for positive slope, L and T for negative.

Exponential response (for the above stick inputs) stays programmable on the DX7.
The same holds for dual-rate switches. Any other "mixing" is to be shifted into

"' the AR7212.

————————————— [The Spektrum satellite receiver serial frame format]------------
'Thanks to Rainer Walther who found out the following:

'Connection Spektrum Receiver:

v Orange: Vcc = 3V (Ki: 3.3V is also OK)

v Black: GND

v Grey: TX signal from receiver

''DX7/DX6i: One data-frame at 115200 baud every 22ms.
' 'DX7se: One data-frame at 115200 baud every 1lms.
v bytel: unknown

v byte2: unknown

v byte3: and byte4: channel data (FLT-Mode) = FLAP
v byte5: and byte6: channel data (Roll) = AILE
v byte7: and byte8: channel data (Nick) = ELEV
v byte9: and bytel®: channel data (Gier) = RUDD
v bytell: and bytel2: channel data (Gear Switch) GEAR
v bytel3: and bytel4: channel data (Gas) = THRO
v bytel5: and bytel6: channel data (AUX2) = AUX2

''DS9 (9 Channel): One data-frame at 115200 baud every 1ilms,
''alternating frame 1/2 for CH1-7 / CH8-9
‘" 1st Frame:

v bytel: unknown

v byte2: unknown

v byte3: and byte4: channel data
v byte5: and byte6: channel data
v byte7: and byte8: channel data
v byte9: and bytel@: channel data
v bytell: and bytel2: channel data
v bytel3: and bytel4: channel data
v bytel5: and bytel6: channel data
2nd Frame:

v bytel: unknown

v byte2: unknown

v byte3: and byte4: channel data
v byte5: and byte6: channel data
v byte7: and byte8: oxffff

v byte9: and bytel@: oxffff

v bytell: and bytel2: oxffff

v bytel3: and bytel4d: oxffff

v bytel5: and bytel6: oxffff

''Each channel data (16 bit= 2byte, first msb, second 1lsb) is arranged as:
''"Bits: F @ C3 C2 C1 Co D9 D8 D7 D6 D5 D4 D3 D2 D1 Do

'@ means a '@' bit

'"'F: 1 = indicates beginning of 2nd frame for CH8-9 (DS9 only)

'C3 to CO is the channel number. @ to 9 (4 bit, as assigned in the transmitter)
''D9 to DO is the channel data (10 bit) ©xaa..0x200..0x356 for 100% transmitter-travel

'Unknown bytes interpretation (Kiedro)........coiiiiiiiinniennernnnennannnns
Monitoring the unknown bytes as a function of distance and RX shielding

(one of the two satellites in the test was put into a metal box for this test)
v revealed the following outcomes: 0x0301, 0x0201, 0x0101, ©x1201, ©x2101.
Optimal conditions gave ©x0301, worst conditions ©x2101. My interpretation

is as follows:

W1 W

v bytel: S

v byte2:

S0] is a status byte

[0 @ 2 0 0 S1
[0 o 000 0 1] is a sync byte
""W1l: Warning bit set on repetitive frame losses.

'WO: Warning bit set on newly occurring frame loss..

'S1 to SO define signal quality in three steps.

'Note that the AR7212 takes a conservative approach towards this interpretation:
'"From the two satellites it takes the signal with higher or equal quality and of
'lower or equal warning status.

'Port C:

LED

ORr NWhAhUOAONO® D

®HNW-I>U10'\\I

Output compare for Timer 1 (PWM).

MISO MOSI SCK SS (useable for pressure sensor SCP-1000 later)
Output Compare 0C1C (used for servo 5)

Output Compare OC1B (used for servo 4)

Output Compare OC1A (used for servo 3)

SD_SW (SD-Card)

MISO
MOSI
SCK

cs (SCP-1000)

and configuration port.

CS-SD (connect to SW1, also used)

SW1 (Switch to GND)

LED2 (output 1 to activate)
LED3 (output 1 to activate)
LED4 (output 1 to activate)
n.c.

JMP1 (pin jumper to GND)
JMP2 (solder bridge to GND)

'Port D: Configuration, 2nd hardware UART (UART1l), two wire serial interface

7:

O R, NWRAUITO

JMP4
JMP3
n.c.
n.c.
TXD UART1
RXD UART1
TWI
TWI

(solder bridge to GND)
(solder bridge to GND)

(used for GPS)
serial data (SDA for compass module)
serial clock (SCL for compass module)

Port E: Output compare for Timer3 (PWM), 1st hardware UART (UARTO)

7:
i n.c.

O R, NWRAUIO

n.c.

Output Compare 0C3C (used for servo 6)
Output Compare OC3B (used for servo 2)
Output Compare OC3A (used for servo 1)

n.c.
TXD UARTO (used for USB/GSM/radiomodem)
RXD UARTO (used for USB/GSM/radiomodem)

'Port F: Analog inputs

'Port G:

7-4:

w
(W]

n.

C.

OFRr NWAUIO N

Formerly used for analog inputs from ADX or FMA Copilot.
Formerly for MPX fine, Vref, BatV, BatI.

ADC7 to JP2-10

ADC6 to JP2-09

ADC5 to JP2-08

ADC4 to JP2-07

ADC3 to JP2-06

ADC2 to JP2-05

ADC1 to JP2-04

ADCO to JP2-03

Port H: Output compare for Timer4 (PWM), 3rd hardware UART (UART2)

7:
6:

n.c.
n.c.

4th

OFRrNWAUION

O FRr NWRAWU

Output Compare 0C4C (used for servo
Output Compare OC4B (used for servo
Output Compare OC4A (used for servo
n.c.

TXD UART2

RXD UART2 (used for Spektrum Remote

9)
8)
7)

Receiver A)

hardware UART (UART3)
n.c.
connected to large-ISP header, pin 2 (SS)
n.c.
n.c.
n.c.
n.c.
TXD UART3.
RXD UART3 (used for Spektrum Remote Receiver B)

'Port K: Analog inputs ADC8-15.

' 7:
:on.

O R, NWAUIO

: Output Compare OC5B (used for servo
: Output Compare OC5A (used for servo

n.c.

C.

n.c.

n.c.

ADC11 to OPC-ZA3

ADC10 to OPC_ZA2 (Copilot Z)
ADCO9 to OPC_XY3 (Copilot Y)

ADCO8 to OPC_XY2 (Copilot X)

Port L: Output compare for Timer 5 (PWM)

Output Compare OC5C (used for servo

! 5:
' 4
! 3
' SERVO 01
! ocC 3A
' BEST AR
AR [
'Port A: n.c
'Port B: 7-4:
! 3-0:
! 7:
! 6:
! 5:
! 4:
! 3:
! 2:
! 1:
! 0:

Special port assignments for

Output compare for Timer 1 (PWM).

MISO MOSI SCK SS (useable for pressure sensor SCP-1000)
Output Compare 0C1C (used for servo 5)

Output Compare OC1B (used for servo 4)

Output Compare OC1A (used for servo 3)

SD_SW (to SW1/SW2 = switch to GND in boxed connector, superfluous?)
MISO (to SPI_3 and ISP_3)
MOSI (to SPI_4 and ISP_4)
SCK (to SPI_2 and ISP_2)
SS_CSPS (to ISP_6)

'Port C: Configuration port & Main-LED
! 7:

'Port D:

OFRr NWRAUO

! 6:

CS-SD (pin_2 boxed connector, superfluous?)
: SW1 (Switch to GND)

JIMP2 (solder bridge to GND, tbd)

JMP3 (solder bridge to GND, tbd)

JMP4 (solder bridge to GND, tbd)

CS_SPI (to ISP_7)

JMP1 (pin jumper to GND)

LED2 (output 1 to activate)

LED port, 2nd hardware UART (UART1), two wire serial interface
7:

LED3
LED4

(output 1 to activate)
(output 1 to activate)

5: n.c.

4: n.c.

3: TXD UART1
! 2:

1

0

RXD UART1 (used for GPS)

: TWI serial data (SDA for compass module)
: TWI serial clock (SCL for compass module)

'Port E: Output compare for Timer3 (PWM), 1st hardware UART (UARTO)
' 7:

O R, NW,RAUIO

O, N W

' 7:
' 6:
' 5:
' 4:
by Opamp)

'Port G: n.c.

n.c.

. n.c.

Output Compare 0C3C (used for servo 6)
Output Compare OC3B (used for servo 2)
Output Compare OC3A (used for servo 1)
SPI_CS (to SPI_5)

TXD UARTO (used for USB/GSM/radiomodem)
RXD UARTO (used for USB/GSM/radiomodem)

Port F: Analog inputs (Pre assignments)

ADC7 n.c.

: ADC6 n.c.
: ADC5 to ADC_1 (Flight bat voltage by voltage divider)

ADC4 to ADC_2 (Flight bat current from voltage drop at mOhm shunt, amplified

ADC3 to ADC_3 (MPX 4115 pressure sensor output conditioned by Opamp)
ADC2 to ADC_4 (MPX 4115 reference voltage)

ADC1 to ADC_5

ADCO to ADC_6

'Port H: Output compare for Timer4 (PWM), 3rd hardware UART (UART2)
' 7:

'Port J: 4th

O R, NWRAUITO

O R, NWAUION

n.c.

. n.c.

Output Compare 0C4C (used for servo 9)

Output Compare 0C4B (used for servo 8)

Output Compare OC4A (used for servo 7)

n.c.

TXD UART2

RXD UART2 (used for Spektrum Remote Receiver A)

hardware UART (UART3)

n.c.

5 3 3 3 5
NN 0NN

.C.
TXD UART3.
RXD UART3 (used for Spektrum Remote Receiver B)

'Port K: Analog inputs ADC8-15.

7:
i n.c.

O R, NWAUIO

! 7:

N WA U

n.c.

n.c.

n.c.

ADC11 to OPC-ZA3

ADC10 to OPC_ZA2 (Copilot Z)
ADCO9 to OPC_XY3 (Copilot Y)
ADCO8 to OPC_XY2 (Copilot X)

Port L: Output compare for Timer 5 (PWM)

n.c.

. n.c.

Output Compare 0C5C (used for servo 10)
Output Compare OC5B (used for servo 11)
Output Compare OC5A (used for servo 12)
n.c.

'RESET: to ISP_5

' SERVO 01 02 03 04 05 06 ©7 08 09 10 11 12

ocC 3A 3B 1A 1B 1C 3C 4A 4B 4C 5C 5B 5A

' BEST AR AL EL RU MO nc FR FL nc BR BL nc

---------- [Special port assignments CRUMB2560-based AR7212]--------------
---------- [from www.chip45.com. Still in my Alpina 4001]

'Hardware-Requirements: What you need to solder:

" (1)

" (2)

" (3)

A Servo Connector board. This is a simple DIY circuit as follows:

SO1 S@2 SO3 S04 SO5 SP6 SO7 S8 Se9 S10 S11 Si12

* * * * * * * * * * * *
¥k koo ko ko k___k___k___k___k___*___% 45\
®__ ok ¥ __%___¥___¥___%___%___%___*%___%___% GND

Each * stands for a standard ©.1" (2.54 mm) grid male header pin.
Recommended horizontal distance: 3 mm instead of 2.54 because
some servo connectors (female) have casings that do not fit into
the 0.1" grid. Vertical distance between pins must be 2.54 mm.

Alternatives, e.g.2x6 on a breadboad with double ©.1" (5.08 mm) spacing
are absolutely fine - just know your fuselage dimensions yourself.

You may etch your own board at your requirements or just use a properly
sized breadboard.

A 3.3V voltage regulator and two capacitors mounted to a small breadboard.
VIN (+5V) is connected to +5V at the Crumb module/Servo Connector.

GND is connected to GND of the Crumb module/Servo Connector, as well as to
the BLACK lines of the Spektrum satellites.

VOUT is going ONLY to the ORANGE lines of the Spektrum satellites.

VIN (4#5V) --*----% *____%__ yOUT (3.3V) C1 = 10u solid tantalum
| | | | (care for proper polarity)

Cl ##ICH## c2 IC = LT1127-3.3 (or similar)
| | | low dropout regulator
GND --*------ UEEEE TR *-- GND C2 = 3.3p solid tantalum (pol.!)

A Crumb2560 module from www.chip45.com. Order with 14.7 MHz crystal. Don't
forget a mini-USB cable (A <--> mini B, 5 Pin).

Connect the Crumb2560 to the servo board via a 15-20 cm 16-line flat

ribbon cable. It is recommended to use 2 lines for +5V and GND for safety
reasons, e.g. line 1&2 for +5V and line3,4 for GND. Note that SATA and SATB are
the GREY lines to the Spektrum Satellites. TAKE SPECIAL CARE FOR THE PROPER
SETTING OF JUMPERS TO DISABLE THE MAX3221 ONBOARD. IF YOU EXPERIENCE PROBLEMS
HERE, CONNECT SATA TO USART1 RX (PD2 = Pin 400 @ CON1), AND CHANGE SW ACCOR-
DINGLY (USE COM2 instead of COM3).

BACKSIDE VIEW FOR SOLDERING THE CONNECTIONS

CON2 CON1

470 048 020 001
GND 45* o046 040 003
430 *44 +5V 060 005
410 o042 S01<--PE3 08* 007
390 040 S@3<--PE5 10* *@9 PE4-->S02
370 o038 120 o011
350 036 140 *13 PHO<--SATA
330 o034 S@4<--PH3 16* 015
310 o032 S06<--PH5 18* *17 PH4-->S05
290 030 200 019
270 028 220 o021
250 026 240 023
230 o024 S@7<--PB5 26* 025
210 022 S09<--PB7 28* *27 PB6-->S08
190 020 300 029
170 018 320 o031
150 o016 S11<--PL4 34* *33 PL3-->S10
130 o014 360 *35 PL5-->S12
SATB-->PJO 11* 012 380 037
090 o010 400 039
070 008 420 o041
050 006 440 043
030 o004 460 045
0lo 002 480 o047
GND
| |+5V
||]|PEX
[T
[T
[1]1]]]PHx
NERERARNN
NERERARAN
LTI IPBX
NERARARARARY
NERARARARARY
FELEEEETETET [PLx
NERARARARARAREN
NERARARARARANNN
NERARARARARAREN
RERARERARARANRY
TO SERVO CONNECTOR BOARD

Cut the flat ribbon cable as shown - the vertical distance from GND to PLx is
about 11*0.4 = 4.4 cm. That's it basically. I did the flatband to boards
soldering directly just to save weight and size. Of course, one may design a
3x6cm sandwich-board for the crumb module carrying the servo connections, as
as well as the 3.3V needed for the satellites. It all depends on the space you
have in your fuselage.

'Port A: Standard: Adress low byte of external RAM. Not used here.

Output compare and PWM for Timer 2-0.

MISO MOSI SCK SS (may be used for pressure sensor SCP-1000 later)
Output Compare 0C1C (used for servo 9)

Output Compare OC1B (used for servo 8)

Output Compare OC1A (used for servo 7)

'Port B: 7-
. 3.

UuioN©® b

'Port C: Standard: Adress high byte of external RAM. Not used here.

'Port D: Timer clock input, 2nd hardware UART (UART1l), two wire serial interface
! OR external hardware interrupts

3: TXD UART1

2: RXD UART1 (useable for GPS)

'Port

'Port

'Port

'Port

'Port

'Port

'Port

1: TWI serial data (SDA useable for compass module)
0: TWI serial clock (SCL useable for compass module)

1st hardware UART (UARTO)
Output Compare 0C3C (used for servo 3)
Output Compare OC3B (used for servo 2)
OutputCompare OC3A (used for servo 1)
useable for GSM/radiomodem)
useable for GSM/radiomodem)

5:

O Rr WwWh

. JTAG

3-0:

5:

O Rr WwWh

7:

TXD UARTO
RXD UARTO

(@cp2101,
(@cp2101,

and analog inputs
(useable for MPX fine, Vref, BatV, BatI)

Analog inputs:

: WR/RD/ALE ext.

Output Compare 0C4C (used for servo 6)
Output Compare OC4B (used for servo 5)
Output Compare OC4A (used for servo 4)
TXD UART2 (@MAX3221)
RXD UART2 (@MAX3221,

LED

1: TXD UART3

0: RXD UART3 (used for Spektrum Remote

5:

used for

: Input capture trigger Timer 4&5, Timer 5

: RXD3/TXD3/XCK3 for UART3, or PCINT9-15

: Analog inputs ADC8-15 (not used here).

Output Compare 0C5C (used for servo 12)
4: Output Compare OC5B (used for servo 11)
3: Output Compare OC5A (used for servo 10)

: Timer clock inputs, output compar., analog comparator

: RXD2/TXD2/XCK2 for UART2, OC4A-C for timer4, OC2B timer2,

Receiver B)

[Special port assignments for the Xmega-A1l-USB module]
[from www.avr-praxis.de.

'Port A: Analog-digital Port A

'Port B: Analog-digital Port B

Port C: Digital I/0 Port C

0:

NouphwNnR

SDA
SCL
RXDo
TXDO
SS
MOSI
MISO
SCK

(12C_co:
(12C_co:

e.g.
e.g.

Currently in the dev.

compass module)
compass module)

(USART_CO: COM1 - Sat A/)
(USART_CO: COM1 - Sat A/n.c.)

(SPI_C1:
(SPI_C1:
(SPI_C1:
(SPI_C1:

Port D: Digital I/O Port D

'Port E:

0:

NouphwNnR

O0CeA
oceB
ocec
0oceD
O0C1A
ociB
RXD1
TXD1

(PWM_D@:
(PWM_D@:
(PWM_D@:
(PWM_D@:
(PWM_D1:
(PWM_D1:

SCP-1000)
SCP-1000)
SCP-1000)
SCP-1000)

Servo
Servo
Servo
Servo
Servo
Servo

1)
2)
3)
4)
5)
6)

(USART_D1: COM4 - Sat B)
(USART_D1: COM4 - Sat B/n.c.)

Digital I/O Port E
(PWM_E@: Servo 7)

0:

0CeA

stage]

memory, TOSC2/TOSC1 for timer2, OCOB timer @. Not used.

input timer4

Spektrum Remote Receiver A)

clock input, OCA5-0CC5

0COB (PWM_E@: Servo 8)

0ceC (PWM_E@: Servo 9)

0ceD (PWM_E@: Servo 10)

OC1IA (PWM_E1: Servo 11)

0C1B (PWM_E1: Servo 12)

RXD1 (USART_E1: COM6 - GPS)

TXD1 (USART_E1: COM6 - GPS/n.c.)

NouhwNnR

'Port F: Digital I/O Port F

' i n.c.

n.c.

RXDO® (USART_F@: COM7 - USB or 2nd link)
TXDO (USART_FO: COM7 - USB or 2nd link)

RXD1 (USART_F1: COM4 - CHR9d)
TXD1 (USART_F1: COM4 - CHR9d)

NouphwNREO

'Port H: Extended Bus Interface Port H
'Port J: Extended Bus Interface Port J
'Port K: Extended Bus Interface Port K
'Port R: Special Port R

'Port Q: Special Port Q

! 0:

! 1:

! 2: Button
! 3: Status LED

OC1A (PWM_F1: Servo 13 or n.c. when using 8 bit Timer for pause recognition)
0C1B (PWM_F1: Servo 14 or n.c. when using 8 bit Timer for pause recognition)

TimerOverflowSeconds = 2~Nbit * prescale / crystalfreq, where

! 2716 * 8 / 16000000

! = 0.032768 s = 33ms

'AR7212 (14.7456 MHz):

'--Timer 1/3/4/5 MAX TCNT Overflow for 14.7456MHz is at 35.555555555 ms
'TOP for 22 ms is: 40550

! 1 ms is: 1843

'--Timer 0/2 overflow after 278 * 1024/14745600 = 17.778 ms

'l Byte (10 bit with parity and 1 stopbit) at 115200 bps takes 1/11520 sec
'0.0868 ms, 16 Byte gives 1.3889 ms. 7ms = 256 * 7/17.778 = 100.798 apprx.

"AR7212 (11.0592 MHz):

'--Timer 1/3/4/5 MAX TCNT Overflow for 11.0592MHz is at 47.407407407 ms
'TOP for 22 ms is: 30413 (30412.8)

! 1ms is: 1382 (1382.4)

'--Timer ©/2 overflow after 278 * 1024/11059200 = 23.704 ms

'l Byte (10 bit with parity and 1 stopbit) at 115200 bps takes 1/11520 sec
'0.0868 ms, 16 Byte gives 1.3889 ms. 7ms = 256 * 7/23.704 = 75.6 apprx. 76

"AR7212 (16.0000 MHZz):

'--Timer 1/3/4/5 MAX TCNT Overflow for 16MHz is at 32.768 ms

'TOP for 22 ms is: 44000

! 1 ms is: 2000

'--Timer ©/2 overflow after 278 * 1024/16000000 = 32.768 ms

'l Byte (10 bit with parity and 1 stopbit) at 115200 bps takes 1/11520 sec

100

'0.0868 ms, 16 Byte gives 1.3889 ms. 7ms = 256 * 7/32.768 =

"ARX7212 (32.0000 MHZz):
'--Timer TCDO, TCD1, TCE®,

#if Ver_cryst = 0
$crystal = 14745600
Const Top = 40550
Const T7 = 100

given prescaler and quartz.

tendif

#if Ver_cryst =1
$crystal = 11059200
Const Top = 30413
Const T7 = 76

given prescaler and quartz.

ttendif

#if Ver_cryst = 2
$crystal = 16000000
Const Top = 44000
Const T7 = 109

given prescaler and quartz.

TCE1 after 1/32000000*%2716*8 =

16.384 ms

'defines
'defines
Is 100 for 14.7 MHz

'defines
'defines
Is 76 for 11.059 MHz

'defines
'defines
Is 109 for 16 MHz

apprx. 109

22 ms cycle time
7 ms with timere/2 at

22 ms cycle time
7 ms with timere/2 at

22 ms cycle time
7 ms with timere/2 at

tendif

#if Ver_cryst = 3
$crystal = 32000000
Const Top = 65535

'defines 16.38 ms cycle time

Const T7 = 218 ‘defines 7 ms with timer TCF1
set to 8 bit.

#endif

#if Ver_board = 0 'Crumb 2560
[V 0C3A,B,C

Const Ser_oc3a =1 'Throttle
Const Ser_oc3b = 2 'Rudder

Const Ser_oc3c = 3 'Elevator

R LR L LT 0C4A,B;C

Const Ser_ocd4a = 4 'Rightaileron
Const Ser_oc4b = 5 'Leftaileron
Const Ser_oc4c = 6 'Rightflapmid
R LR L LT OC1A,B,C

Const Ser_ocla = 7 'Leftflapmid
Const Ser_oclb = 8 'Rightflapinn
Const Ser_oclc = 9 'Leftflapinn
[0C5A,B,C

Const Ser_oc5a = 10 'Rightairbrak
Const Ser_oc5b = 11 'Leftairbrak
Const Ser_oc5c = 12 'Special
#endif

#if Ver_board = 1 Or Ver_board = 2 Or Ver_board = 4 'Dedicated AR7212 boards by
Ralf Kull

[V 0C3A,B,C

Const Ser_oc3a =1

Const Ser_oc3b = 2

Const Ser_oc3c = 6

[V 0C4A,B;C

Const Ser_ocd4a = 3

Const Ser_ocdb = 4

Const Ser_oc4c =5

R LR L LT OC1A,B,C

Const Ser_ocla = 7

Const Ser_oclb = 8

Ser_oclc = 9

Const Ser_oc5a = 12

Const Ser_oc5b = 11

Const Ser_oc5c = 10

#endif

#if Ver_board = 3 'Xmega-Al-USB

Const Ser_tcdoa =1
Const Ser_tcdob = 2
Const Ser_tcdoc = 3
Const Ser_tcdod = 4
- TCD1A,B
Const Ser_tcdla = 5

Const Ser_tcdlb = 6
- TCEOA,B,C,D
Const Ser_tce@a = 7
Const Ser_tcedb = 8
Const Ser_tce@c = 9
Const Ser_tceod =1

Const Ser_tcela = 11
Const Ser_tcelb = 12

'Const Aileron = 4
Const Dx7flap = 6
Const Dx7aileron = 2
Const Dx7elevator
Const Dx7rudder = 4
Const Dx7gear = 5
Const Dx7throttle
Const Dx7aux2 = 7

1}
w

1}
[any

R L LT APRIL 09 TO BE CHANGED

'Const Ppmcellrcswitch = 7 ""formerly 8: will be the
channel number for AUX2 On DX7
'Const Ppmeasymodeswitch = 7 '"Easy Mode = taking roll and

pitch from the sticks via Copilot-sensors

'"to be reassingned in the
AR7212X
Const Ppmredbutton = 7 '"Formerly 6: Is the knob for
autocalibration and trimming

''"to be reassigned in the

AR7212X

Const Tccra = 170 ''" Timer counter register A for
fast pwm, mode 14, (see later in the annotations)

Const Tccrb = 26 '" Timer counter register B for

fast PWM and prescaler 8 (see later)

'"Port F channel assignments:

Const Mpxout = 7 'ADC: MPX pressure sensor value
Const Mpxvref = 6 'MPX pressure sensor voltage
reference (potentiometer for 4V at 5V Vref)

Const Batamp = 5 'Battery amperage from shunt
Const Batvolt = 4 'Battery voltage

Const Fmacox = 8 'CoPilot's front right - rear
left eyes

Const Fmacoy = 9 'CoPilot's front left - rear
right eyes

Const Fmacoz = 10 'Copilots up/down eyes

'Const Xaccel = 9

'Const Xacced = 2

'Const Yaccel = 13

'Const Yacced = ©

Const Cmaxchar = 82 'number of characters per GPS
$-command

Const Compass = 192 'I2C make address of compass
Const Revid = &H0O ' RevID register (read)

Const Datawr = &HO1 ' Indirect reg access data
(read/write)

Const Addptr = &HO2 ' Indirect reg access pointer
(read/write)

Const Oper = &He3 ' Operation register
(read/write)

Const Opstat = &He4 ' Operation status (read/write)
Const Rstr = &HO6 ' ASIC software reset (write)
Const Status = &HO7 ' ASIC top-level status (read)
Const Datard8 = &HI1F ' Pressure output data (MSB 8-

bit) or

' 8-bit data read from
EEPROM (read)
Const Datardl6 = &H20 ' Pressure output data (LSB 16-
bit) or

' 8-bit data read from
indirect reg (read)
Const Tempout = &H21 ' 14-bit temperature output
data (read)

" ATTENTION - is ©@x22??????

Const Cfg = &HoO ' Config register-indirect

(read/write)

Const Cfg2 = &HO9 ' MISO config (read/write)
only for SCP1000-DO1

Const Modtst2 = &H2D ' Noise level config-indirect

(WRITE)

Const Usrdatal = &H29 ' User Data EEPROM indirect

(read/write)

Const Usrdata2 = &H2A ' User Data EEPROM indirect

(read/write)

Const Usrdata3 = &H2B ' User Data EEPROM indirect

(read/write)

Const Usrdatad4 = &H2C ' User Data EEPROM indirect

(read/write)

Declare Sub Readsatellites() 'reads and parses frames
received from Spekrum satellite receivers

Declare Sub Readusarte() 'reads usart@ and calls
loopistparser upon receival of CR

Declare Sub Switchboard() 'DX7 switch reading and mixing
operations

Declare Sub Updateslaves() 'PWM pulselenght update

Declare Sub Loopistparser() 'parses commands from AR7212
programmer

Declare Sub Servoadjust() 'sets the servo data table from
the AR7212 programmer

Declare Sub Mixeradjust() 'sets the mixer data table from
the AR7212 programmer

Declare Sub Printeeram() 'sends EERAM data to AR7212

programmer

.. 'From here on extended

functionality

Declare Sub Loopistparser_ext() 'parses commands from AR7212
programmer and ground station, extension required

Declare Sub Setcommands() 'parses set commands from the
ground station

Declare Sub Interpretedx7() '"NEEDS MAJOR OVERWORK FOR

AR7212x FUNCTIONALITY

"NEW MEANING IS THE SETTING OF
DIFFERENT AUTONOMOUS FLIGHT MODES FROM DX7

"AND NOT FROM GROUND STATION

Declare Sub Readadc() 'reads analog sensors
Declare Sub Readgps() 'reads NMEA-strings from GPS
Declare Sub Autonomousservocontrol() 'computes
Auto_Rudder/Elevator/Aileron/Throttle from sensor data and settings '

Declare Sub Ggaparse() 'parses NMEA GGA string and

computes long integers for latitude and altitude
"in "decimal" format

Declare Sub Rmcparse() 'parses NMEA RMC string for
heading and speed over ground

Declare Sub Homeset() 'calculates navigation
parameter lone2m and late2m from home waypoint

Declare Sub Wayparse() 'parses latitude, longitude,
altitude received in long integer format from GS

Declare Sub Teledata() 'processes analog sensor

information, computes altitude and attitude, and
'synthesizes telemetry strings
$MPX (4115), $BAT, $COP with GPS (xor) checksum.

Declare Sub Gsminit() 'Initialization of Telit
modules GM862,... for CSD calls

Declare Sub Pressure_sensor_init() 'Initialization of Pressure
sensor SCP-1000: tbd

Declare Sub Getspi() 'Test for reading SCP-1000 via
SPI: tbd

Declare Sub Direct_write() 'Direct write of SCP-1000
registers

Declare Sub Direct_read() 'Direct read of SCP-1000
registers

Declare Sub Indirect_write() 'Indirect write of SCP-1000
registers

Declare Sub Indirect_read() 'Indirect read of SCP-1000
registers

Declare Sub Read_status() 'Read status register of
SCP_1000.

Declare Sub Errorbyservo(byval Kby As Byte) 'was before LED output: shows

GSM errors by servo moves
Declare Sub Isok(byval Atst As String , Byval Kst As String , Byval Llo As Long , Byval Kby
As Byte)

'analysis of GSM strings
Declare Function Xoradd(byval Xyzline As String) As String 'checksum routine
Declare Function I2cread8_w(byval I2cnode As Byte , Byval Location As Byte) As Word

'I2C connectivity for cmp@3
compass (can be deactivated, not anymore called)
Declare Function Throttleoff(byval Pulse As Byte) As Byte "throttle optimisation (can be
deactivated, motor control integrated into

'autonomousservocontrol

Declare Sub Restart() 'Reinitialization of main loop
after loosing GSM connection

'General programming style follows PicNicks recommendations to achieve small and

'fast compiled code.

'general overwritables for SUBS/GOSUBS (I, J, K, L in several variable formats)

'take special care herellll

'Loop variables need to be not overwritten: LoopIby, Gpsiby,

Dim Hby As Byte

Dim Loopiby As Byte

Dim Iby As Byte

Dim Jby As Byte

Dim Kby As Byte

Dim Lby As Byte

Dim Gpsiby As Byte

Dim Loopkby As Byte
average of ADC registers

SRAM = 7
Dim Iwo As Word
Dim Jwo As Word
Dim Kwo As Word
Dim Lwo As Word
! SRAM = 8
Dim Iin As Integer
Dim Jin As Integer
Dim Kin As Integer
Dim Lin As Integer
! SRAM = 8
Dim Ilo As Long
Dim Jlo As Long
Dim Klo As Long
Dim Llo As Long
! SRAM = 8
Dim Isi As Single
Dim Jsi As Single
Dim Ksi As Single
Dim Lsi As Single
Dim Msi As Single
Dim Nsi As Single
Dim Osi As Single
Dim Psi As Single
Dim Qsi As Single
' SRAM = 18
Dim Loopist As String * Cmaxchar
from usarto!!!
Dim Ist As String * Cmaxchar
Dim Jst As String * Cmaxchar
Dim Kst As String * Cmaxchar
Dim Lst As String * Cmaxchar
Dim Gpsst As String * Cmaxchar
Dim Readline As String * Cmaxchar
GPS!!II
Dim Rmcline As String * Cmaxchar
Dim Ggaline As String * Cmaxchar
Dim Mpxline As String * 40
USARTO output to ground
Dim Cmpline As String * 20
USARTO output to ground
Dim Batline As String * 20
string for USARTO output to ground
Dim Copline As String * 20
string for USARTO output to ground
'Dim Adxline As String * Cmaxchar
Dim Errline As String * Cmaxchar
' SRAM = 920

'Dim D As Byte
Dim Readchar As String * 1

'counts chars in GPS string
'stores index for moving

in main loop for instring

'Attention: Used in Telit PLUS
'NEW NAV : GPS $RMC string
'NEW NAV : GPS $GGA string
'Holds MPX pressure string for
'Holds CMP compass string for

'Holds BAT voltage/amperage

'Holds FMA Copilot sensor

Dim Readcharasc As Byte
Dim Gpsparseist As String * 12
temporary items separated by commas

"ATTENTION: KIJUNE@9: FORMRLY 20 STRINGS IN ISTARR

Dim Istarr(10) As String * 30
string array holds items separated by blanks
! SRAM = 314
Dim Ggacnt®@ As Long

position averaging

Dim Ggatim® As Long

GPS position averaging

Dim Ggatimd As Long

fix during GPS position averaging
Dim Ggatime As Long

after midnite

Dim Ggalate As Long

decimal format multiplied by 1076
Dim Ggalone As Long

Dim Ggafixe As Integer

Dim Ggasate As Integer

Dim Ggahode As Single

Dim Ggaalte As Single

! SRAM = 36
Dim Waytime As Long

so far)

Dim Waylate As Long

format

Dim Waylone As Long

format

Dim Wayalte As Single

sea level

Dim Hometime As Long

Dim Homelate As Long

format

Dim Homelone As Long

format

Dim Homealte As Single

sea level

' SRAM = 32

Dim Ggans As String * 1

north/south

Dim Ggaew As String * 1

east/west

Dim Gpsreadyflag As Byte

Dim Gsmreadyflag As Byte

Dim Restartflag As Byte

connection is lost or bad - somewhat superfluous
Dim Mpxoutp As Single

MPX sensor

Dim Mpxrefp As Single

calculated from voltage at spindle potentiometer
! SRAM = 9
Dim Mpxo(10) As Integer

sensor for moving average calculation

Dim Mpxr(10) As Integer

voltage for moving average calculation

Dim Batv(1@) As Integer

for moving average calculation

Dim Bati(1@) As Integer

amperage for moving average calculation

Dim Copx(10) As Integer

sensor for moving average calculation

Dim Copy(10) As Integer

sensor for moving average calculation

'GPS parser string holds

'Main loop (USART®@) parser

'holds

counter/seconds for GPS

'stores time of 1st fix during

"holds

time passed since 1st

'time from NMEA GGA in seconds

'latitude from NMEA Late in

'longitude

'fix status

'number of satellites found
'horizontal error

'altitude in M above sea level

'Waypoint time (not really used

'Waypoint latitude special

'Waypoint longitude special

'Waypoint altitude im m above

'Homepoint time (?)
'Homepoint latitude in special

'Homepoint longitude in special

'Homepoint altitude in m above

'GGA direction indicator flag

'GGA direction indicator flag

'holds

'holds

"holds

"holds

"holds

'holds

'holds

'holds

was Bit: Set when GPS is ready
was Bit: Set when GSM is ready
was Bit: Set when GSM

calculated pressure from

reference pressure

ADC from MPX pressure
ADC from MPX reference
ADC from battery voltage
ADC from battery

ADC from Copilot x

ADC from Copilot y

Dim Copz(10) As Integer

sensor for moving average calculation

'Dim Xacc(10) As Integer
'Dim Yacc(10) As Integer

Dim Mpxsumo As Integer
measurements

Dim Mpxsumr As Integer
measurements

Dim Batsumv As Integer
measurements

Dim Batsumi As Integer
measurements

Dim Copsumx As Integer
measurements

Dim Copsumy As Integer
measurements

Dim Copsumz As Integer
measurements

''Dim Adxxac@ As Integer
'Dim Adxxacc As Integer
'Dim Adxyacc As Integer
''Dim Adxyac@ As Integer

Dim Mpxtransa As Single

SRAM =

SRAM =

=(Mpxsumx / (10*1024) + Mpxtransb) / Mpxtransa

Dim Mpxtransb As Single

Dim Mpxgain As Single

(=22)

Dim Mpxdiv As Single

1024

Dim Batvdiv As Single

(or 2 if jumper closed)

Dim Batidiv As Single

50 mV at a 1 mOhm Shunt with

= 100)

Dim Adc7v As Single
Dim Bat_v As Single
Dim Bat_i As Single
Dim Vcc As Single
Dim Altp@ As Single
kPa)

Dim Alta As Single
0.006 K/m)

Dim Alth As Single
Dim Altt As Single
Dim Altn As Single
model (ca. 5)

Dim Althe As Single

'Dim Heading As Word
Dim Readable_heading As Single
now from GPS heading

Dim Atst As String * 20

'Dim Servonumber As Byte
simulated "as if" from DX7

was formerly Pulse_ (WORD)
Dim Auto_min As Integer

Dim Auto_max As Integer

Dim Auto_rudder As Integer
Dim Auto_aileron As Integer
Dim Auto_elevator As Integer

SRAM =

140

12

64

'holds ADC from Copilot z

'holds corresponding sum of 10
'holds corresponding sum of 10
'holds corresponding sum of 10
'holds corresponding sum of 10
'holds corresponding sum of 10
'holds corresponding sum of 10

'holds corresponding sum of 10

'Transfer function: Mpx_x_p

'Gain during pressure calc

'somewhat superfluous: = 10 *

'theoretically 1024/ 5 * 3 V

"theoretically 1024 / 5 V (from
'50 A - amplified with a Gain

'ADC read of Vcc

'Battery voltage

'Battery amperage

=5 (V)

'pressure at sea level (ca. 110

"temperature gradient (ca.

‘altitude in m

'normal temperature (ca. 288K)

'reference factor for standard

'Altitude at ground

'varable to hold compass value

'earlier taken from compass,

'modem string in ISOK routine
'Autonomous control now
"ATTENTION: Auto_ (INTEGER)

'minimal stick reading (-512)

'maximal stick reading (-512)

'simulated rudder stick

'simulated aileron stick
'simulated elevator stick

Dim Auto_throttle As Integer 'simulated throttle stick

Dim Auto_ruddercenter As Integer 'Rudder center as if from DX7
Dim Auto_elevatorcenter As Integer 'Elevator center as if from DX7
Dim Auto_throttlecenter As Integer 'Throttle center (???) as if
from DX7

Dim Auto_aileroncenter As Integer 'Aileron center as if from DX7
Dim Auto_throttleopt As Integer 'Throttle optimum for keeking
altitude as if from DX7

Dim Auto_dx7halfresolution As Integer 'Half range resolution of the
DX7: 128 + 256 = 384

Dim Mixer_max As Integer 'Maximal mixer value to keep

everything within integer range: 32768/384 = 2715/Auto_max
'Dim Actualservoword As Word

Dim Xaccoffin As Integer

Dim Yaccoffin As Integer

Dim Xaccneutrin As Integer

Dim Yaccneutrin As Integer

'Dim Joystickservoloopflag As Byte 'was Bit

Dim Autonomousservocontrolflag As Byte 'was Bit: MOST IMPORTANT FLAG:
setting autonomous control via DX7's AUX2 switch

Dim Waysetflag As Byte 'was Bit: Waypoint flag is

either set from GC or from DX7 when in boxflight mode (tbd)
Dim Homesetflag As Byte

when homepoint becomes waypoint

Dim Speedsetflag As Byte

by GC - somewhat superfluous

was Bit: Homepoint flag is set

was Bit: Speedset flag is set

Dim Altitudesetflag As Byte 'was Bit: Altitudeset flag is
set by GC or during trim on ground

Dim Rmcspeed As Single '"NEW NAV: Speed over ground
from GPS RMC

Dim Rmcheading As Single "NEW NAV: Heading from GPS RMC
Dim Knottokmh As Single 'NEW NAV: Factor for km/h from
knots

Dim Normspeed As Single 'is a model specific parameter
defining speed over ground on calm day

Dim Speedfactor As Single '=actual speed/normspeed

'Dim Knottoms As Single

'Dim Headingfixflag As Byte "NEW NAV was Bit

Dim Itimer3 As Word 'NEW NAV: is the counter for
evaluating the red button trim knob (needs 5 x 20 ms)

Dim Jtimer3 As Word 'is the counter for doing ADC
read (now each cycle)

Dim Ktimer3 As Word ' is the Counter for printing

servo signals bytewise to ground (10x 4or5 bytes per second)

Dim Motorofftimer As Word 'TO BE CHECKED!!!:
Motorofftimer counts the receival of a GPS GGA string and is set zero after

"third
receivalllll????
'Dim Storetimer3 As Word
'Dim Adxflag As Integer
'Dim Gpsflag As Integer
Dim Error As Byte 'only needed for Stack overflow
checking!!11111
! SRAM = 70
Dim Navsetyaw As Single 'the direction to go: CHECK
CALCULATION (BETTER ONLY TAKEN FROM RMCHEADING, WHY FROM GGA?!!!l
Dim Navsetspeed As Single 'Speed is set only by GC
Dim Navsetaltitude As Single 'altitude only by GC - CHECK
WHY NOT IN BOX FLIGHT MODE?!!!!!
Dim Navsetroll As Single 'roll angle to keep
Dim Navsetpitch As Single 'pitch angle to keep
Dim Maxroll As Single 'maximal roll angle - model
specific parameter!!! Currently 40
Dim Maxyaw As Single 'maximal yaw angle. Currently

30. TO BE CHECKED!!!

Dim Maxpitch As Single

5. TO BE CHECKED!!!

Dim Maxdist As Single

homepoint is set automatically (currently 400 m)

'Dim Calibrationflag As Byte
calibration. Removed on 30.08.09
'Deleted !!!1Ki 30.08.09
joystick anylonger

'Dim Rudder_traf As Single

'Dim Elevator_traf As Single
'Dim Throttle_traf As Single

Dim Late2m As Single
to m, computed from homepoint
Dim Lone2m As Single
to m, computed from homepoint

"I111Ki 30.08.09 deleted
'Dim Maxspeed As Single
'Dim Maxaltitude As Single
! SRAM = 56
Dim Waypointradius As Single

deciding whether waypaint was met

Dim Gpsallflag As Byte

information is sent to GC

'Dim Justdirectflag As Byte

"I'11Ki 30.08.09 deleted
'Dim Servoprint As String * 10

Dim Gsmsignal As String * 10

'Dim Iwaypoint As Byte

Dim Motoroffflag As Byte

or if battery voltage is too low
Dim Rof As Single

roll angle * rof gave servo setting

200counts = 100ps.
7.68 ca. 8

Dim Pif As Single

Dim Sqr2 As Single

Dim Roz As Single

gained from trimming Copilot sensors

Dim Piz As Single

gained from trimming Copilot sensors

Dim Autotrimflag As Byte

by GC or by pressing the trim knob (need to be done

Dim Integrationflag As Byte

and averaging of copilot sensors. Right now only by GC.

Dim Waypointreachedflag As Byte
waypoint. Currently only set and cleared.

notification of GC. Somewhat SUPERFLUOUS.
'Dim Time® As Long
Dim Alivetime As Long

GC, currently not by the AR7212. Somewhat SUPERFLUOUS
'Dim Nogsmcounter As Word

'Dim Servostringcounter As Word

'maximal pitch angle: Currently

'distance from homepoint above

'was bit: formerly compass
'no direct steering from GC
'Travel-Factors

'to be multiplied

'by 128 to give
'Half-Travels

'conversion factor: latitude °

'conversion factor: longitude °

'Radius of Waypoint in Meter

'was Bit: Decides if all GPS

'holds gsm signal quality

'is set if current is too high

'roll factor (formerly 20):
'e.g. 10° x 20(counts/°) =
"New ROF is 20/2000*6*128 =

'pitch factor (see above)

"= SQR(2)

'Roll zero is the roll offset

'Pitch zero is the pitch offset

'Flag to set Autotrim: Either

'differently in AR7212x
'Flag to set ADC integration

'Flag set when reaching

'Only action is the

'Latency time is evaluated by

'Dim Actualdistance As Single

'Dim Windspeed As Single

'Dim Winddirection As Single

Dim Alt_downfromnavset As Single

waypoint altitude

Dim Alt_upfromnavset As Single

waypoint altitude

Dim Regulatormode As Byte

which altitude is kept constant via throttle

'Dim Ppmin(1@) As Word

from RX

'Dim Automaster(7) As Integer

DX7 format of channels (-512)

'Dim Ppminwo As Word

'Dim Int6_isr_delay As Word

'Dim Ppmokflag As Byte

(within time window and without timer overflow:

AR7212X

'Dim Ipulse As Byte
'Dim Npulse' As Byte
Dim Maxnpulse As Byte
MaxDX7channel (= 7)

'Dim Timer3_ipulse As Byte
' SRAM = 54

Dim Failcount As Word
occurences of bad frames

SATELLITES AND REMOVED

Dim Rmcvalidflag As Byte
valid, used in navigation

Dim Easymodeflag As Byte
roll angles directly from the sticks)

switch:

no setting via Interprete PPM!
Dim Flightstatusflag As Byte
just started, 3 airborne above a certain altitude

STABILISATION DURING START
Dim Redbuttonflag As Byte
button on FX18 - NEEDS REWORK FOR DX7

Dim Ail2lonefactor As Single
late2m), from homepoint coordinates.

RECHECK
Dim Ele2latefactor As Single
Dim Thr2altefactor As Single

Dim Ail2rollfactor As Single

'Altitude window border below
'Altitude window border above

'Altitude regulator mode by

'May 1 2007: PPMIN read in

'End august 2009: NEW simulated

' Set if PPM signal is OK

NEEDS ADAPTATION FOR THE

Should be better coined as

Counts the number of

SHOULD BE SHIFTED INTO READ

FROM INTERPRETE PPM

'Set if GPS RMC message is

'EASY MODE (=take pitch and
'was formerly set by an FX18-
"NEEDS TO BE ZERO IN AR7212X -

'3 state Flag: 1 on Ground., 2

'COULD BE USEFUL FOR FLIGHT

Flag set by pressing the Trim

computed (like lone2m,
'A bit confusing: NEEDS A

'see above
'still a bit confusing

'Factor determining the

proportionality between aileron stick setting and roll angle deviation

Dim Ele2pitchfactor As Single

'Factor determining the

proportionality between elevator stick setting and pitch angle deviation

'Dim Sumpulse As Word

' SRAM = 30
Dim Rxahiby As Byte
satellite A

'High byte of word received by

Dim Rxbhiby As Byte

satellite B

Dim Rxaloopby As Byte

frame received by satellite A
Dim Rxbloopby As Byte

frame received by satellite B

Dim Rxaloopflag As Byte

A, toggled by the following bytes
Dim Rxbloopflag As Byte

B, toggled by the following bytes
Dim Rxastartwo As Word

quality and receiver status of satellite A

Dim Rxbstartwo As Word

quality and receiver status of satellite B

Dim Rxainwo(8) As Word
satellite A

Dim Rxbinwo(8) As Word
satellite B

Dim Rxamaster(16) As Word
A decoded into DX7 channels
Dim Rxbmaster(16) As Word

B decoded into DX7 channels

Dim Master(7) As Integer

'High byte of word received by
'Loop counter (1..8) within
'Loop counter (1..8) within
'Set by 1st byte from satellite
'Set by 1st byte from satellite
'Startword encoding signal
'Startword encoding signal
'Array of received words from
'Array of received words from
'Received words from satellite

'Received words from satellite

'The best set of DX7 channel

data taken from satellites A or B (decided by startword analysis)

Dim Slave(12) As Integer

'Dim Dummy As Eram Word

SRAM = 150

3
Mapped

#if Ver_board
Config Eeprom
#endif

Dim Pilotnames As String * 20

Dim Pilotnamee As Eram String * 20

Dim Modelnames As String * 20

Dim Modelnamee As Eram String * 20

Dim Servonames(12) As String * 5

Dim Servonamee(12) As Eram String * 5
Dim Fltmodenames(6) As String * 30

Dim Fltmodenamee(6) As Eram String * 30
EERAM

! SRAM 280
! ERAM = 280
Dim Mixdat(72) As Byte

SRAM

Dim Mixdatm1(72) As Eram Byte
Flightmode 1

Dim Mixdatm2(72) As Eram Byte
Flightmode 2

Dim Mixdatm3(72) As Eram Byte
Flightmode 3

Dim Mixdatm4(72) As Eram Byte
Flightmode 4

Dim Mixdatm5(72) As Eram Byte
Flightmode 5

Dim Mixdatm6(72) As Eram Byte
Flightmode 6

Dim Mixtyp(72) As Byte

Dim Mixtypml(72) As Eram Byte
Flightmode 1

Dim Mixtypm2(72) As Eram Byte
Flightmode 2

'The set of servo signals

'Pilot name string in SRAM
'Pilot name string in EERAM
'Model name string in SRAM
'Model name string in EERAM
'Servo name strings in SRAM
'Servo name strings in EERAM
'Flighmode name strings in SRAM
'Flighmode name strings in

'Actual mixer adjust data in
'EERAM mixer adjust data for
'EERAM mixer adjust data for
'EERAM mixer adjust data for
'EERAM mixer adjust data for
'EERAM mixer adjust data for
'EERAM mixer adjust data for
'Actual mixer type data in SRAM
'EERAM mixer type data for

'EERAM mixer type data for

Dim Mixtypm3(72) As
Flightmode 3
Dim Mixtypm4(72) As
Flightmode 4
Dim Mixtypm5(72) As
Flightmode 5
Dim Mixtypm6(72) As
Flightmode 6

Dim Offsets(12) As
in SRAM

Dim Offsetml(12)
for Flightmode 1
Dim Offsetm2(12)
for Flightmode 2
Dim Offsetm3(12)
for Flightmode 3
Dim Offsetm4(12)
for Flightmode 4
Dim Offsetm5(12)
for Flightmode 5
Dim Offsetm6(12)
for Flightmode 6

As
As
As
As
As

As

Dim
SRAM
Dim Delayml1(12) As
Flightmode 1
Dim Delaym2(12)
Flightmode 2
Dim Delaym3(12)
Flightmode 3
Dim Delaym4(12)
Flightmode 4
Dim Delaym5(12)
Flightmode 5
Dim Delaym6(12)
Flightmode 6

Delays(12) As I

Dim Centers(12) As
Dim Centere(12) As
Dim Utravels(12) As
in SRAM

Dim Dtravels(12) As
settings in SRAM
Dim Utravele(12) As
in EERAM

Dim Dtravele(12) As
settings in EERAM
Dim Utramaxs(12) As
settings in SRAM
Dim Dtramaxs(12) As
settings in SRAM
Dim Utramaxe(12) As
settings in EERAM
Dim Dtramaxe(12) As
settings in EERAM

: Sum SRAM (01.09

' SUM

Eram Byte

Eram Byte
Eram Byte

Eram Byte

Integer
Eram Integer
Eram Integer
Eram Integer
Eram Integer
Eram Integer

Eram Integer

nteger

Eram Integer
Eram Integer
Eram Integer
Eram Integer
Eram Integer

Eram Integer

Integer
Eram Integer
Integer
Integer
Eram Integer
Eram Integer
Integer
Integer
Eram Integer
Eram Integer

SRAM
ERAM =

Dim Rxabflag As Byte

B=1) gave the best

signal

312
2136

.09)
ERAM (01.09.09)

'EERAM mixer

'EERAM mixer

'EERAM mixer

'EERAM mixer

'Actual servo

'EERAM servo

'EERAM servo

'EERAM servo
'EERAM servo
'EERAM servo

'EERAM servo

'Actual servo
'EERAM servo
'EERAM servo
'EERAM servo
'EERAM servo
'EERAM servo

'EERAM servo

center
center
normal

'Servo
'Servo
'Servo

'Servo normal

'Servo normal
'Servo normal
'Servo maxima
'Servo maxima
'Servo maxima

'Servo maxima

'holds which

data for

type

data for

type

data for

type

data for

type

channel offsets
channel offsets
channel offsets
channel offsets
channel offsets
channel offsets

channel offsets

channel delays in
channel delays for
channel delays for
channel delays for
channel delays for
channel delays for

channel delays for

settings in SRAM
settings in EERAM
uptravel settings
downtravel
uptravel settings
downtravel

1 uptravel

1 downtravel

1 uptravel

1 downtravel

2528 (of 8192 in AT2560, of 4096 in AT1280) OK
2416 (of 4096 in AT2560, of 4096 in AT1280) OK

satellite (A=,

Dim Rxaquality As Byte

satellite A

Dim Rxbquality As Byte

satellite B

Dim Rxastatus As Byte

satellite A

Dim Rxbstatus As Byte

satellite B

Dim Rxdoneflag As Byte

receival of a data frame fom RXA or RXB
Dim Fltmode As Byte

as selected by DX7 switches

Dim Oldfltmode As Byte

'Dim Ringcounter As Word

Dim Rxstartwo As Word

startword from either sat A or B
'Dim Rxasync As Byte

Dim Dx7printflag As Byte

'holds signal quality of

'holds signal quality of
'holds receiver status of
'holds receiver status of
'RXdoneflag is set after the
'holds the actual flight mode
'holds the previous flight mode

'holds the best recent

'indicates whether the AR7212

should print a received frame of HEX words to the AR7212 programmer

Dim Mixtype As Byte

'overwritable (holds the mixer

type (0..5) in the communication of AR7212 with AR7212 programmer)

Dim Nin As Integer
overwritable

Dim Nwo As Word
overwritable

Dim Bat_imax As Single

current above which motor is switched off.
Dim Bat_vmin As Single

voltage below which motor is switched off
Dim Regaddr As Byte

Dim Iobyte As Byte

Dim Numbits As Byte

Dim Spiby(10) As Byte

with SCP-1000 Do1

Dim Spinword As Word

Dim Eeprom As Byte

Dim Indregaddr As Byte

Dim Inddata As Byte

'Dim Baudjmp As Byte

-------------- This needs to be
$hwstack = 512
for the hardware stack

start at 128.

$swstack = 128

originally 10 for the SW stack
$framesize = 512

originally 40 for the frame space

Input and output pins
B R LR LT T CONFIGS

#if Ver_board = 0

Config Pinj.7 = Output

' Config Pinh.@ = Output
Mainled Alias Portj.7
#endif

'additional general

'additional general

'Limit of maximal battery

'Limit of minimal battery

'Byte array for communication

checked occasionally (STCHECK or DBG)----------

' 1024 default - originally 32
hwstack tested: problems
' 128 ... 64 default -
' 256 .. 128 default -
‘could be of cause smaller...

'"ATTENTION CONFIG PORTJ!!!!

'port not defect: output capabilities checked 090525

#if Ver_board = 1 Or Ver_board = 2

'Port C: LED and configuration port.

! 7: CS-SD (connect to SW1)

: SW1 (Switch to GND)

LED2 (to GND)

LED3 (to GND)

LED4 (to GND)

n.c.

JMP1 (pin jumper to GND)
JMP2 (solder bridge to GND)

OFRr NWRAUO

'Port D: Configuration, 2nd hardware UART (UART1l), two wire serial interface

! 7: IJMP4 (solder bridge to GND)

! 6: IJMP3 (solder bridge to GND)

'semantic definitions

! LED1 : power ON

' LED2 (C5) : RX: Toggle in nonautonomous mode, ON in autonomous mode: Mainled
' LED3 (C4) : GPS: Toggle: Gpsled

' LED4 (C3) : Set if ready for take off: Readyled

' JMP1 : Set to GND for Baudrate = 115200: Reset needs the Baud directive

'DDRs
Config Portc = &B10111000
Config Portd = Input

Mainled Alias Portc.5
Gpsled Alias Portc.4
Readyled Alias Portc.3
Baudjmp Alias Portc.1
#endif

#if Ver_board =

Port C: Conflguratlon port & Main-LED

7: CS-SD (pin_2 boxed connector, superfluous?)

: SW1 (Switch to GND)

JIMP2 (solder bridge to GND, tbd)

JMP3 (solder bridge to GND, tbd)

JMP4 (solder bridge to GND, tbd)
CS_SPI (to ISP_7)

JMP1 (pin jumper to GND)

LED2 (output © to activate)

O R NWRAUO

'Port D: LED port, 2nd hardware UART (UART1), two wire serial interface

RXD UART1 (used for GPS)
TWI serial data (SDA for compass module)
TWI serial clock (SCL for compass module)

7: LED3 (output © to activate)
! 6: LED4 (output © to activate)
! 5: n.c.
! 4: n.c.
! 3: TXD UART1

2:

1:

Q:

'DDRs
Config Portc = &B10000101
Config Portd = Output

Mainled Alias Portc.0
Gpsled Alias Portd.7
Readyled Alias Portd.6
Baudjmp Alias Portc.1
#endif

#1f Ver_board <> 3
—————————————— Hardware UARTS and serial communication buffers ----------------

'1. Usart (UART@): PE@ = RXD, PE1 = TXD

'2. Usart (UART1): PD2 = RXD, PD3 = TXD, Com2

'3. Usart (UART2): PHO = RXD, PH1 = TXD, Com3

'4. Usart (UART3): PJ@ = RXD, PJ1 = TXD, Com4 (shielded in AR7212.log test, Rxabflag =

1)

'The 2560 has an extended UART.

'when CONFIG COMx is not used, the default N,8,1 will be used

Config Coml = 115200 , Synchrone = @ , Parity = None , Stopbits = 1 , Databits = 8 ,
Clockpol = © 'USB

Config Com2 = 4800 , Synchrone = @ , Parity = None , Stopbits = 1 , Databits = 8 , Clockpol
=0 'GPS

'Config Com2 = 115200 , Synchrone = @ , Parity = None , Stopbits = 1 , Databits = 8 ,
Clockpol = @ 'was used for SatB at Crumb2560 in the interim

Config Com3 = 115200 , Synchrone = @ , Parity = None , Stopbits = 1 , Databits
Clockpol = © 'Spektrum Remote Receiver A

Config Com4 = 115200 , Synchrone = @ , Parity = None , Stopbits = 1 , Databits
Clockpol = © 'Spektrum Remote Receiver B

"
o)
-

I
(o]
-

Enable Interrupts

Config Serialin = Buffered , Size = 128 was 40 before

Config Serialout = Buffered , Size = 128 'was 255 before

Config Serialinl = Buffered , Size = 128 'was 255 before

Config Serialin2 = Buffered , Size = 32

Config Serialin3 = Buffered , Size = 32

'Set Ucsr2b.7 'did not solve unavailability
of port (Crumb)

'Open "Coml:" For Binary As #1
Open "Com2:" For Binary As #2
Open "Com3:" For Binary As #3
Open "Com4:" For Binary As #4

is always open

Enable Serial

' 'DECOMMENT FROM HERE....

B AD conversion at Port F --------mmmmm e
'Config Adc = Single , Prescaler = Auto , Reference = Avcc ', Reference = Off
'formerly AVCC then OFF

''Analog digital conversion (Fort F)

'Start Adc
R RN R R R R R R R R R R RN NN NN RN R R R R NN NN

B e e TWI at Port D (also AR7212)----------mmmmmm oo m e mm e
'Config Sda = Portd.1

'Config Scl = Portd.o

'Config I2cdelay = 10 'CHECK FOR AR7212
"NEW NAV

'"'TO HERE FOR SOFTWARE EXTENSIONS

-------------- Config Watchdog for 2 seconds -----------------commmmmmme -
Config Watchdog = 2048

Config Timer2 = Timer , Prescale
Config Timer® = Timer , Prescale

1024
1024

#telse

$1ib "xmega.lib"
$external _xmegafix_clear
$external _xmegafix_rol_ri1014

Config Osc = Enabled , 32mhzosc = Enabled 'remarkably accurate given the
fact that no xtal is employed

'Config Osc = Enabled , Extosc = Enabled , Range = 12mhz_16mhz , Startup = Xtal_16kclk (so
far doesn't work)

'configure the systemclock

Config Sysclock = 32mhz , Prescalea = 1 , Prescalebc = 1_1

Config Com7 = 38400 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Config Input7 = Cr , Echo = Crlf ' CR is used for input, we echo
back CR and LF

Config Coml = 115200 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8

Config Inputl = Cr , Echo = Crlf ' CR is used for input, we echo
back CR and LF

Config Com4 = 115200 , Mode = Asynchroneous , Parity = None , Stopbits = 1 , Databits = 8
Config Input4 = Cr , Echo = Crlf ' CR is used for input, we echo
back CR and LF

Open "COM7:" For Binary As #1

Open "COM1:" For Binary As #3

Open "COM4:" For Binary As #4

'Config Portf = Output

'Config Portf.3 = Output ' TX pin must be output
'Config Portf.2 = Input

Config Portq = Output

Mainled Alias Portq.3

'Config Eeprom = Mapped ' shifted before EEPROM Dims:
when using EEPROM , add this config command

'configure the priority

'config priority=static|roundrobin,vector=application|boot,HI=enabled|disabled,
LO=enabled|disabled,ME=enabled|disabled

Config Priority = Static , Vector = Application , Lo = Enabled

'test an interrupts

On Usartfe_rxc Rxf@_isr
Enable Usartf@® _rxc , Lo
Enable Interrupts

'Iby = Inkey(#1)

Goto After_isr

Rxf@_isr:
Toggle Mainled
Return

After_isr:
#endif

#if Ver_board = 1 Or Ver_board = 2 Or Ver_board = 4 '2nd link during airtime only
supported for boards by Ralf Kull

#if Ver_uarto = 0

If Baudjmp = 1 Then

Baud = 38400 'Telit
Else

Baud = 115200
End If
tendif

#if Ver_uarto =1
If Baudjmp = 1 Then

Baud = 9600 'Telit GM..
Else
Baud = 115200
End If
ttendif
ttendif

e PRESSURE SENSOR INITIALIZATION -----------m-mmmmmmmmm-
e DECOMMENT FOR SOFTWARE EXTENSION ----------mm-mmmmmamma-

e e READ DATA FROM EERAM === === --ommm oo

Pilotnames = Pilotnamee

Modelnames = Modelnamee

For Iby = 1 To 6

Fltmodenames(iby) = Fltmodenamee(iby)

Next Iby
For Iby = 1 To 12

Servonames (iby)

Next Iby
For Iby = 1 To 72

= Servonamee(iby)

Mixdat(iby) = Mixdatmi(iby)

Next Iby
For Iby = 1 To 12

Offsets(iby) = Offsetml(iby)

Delays(iby)

Next Iby

For Iby = 1 To 12
Centers(iby)
Utravels(iby
Dtravels(iby
Utramaxs (iby
Dtramaxs (iby

Next Iby

)
)
)
)

Delayml(iby)

Centere(iby)

= Utravele(iby)
Dtravele(iby)
Utramaxe(iby)
Dtramaxe(iby)

TOTAL SRAM GLOBALS: SRAM = 1738 of 4096

Auto_dx7halfresolution = 384

Auto_min = @ - Auto_dx7halfresolution
Auto_max = @ + Auto_dx7halfresolution
Mixer_max = 32767 / Auto_max
everything within integer range:

85

Auto_rudder = 0
Auto_elevator =
Auto_aileron = ©

0

Auto_throttle = Auto_min

Auto_ruddercenter

Auto_elevatorcenter
Auto_throttlecenter

Auto_throttleopt

nn ol
®o®

(]

Auto_aileroncenter = 0

Isi = Auto_max

Jsi = Auto_throttleopt

Isi = Isi - Jsi

Alt_downfromnavset = Sqr(isi)
Isi = Auto_throttleopt

Jsi = Auto_min
Isi = Isi - Jsi
Alt_upfromnavset

'Rudder_traf = 6.
'Elevator_traf
'Throttle_traf

Vcc = 5

Mpxtransa = 0.009
Mpxtransb = ©.095
Mpxgain = 22
Mpxdiv = 10240
'Batvdiv = 682.67
jumper closed)

Sgr(isi)

----------------------- Floating point "constants"

'Maximal mixer value to keep

'= 32768/384 = 2”~15/Auto_max =

'for direct steering

‘1024 * 106 / 5 / 3 V (or 2 if

'Batvdiv = 614.4 'Corrected: 1024/ 5 * 3 V (or
2 if jumper closed)

'still wrong - the MEASURED
resistances of the

'voltage divider are:

"from + to -:

'R1 = 4.57k, R2 = 4.56k, R3 =
3.78k

'giving 3.78/12.91=1/3.4153 as
divideer viz.

'1024 /5 * 3.4153 = 699.45 for
jumper open.

"Jumper closed: R1 = 4.57,
R2=0, R3 = 3.78

'giving 1/2.209 as divider and
452.4 as batvdiv.

"NEVER TAKE 5% Resistors for
precision measurements!!!

'ALWAYS MEASURE BEFORE

SOLDERING!!!

'Batvdiv = 699.45 "STILL WRONG!!! measured is
7.33 - displayed is 7.81

'Batvdiv = 745.253 'is needed to arrive at
correct values

Batvdiv = 743.23 'was still not correct -

measured (VC10: 7.35, displayed 7.33) so another refinement.

'cut down of engine for 2 Lipos
is recommended for 5.5 Volt -

'will do it at 5.8 V and warn
in groud unit every 10 second

Batidiv = 204.8 '1024 / 5V (from 50 mV at a 1
mOhm Shunt with

'50 A - amplified with a Gain

100)

'new transfer function after
"calibration":

'ADC = 205.2 * Volt - 1.51 (Y =
mx + b)

'viz. Volt = (ADC + 1.51)/205.2

'The difference is almost
negligible since

'the slope deviation is approx
0.2% while

'the offset is 1.5 bit, viz.
max. 10 mv.

'Below precision of a Voltcraft

VC 120.

Altpo = 101.315 'kPa

Alta = 0.00651 "K/m

Altt = 288 'K

Altn = 5.255

Knottokmh = 1.853 "NEW NAV
Normspeed = 36 "km/h (=10m/s)

Late2m = .111
Lone2m = .070
'Maxspeed = 35
'Maxaltitude = 200
Maxdist = 400
Waypointradius = 10

(Cell-RC on Easystar):
Maxroll = 40

Maxyaw = 30

Maxpitch = 5
Rof = 8

'From 9th autonomous flight

'formerly 30

'formerly 15

'need to be tested

'In PPM times is was 20,

formerly -7 , then +10 (15 was OK on 1stAF, then +20 but lateral phygoids)

Pif = 8

'In PPM times is was 20,

formerly 7 , then +10 (15 was OK on 1stAF, then +20)

Sgr2 = Sqr(2)
Roz = 5
Piz = -17

300
150

'Boxy
'Boxz

50
18

Bat_imax
Bat_vmin

'Joystickservoloopflag = ©
'Maxservos = 4
Regulatormode = 1
Maxnpulse = 7

'Sumpulse = 8000

Ail2rollfactor = 30 / Auto_dx7halfresolution
Ail2rollfactor = @ - Ail2rollfactor
Ele2pitchfactor = 30 / Auto_dx7halfresolution
Ele2pitchfactor = @ - Ele2pitchfactor

'Roll zero Copilot sensor
'Pitch zero Copilot sensor

'Model specific parameter
'Model specific parameter

'formerly ...30/820

'Start in failsafe mode (= Flight Mode 1 with Motor off)

Master(dx7throttle) = Auto_min
Master(dx7aileron) = ©
Master(dx7elevator) = 0
Master(dx7rudder) = ©
Master(dx7gear) = Auto_max
Master(dx7flap) = Auto_max
Master(dx7aux2) = Auto_max

Disable Interrupts

#if Ver_board <> 3

SRR SERVO PULSE GENERATION BY FAST PWM (MODE 14) --------mommmmmamnn

'(1) Set OCRxy pins as output

''(2) Set TOP (Counter at 20ms) into ICRx (Input Capture Register)
''(3) Set OCRxA, OCRxB, OCRxC to Servoxl, Servox2, Servox3
''(4) Set FAST PWM,Mode 14 (Bits WGMx3..1 = 1, WGMx® = @) and start timers

'The resolution is 2000 for 1ms at 16 MHz, Prescale = 8.
'The resolution is 1843 for 1ms at 14.7456 MHz,

'ad 1) Timerl: OC1A, OC1B, 0OC1C pins are DDRB
! Timer3: OC3A, 0C3B, 0OC3C pins are DDRE
! Timerd: OC4A, 0C4B, 0CAC pins are DDRH
! Timer5: OC5A, OC5B, OC5C pins are DDRL
Ddre = 56

Ddrh = 56

Ddrb = 224

Ddrl = 56

Prescale = 8.

&B11100000 (=224)
&B00111000 (=56)
&B00111000 (=56)
&B00111000 (=56)

'ad 2) ICR1H: ©0x87 1ICR3H: ©x97 ICR4H: OxA7 ICRS5H: 0x127
! ICR1L: ©x86 ICR3L: O0x96 ICR4L: ©xA6 ICR5L: 0x126
! as predefined in M2560.def - checked:Ki

! MAX TCNT Overflow for 14.7456MHz is at 35.555555555 ms
! TOP for 22 ms is: 40550
! TOP for 11 ms is: 20275
1 ms is: 1843

' In BASCOM:
! TOP = 40550: ICRxH = High (TOP): ICRxL = Low (TOP)
Icrlh = High(top)
Icrll = Low(top)
Icr3h = High(top)
Icr3l = Low(top)
Icr4dh = High(top)
Icr4l = Low(top)
Icr5h = High(top)
Icr51 = Low(top)

'ad 3) Write output compare start values

Switchboard

'ad 4) TCCRxA: Bit 7 6 5 4 3 2 1 0
! Name COMxA1 COMxA© COMxB1 COMxBO COMxC1l COMxCO WGMx1 WGMx©
! value 1 0 1 0 1 0 1 0
! means clear at compare match fast PWM
' set at Bottom mode 14
! address (for) 0x80 (Timerl)

! 0x90 (Timer3)

! OxA@ (Timer4)

! 0x120 (Timer5)

! TCCRxB: Bit 7 6 5 4 3 2 1 0
! Name ICNCx ICESx - WGMx3 WGMx2 CSx2 CSx1 CSx0
! value 0 0 0 1 1 0 1 0
! means noise ¢ edge - fast PWM -- prescale 8--
! address (for) 0x81 (Timerl)

! 0x91 (Timer3)

! OxAl (Timer4)

! 0x121 (Timer5)

' In BASCOM:

' TCCRA = &B10101010 (=170)

' TCCRB = &B00011010 (=26)

' TCCRxA = TCCRA (TCCRXA = TCCRxA OR 170)
' TCCRxB = TCCRB (TCCRxB = TCCRxB OR 26)

'Start PWM

Tccrla = Tccra

Tcecrlb = Tcerb

'waitms 2 may be introduced here, if one ever encounters peak current problems
Tccr3a = Tccra

Tcer3db = Tcerb

'waitms 2 may be introduced here, if one ever encounters peak current problems
Tccrd4a = Tccra

Tccrdb = Tcecrb

'waitms 2 may be introduced here, if one ever encounters peak current problems
Tcecr5a = Tccra

Tcer5b = Tcerb

'pwm initialisation here

'RC cycle period should be ideally at 2@ms, viz. 50 Hz.

'With fpwm = fosc/per/clkdiv = 32MHz/(2716)/8 = 1MHz/2”14 = 61.0352 Hz we have a
'cycle period of 16.384 ms most servos should be able to live with.

'From the Xmega AN on Timer/Counters:

'6.4 Using a Timer/Counter for PWM Generation

! Task: Configure TCCO for pulse width modulation output with varying duty cycle on
channel A.

Configure PCO for output by setting bit © in PORTC.DIR.

Select the timer period by setting the PER[H:L] register.

Select a waveform generation mode by setting the WGMODE[2:0] bits in CTRLB
Enable Compare Channel A by setting the CCAEN bit in CTRLB.

Start the TC by selecting a clock source (CLKSEL[3:0] in CTRLA).

Calculate the desired compare value.

Write the new compare value to CCA[H:L].

Wait for the TC Overflow Flag to be set. (OVFIF in INTFLAGS).

Clear the TC Overflow flag.

! 10. Go to step 6.

'Using this sequence, the compare value will be updated once every PWM period.

VCoONOOTUVTA WNER

'The following procedure is a slight modification which writes to the compare
'buffers instead:

' 1. Configure PDO, PD1, PE@, PE1l for output --> PORTD.DIR, PORTE.DIR
Portd_dir = &HFF

Porte_dir = &HFF

' 2. Select the timer period by setting the PER[H:L] register.(16.384 ms at 32 MHz)
Tcdo_perl = &HFF
Tcdo_perh = &HFF
Tcdl_perl = &HFF
Tcdl_perh = &HFF
Tce@_perl = &HFF
Tce@_perh = &HFF
Tcel perl = &HFF
Tcel _perh = &HFF

' 3. Define WGMODE 011 = single slope by setting the WGMODE[2:0] bits in CTRLB
! and set OCA-D active by setting the CCAEN bits in CTRLB.
Tcdo_ctrlb = &HF3 !

Tcdl_ctrlb = &HC3
Tced_ctrlb = &HF3 !
Tcel_ctrlb = &HC3

' 4. Write the new compare value to CCxBUF[H:L]
Switchboard

' 5. Start the TC by selecting a clock source (CLKSEL[3:0] in CTRLA.

Tcdo_ctrla = &Ho4 'Divide Clock By 8 , Enable
Timers (Bits 3..0 define clckdiv)

Tcdl_ctrla = &HO4

Tce@_ctrla = &Ho4 'Divide Clock By 8 , Enable
Timers (Bits 3..0 define clckdiv)

Tcel_ctrla = &HO4

'PWM runs
tendif

Enable Interrupts

Gsmreadyflag = 1

VHHHHEEE A AR main loop 1nit ###HHHEHEHHHHEREHEEHHEEEEE
'It may or may not be advisable to break down the code into smaller segments
'in subs or function. One big loop and overwritables is however better in terms
'of speed considerations and memory usage.
' HHHHEHE AR A
Mainloop:
Hby = @
Loopiby = @
Jby = 0
Loopkby = ©
Lby =
Iwo =
Jwo =
Kwo =
Lwo =
Iin =
Jin =
Kin =
Lin =
Ilo =
Jlo =
Klo =
Llo =
Isi =
Jsi =
Ksi =
Lsi =
Loopist =
Jst = ""
Kst = ""
Lst = ""
'Disturbdoneflag
'Disturbflag = ©
0

OO0 00D

®

Motoroffflag =
'#if Ver_board
'Portc.5 = 0
'Portc.4 = 0
'Portc.3 1
'#endif

Modelnames = Modelnamee
Print Modelnames
Print "#!Condition is red!"

#if Ver_board <> 3
Start Watchdog
Timer2 = ©

Timere = ©

#tendif

Rxahiby
Rxbhiby =
Rxaloopby
Rxbloopby =
Rxaloopflag
Rxbloopflag =
'Portj.7 =1
Nwo = @

1]
h ®© e
N ==

|
(]

'Rxasync = @

Do
#if Ver_board <> 3
Reset Watchdog 'Watchdog timer is 2s
#endif
Readsatellites 'calls switchboard for mixing

and servo signal making
'switchboard calls
updateslaves
Readusarto ‘calls loopistparser which
calls
'servoadjust (parser)
'mixeradjust (parser)
'Printeeram (printer to
AR7212 programmer)

NOTE THAT EXTENSIONS NEED THE LOOPISTPARSER_EXT TO BE CALLED FROM
'==== READUSARTO (INSTEAD OF LOOPISTPARSER)
Decomment the following lines for the AR7212 extensions

'If Autonomousservocontrolflag = © Then Goto Skipend

'If Calibrationflag = 1 Then Goto Skipend
'If Gsmreadyflag = @ Then Goto Skipend
'If Justdirectflag = 1 Then Goto Skipend

If Restartflag = 1 Then Exit Do 'leave main loop and restart
GSM connection

' Interpretedx?7 'needs to be rewritten for DX7

' Readadc 'calls Autonomousservocontrol

' Readgps 'calls Ggaparse, Rmcparse,
Teledata

Skipend:

Loop Until Restartflag =1

'Restart
Goto Mainloop
End 'end program

¥k 3k ok ok ok 3k ok 3k ok 5k >k 5k >k ok >k ok >k 3k 3k 3k 3k 3k 5k >k ok >k ok ok ok 3k 3k 3k 3k 5k >k sk >k ok sk ok sk >k 3k ok 3k ok 3k 3k ok ok 3k ok 3k >k ok >k 5k 3k 5k >k 5k 3k ok 5k >k 5k >k 5k >k 5k >k %k %k %k %k k ok kok
¥k 3k ok ok ok 3k ok 3k ok 5k >k %k >k ok ok ok ok 5k >k ok >k ok 3k ok ok %k ok kk Read Satellites 3k 3k 3k 3k 5k ok 3k >k 5k >k 5k 3k >k >k 5k 3k ok 5k >k 5k >k 5k >k 5k >k %k %k %k %k *k %k kok
¥k 3k ok ok ok 3k ok 3k ok 5k >k 5k >k ok >k ok >k sk %k 3k 3k 5k 5k >k ok >k ok 3k ok 3k 3k %k ok sk >k sk >k ok ok ok 3k 3k 3k ok 3k ok 3k 3k ok ok 3k sk 3k >k ok >k 5k 3k ok >k ok 3k ok 5k ok 5k >k 5k >k 5k >k %k %k %k %k k ok kok

Sub Readsatellites()
#if Ver_board <> 3

'Goto Notimer2

'2nd method is based on the detection of a 7ms delay

If Timer2 >= 254 Then Timer2 = T7
Do
Readcharasc = Ischarwaiting(#3)
If Readcharasc = 1 Then
Iby = Inkey(#3)
If Timer2 >= T7 Then
read, start sync
'Toggle Portj.7
Rxaloopby = 1
packet
Rxaloopflag = @
high/low
Rxahiby = Iby
Rxdoneflag = ©
an update unless not set by RXA
Else
Rxaloopflag = 1 - Rxaloopflag

byte
If Rxaloopflag = 1 Then
If Rxaloopby < 8 Then
received
Iwo = Makeint(iby , Rxahiby)
lowbyte

Rxainwo(rxaloopby) = Iwo
Incr Rxaloopby
Else
process received
'Process receival
Rxaloopby = 8
arrays in desync state

2'nd frame
Iwo = Makeint(iby , Rxahiby)
Rxainwo(rxaloopby) = Iwo
Rxastartwo = Rxainwo(1)

info
For Jby = 2 To 8

Iwo = Rxainwo(jby)
Jwo = Iwo And &B0000001111111111
Kwo = Iwo And &B0011110000000000

Kby = High(kwo)
Rotate Kby , Right , 2
Incr Kby
array index
Rxamaster(kby) = Jwo
dimensioned at 16
Next Jby
' final exam

If Kby = 4 Then
Iby = High(rxastartwo)
1201, 2101 (was nonshielded)
Rxaquality = Iby And &B00000011
higher is better
Rxastatus = Iby And &B00110000
lower 1is better

If Rxaquality >= Rxbquality Then
If Rxastatus <= Rxbstatus Then
15h in the air by now
If Rxdoneflag = @ Then
Rxabflag = @
Rxstartwo = Rxastartwo

For Iby =1 To 7

'stay at 7ms

'intermediately #2 on Crumb2560
'If character in buffer
'intermediately #2 on Crumb2560
'"If more than 7 ms since last
'reset loopcounter for new
'reset Loopflag: even/odd means
'store MSB for 1st entry

'clear Rxdoneflag. This allows

'change loopflag for high/low

'if low byte received
'--if less than 8 words

'make word from hibyte and
'store word at index

'--when 8 words received,

'necessary for not bouncing
'should also block reading

'make last word

'store word at index

'take first word as special

'Process data in channels 2-8

'last 10 bits give channel data
'these bits give channel number

'after shifting to the LSB side
'zero not allowed as Bascom

'Rxamaster is sufficiently

'rxastartwo: 0301, 0201, 0101,
'last 2 bits: either 3, 2, 1, ©
'last 2 bits: either 3, 2, 1, ©
'to be improved

'to be improved - but works for

'NEW NEEDS AIR TEST
'im Kasten

Master(iby) = Rxamaster(iby) - 512

Next Iby

Switchboard
mixing operation

Rxdoneflag = 1

End If
End If
End If
Rxaloopby = 1
data
End If
End If
Else
Rxahiby = Iby
End If
End If
received

Timer2 = @
End If
Loop Until Readcharasc = @

Notimer2:
'Goto Notimere
If Timer@ >= 254 Then Timero = T7
Do
Readcharasc = Ischarwaiting(#4)
If Readcharasc = 1 Then
"If Ischarwaiting(#4) = 1 Then
Iby = Inkey(#4)
If Timer@ >= T7 Then
read, start sync
Rxbloopby = 1

packet

Rxbloopflag = @
high/low

Rxbhiby = Iby

Rxdoneflag = ©
if RXA

Else

Rxbloopflag = 1 - Rxbloopflag
byte

If Rxbloopflag = 1 Then

If Rxbloopby < 8 Then
received
Iwo = Makeint(iby , Rxbhiby)

lowbyte

Rxbinwo(rxbloopby) = Iwo
Incr Rxbloopby
Else
process received
'Process receival
Rxbloopby = 8
arrays in desync state

2nd frame
Iwo = Makeint(iby , Rxbhiby)
Rxbinwo(rxbloopby) = Iwo
Rxbstartwo = Rxbinwo(1)
info
For Jby = 2 To 8
Iwo = Rxbinwo(jby)
Jwo = Iwo And &B0000001111111111
Kwo = Iwo And &B0011110000000000

Kby = High(kwo)
Rotate Kby , Right , 2
Incr Kby

array index

'calls DX7 switch reading and

'Loop reset for new stream of
'of Abschlusspriifung

'of analysis of received frame
'else high byte was received
'store high byte

'of low byte receival

'of succesive bytes in frame
'reset timer

'of any byte received
'leave loop for other tasks

'If character in buffer

'If more than 7 ms since last
'reset loopcounter for new
'reset Loopflag: even/odd means
'store MSB for 1st entry

'This allows an update by RXB
'change loopflag for high/low

'if low byte received
'--if less than 8 words

'make word from hibyte and
'store word at index

'--when 8 words received,

'necessary for not bouncing
'should also block reading

'make last word

'store word at index

'take first word as special

'Process data in channels 2-8

'last 10 bits give channel data
'these bits give channel number

'after shifting to the LSB side
‘zero not allowed as Bascom

Rxbmaster(kby) = Jwo 'Rxbmaster is sufficiently
dimensioned at 16
Next Jby !
'Final exam
If Kby = 4 Then
Iby = High(rxbstartwo)
Rxbquality = Iby And &B00000011
Rxbstatus = Iby And &B00110000
If Rxbquality => Rxaquality Then
If Rxbstatus <= Rxastatus Then

'last 2 bits: either 3, 2, 1, ©

If Rxdoneflag = @ Then
Rxabflag = 1

Rxstartwo = Rxbstartwo

For Iby = 1 To 7

'frei

Master(iby) = Rxbmaster(iby) - 512

Next Iby
Switchboard
mixing operations
Rxdoneflag = 1
End If
End If
End If
Rxbloopby = 1
data
End If
End If
Else
Rxbhiby = Iby
End If
End If
Timero = 0@
End If
Loop Until Readcharasc = @

Notimero:
ttendif

End Sub

'calls DX7 switch reading and

'Loop reset for new stream of

'high byte is received
'store MSB

'reset timer

'leave loop for other tasks

¥k 3k ok ok ok 3k ok 3k ok 5k >k 5k >k ok >k ok >k sk 3k 3k 3k 3k 5k >k ok >k ok ok ok 3k 3k 3k 3k sk >k sk >k ok ok ok sk ok 3k ok 3k ok sk 3k ok ok 3k ok 3k >k ok >k 5k 3k 5k >k 5k 3k ok 5k ok 5k >k 5k >k 5k >k %k %k %k %k k ok kok

' okoskoskoskok skokokoskokokokok ok ok ok kk ok ok ok ok ok kokokkkk Ragd USARTO kK %k sk skokoskosk sk sk ok ok ok ok sk sk sk sk sk sk ok skok sk ok ok ok ok ok ok ok ok ok ok ok ok
T3k ok ok ok 3k ok ok >k ok ok K ok 3k ok ok >k %k ok >k ok k 3k >k 3k 5k ok >k >k 5k ok >k >k 3k >k >k >k 3k ok >k >k %k >k >k >k %k 3k >k 3k 3k >k >k >k >k 5k >k >k %k 5k >k >k >k 5k >k >k %k 5k >k >k >k 3k >k >k 3k >k % *k >k >k %

Sub Readusarte()
#if Ver_board <> 3
Do
control from AR7212-programmer/ground station
'get a char from the UART
Readcharasc = Ischarwaiting()
If Readcharasc <> @ Then
Readcharasc = Inkey()
chr(@) is possible
Readchar = Chr(readcharasc)
If Readcharasc = 13 Then
If Loopist <> "" Then
Loopistparser
FOR LOOPISTPARSER_EXT FOR EXTENSIONS
End If
Else
If Loopiby < Cmaxchar Then
Incr Loopiby
ANYTHING ELSE IN THE MAINLOOP AND ASSOC. ROUTINES!
Loopist = Loopist + Readchar
analyzed
Else

'Inner Loop 1: Check for

'Character by inkey means no
'was there a char?

'a message has been received
'if not empty it_

'needs processing : REPLACE

' (viz. not CHR 13)

'DONT USE LoopIby, LoopIst FOR

'LoopIst holds string to be

Print "Error: String too long!"

End If
End If ' (for IF Chr(13))
End If ' (for IF Readcharasc <> 0)
Loop Until Readcharasc = © Or Restartflag = 1
ttelse
Do 'Inner Loop 1: Check for

control from AR7212-programmer/ground station
'get a char from the UART
'Readcharasc = Inkey (#1)
'If Readcharasc <> © Then

Readchar = Chr(readcharasc) 'was there a char?
If Readcharasc = 13 Then 'a message has been received
If Loopist <> "" Then 'if not empty it_
Loopistparser 'needs processing REPLACE
FOR LOOPISTPARSER_EXT FOR EXTENSIONS
End If
Else ' (viz. not CHR 13)
If Loopiby < Cmaxchar Then
Incr Loopiby 'DONT USE LoopIby, LoopIst FOR
ANYTHING ELSE IN THE MAINLOOP AND ASSOC. ROUTINES!
Loopist = Loopist + Readchar 'LoopIst holds string to be
analyzed
Else
Print "Error: String too long!"
End If
End If ' (for IF Chr(13))
"End If ' (for IF Readcharasc <> 0)

Loop Until Readcharasc = @ Or Restartflag = 1

ttendif
End Sub

T3k ok ok ok 3k ok ok >k ok ok ok ok k ok ok >k %k ok >k ok >k 3k >k >k 5k ok >k >k 5k ok >k >k k >k >k >k 3k ok >k >k %k >k >k >k %k 3k >k 3k 3k >k >k >k >k 5k >k >k %k 5k >k >k >k >k >k >k %k 5k >k >k >k 5k >k >k 3k >k % *k >k >k *k
" okoskok sk skok ok skoskok kokok sk skokok kokokok kokokkkokok k- Quud techboagrd %k koK ok sk skskoskok sk skok sk skokok ok ok sk sk ok sk sk ok ok skokok ok sk ok ok ok
13k 3k 5k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 5k 3k 3k 3k 5k 5k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 5k 3k 3k 5k >k 3k 3k 5k 3k 3k 3k 3k >k 3k 3k 3k 3k % 3k 3k 3k >k 3k 3k >k %k K 3k 3k >k 3k 3k >k %k >k %k >k %k 3k 5k >k Kk >k k k

Sub Switchboard()
'Timero = 0 'only for testing performance
'set Satellite2 to Goto
Notimere

Read DX7 switches and determine flight mode

Incr Jtimer3 'JTimer3 is incremented every
22 ms, reset by GPS string receival

If Master(dx7aux2) >= @ Then 'Aux 2 is the swich to enable
autonomous flight modes
If Rxabflag = @ Then Toggle Mainled
If Autonomousservocontrolflag = 1 Then
Print "auto off"

End If
Autonomousservocontrolflag = 0
Else
If Rxabflag = @ Then Reset Mainled 'Mainled on if auto is on

If Autonomousservocontrolflag = @ Then
Print "auto on"

End If
Autonomousservocontrolflag = 1
Master(dx7throttle) = Auto_throttle 'These 4 values are going to be

computed

(ext

+384

down

2, 4

Master(dx7aileron) = Auto_aileron 'in autonomous flight modes
ensions)

Master(dx7elevator) = Auto_elevator

Master(dx7rudder) = Auto_rudder

End If
If Master(dx7flap) >= 172 Then 'Master ranges from -384 to
Fltmode = 1 'Master (6) = 3 way switch: up,
, middle
Elseif Master(dx7flap) < -171 Then
Fltmode = 3
Else
Fltmode = 2 ‘middle
End If
Fltmode = Fltmode * 2 'converts Fltmode 1-3 to 2,4,6
If Master(dx7gear) >= © Then 'Gear switch off: Flightmodes =
, 6
Fltmode = Fltmode - 1 'Gear switch on: Flightmodes =
, 5
End If

set mixer data according to flight mode

If Fltmode <> Oldfltmode Then 'If Fltmode has changed
Print "flight mode " ; Fltmode
Select Case Fltmode 'set flight mode and read mixer
data from eeram
Case 1
For Iby = 1 To 72 'read corresponding mixer table
from eeram
Mixdat(iby) = Mixdatmil(iby)
Mixtyp(iby) = Mixtypmil(iby)
Next Iby
For Iby = 1 To 12
Offsets(iby) = Offsetml(iby) 'read corresponding table of
Offsets from eeram
Delays(iby) = Delaymil(iby) 'read corresponding table of
Delays from eeram
Next Iby
'"Iby = Memcopy(MixDatml(1) , MixDat(1) , 72) 'doesn't work so

far,

don't know why
'"Iby = Memcopy(offsetml(1l) , Offset(1l) , 24)

Case 2
For Iby = 1 To 72 'read corresponding mixer table
from eeram
Mixdat(iby) = Mixdatm2(iby)
Mixtyp(iby) = Mixtypm2(iby)
Next Iby
For Iby = 1 To 12
Offsets(iby) = Offsetm2(iby) 'read corresponding table of
Offsets from eeram
Delays(iby) = Delaym2(iby) 'read corresponding table of
Delays from eeram
Next Iby
Case 3
For Iby = 1 To 72 'read corresponding mixer table
from eeram
Mixdat(iby) = Mixdatm3(iby)
Mixtyp(iby) = Mixtypm3(iby)
Next Iby
For Iby = 1 To 12
Offsets(iby) = Offsetm3(iby) 'read corresponding table of

Offs

ets from eeram

Delays(iby) =
Delays from eeram
Next Iby

Case 4
For Iby = 1 To 72
from eeram

Mixdat(iby) =
Mixtyp(iby) =
Next Iby
For Iby = 1 To 12
Offsets(iby)
Offsets from eeram
Delays(iby) =
Delays from eeram
Next Iby
Case 5

For Iby = 1 To 72
from eeram

Mixdat(iby) =
Mixtyp(iby) =
Next Iby
For Iby = 1 To 12
Offsets(iby)
Offsets from eeram
Delays(iby) =
Delays from eeram
Next Iby
Case 6

For Iby = 1 To 72
from eeram

Mixdat(iby) =
Mixtyp(iby) =
Next Iby
For Iby = 1 To 12
Offsets(iby)
Offsets from eeram
Delays(iby) =
Delays from eeram
Next Iby
Case Else
End Select
End If

0ldfltmode = Fltmode

Delaym3(iby)

Mixdatm4(iby)
Mixtypm4(iby)

= Offsetm4(iby)

Delaym4 (iby)

Mixdatm5(iby)
Mixtypm5(iby)

= Offsetm5(iby)

Delaym5(iby)

Mixdatmé (iby)
Mixtypmé (iby)

= Offsetm6(iby)

Delaymé6 (iby)

'read corresponding table of

'read corresponding mixer table

'read corresponding table of

'read corresponding table of

'read corresponding mixer table

'read corresponding table of

'read corresponding table of

'read corresponding mixer table

'read corresponding table of

'read corresponding table of

'Fltmode is now set

Perform mixing to arrive at simulated stick
settings for each servo (slave) channel

(pwm values in Slave array
For Iby = 1 To 12
Slave(iby) = ©

Next Iby
Jby = 1
Iby = 0

For Kby = 1 To 72
become a table
Incr Iby
If Iby = 13 Then
column counter 1
Iby = 1
Incr Jby
End If

'Mixing starts here, results

'Start from zero

'line counter set to 1st line
'column counter
'linear array is resolved to

'1..12
'line completed - restart at

'Dx7 mixer values maximally
range from 43 to 213 (to allow bytewise storage of tables)

'The usual range (=100%) goes
from 64 to 192

If Mixdat(kby) = 128 Then 'no mixing, do nothing
'nop
Else
Iin = Mixdat(kby) 'mixer (slope) values
Iin = Iin - 128 'converted into integer numbers
'gives range from -64 to +64
Jin = Master(jby) 'holds the input data received

from DX7 radio (-384 to 384)

Select Case Mixtyp(kby) 'Analyze for mixer type
Case © 'linear mixer
Case 1
If Jin < @ Then Jin = © 'J mixer
Case 2
If Jin >= @ Then Jin = 0 'F mixer
Case 3
If Jin < @ Then Jin = © 'L mixer
Case 4
If Jin >= @ Then Jin = 0 'T mixer
Case Else
End Select
Iin = Iin * Jin 'gives usual range from -64 *
384 = -24568 to +24568
Shift Iin , Right , 6 , Signed 'fast divide by 64 gives range
from -384 to +384
Slave(iby) = Slave(iby) + Iin 'mixing is done by Slave(I) =
Sum of Mastercontribution(J) * Mixer(I,J)
End If
Next Kby

Keep simulated stick setting inside valid range, =

multiply by up/downtravel factor, add center and ==
offset values to arrive at servo pwm values.

Finally, keep servo values inside valid range
and update accordingly

For Iby = 1 To 12
Iin = Slave(iby) 'slave array so far contains
simulated stick values for each servo

If Iin >= Auto_max Then Iin = Auto_max 'keep simulated stick values
inside valid range
If Iin < Auto_min Then Iin = Auto_min

If Utravels(iby) >= Mixer_max Then Utravels(iby) = Mixer_max ' (=85) make
sure that servo table in EERAM is in valid range
If Dtravels(iby) >= Mixer_max Then Dtravels(iby) = Mixer_max ' o¥¥k*Ki: needs

to be shifted, redundant here!

If Iin = © Then

'nop
Elseif Iin > @ Then
Iin = Iin * Utravels(iby) 'multiply by up/downtravel
factor gives range -85 * 384 = -32640 to +32640 (2715 = 32768)
Shift Iin , Right , 5 , Signed 'fast divide by 32 gives range
from -1020 to +1020
Else

Iin = Iin * Dtravels(iby)

Shift Iin , Right , 5 , Signed

End If
If Delays(iby) > © Then

'If

"End
End If
Slave(iby) = Centers(iby) + Iin 'Adding Centers (= 3000)_
Slave(iby) = Slave(iby) + Offsets(iby) 'and offsets_
If Slave(iby) >= Utramaxs(iby) Then 'gives then final PWM

pulselenghts to be corrected_
Slave(iby) = Utramaxs(iby) 'if outside travel range

Elseif Slave(iby) < Dtramaxs(iby) Then
Slave(iby) = Dtramaxs(iby)

End If
Next Iby
If Dx7printflag >= 1 Then 'Option to print out HEX Values
of frames as originally_
Decr Dx7printflag 'received from DX7 satellites

Print "DX7a:";
For Iby =1 To 8
Print " " ; Hex(rxainwo(iby));
Next Iby
Print ""
Print "DX7b:";
For Iby = 1 To 8
Print " " ; Hex(rxbinwo(iby));
Next Iby
Print ""
Else
End If
Updateslaves 'update servo positions

End Sub

¥k 3k ok ok ok 3k ok 3k ok 5k >k 5k >k ok >k ok ok sk %k 3k 3k 3k 5k >k ok ok ok 3k ok 3k 3k %k 5k 5k >k sk >k ok ok ok ok sk 3k ok 3k ok sk >k ok ok 3k ok 3k >k ok >k 5k 3k 5k >k ok 3k ok 5k ok 5k >k 5k >k 5k >k %k %k %k %k k ok kok
¥k 3k ok ok ok 3k ok 3k ok 5k >k %k >k ok ok ok ok 5k >k ok >k ok 3k ok ok k ok kk Updateslaves 3k >k 3k 3k >k 3k ok >k ok >k >k 3k >k >k ok 3k ok 3k >k 5k >k 5k >k 5k >k 5k >k %k 5k >k ok kok kok >k
¥k 3k ok ok ok 3k ok 3k 3k 5k >k 5k >k ok 3k ok >k sk %k 3k 3k 5k 5k >k ok ok ok 3k ok 3k 3k 3k 3k sk >k sk >k ok ok ok sk >k 3k ok 3k ok sk >k ok sk 3k ok 3k >k ok >k 5k 3k 5k >k ok 3k ok 3k sk 5k >k 5k >k 5k >k %k %k %k %k k ok kok

Sub Updateslaves()
#if Ver_board <> 3

Ocrlah = High(slave(ser_ocla))
Ocrlal = Low(slave(ser_ocla))
Ocrlbh = High(slave(ser_oci1b))
Ocrlbl = Low(slave(ser_oclb))
Ocrlch = High(slave(ser_oclc))
Ocrlcl = Low(slave(ser_oclc))

Ocr3ah = High(slave(ser_oc3a))
Ocr3al = Low(slave(ser_oc3a))
Ocr3bh = High(slave(ser_oc3b))
Ocr3bl = Low(slave(ser_oc3b))
Ocr3ch = High(slave(ser_oc3c))
Ocr3cl = Low(slave(ser_oc3c))

Ocrd4ah = High(slave(ser_oc4a))
Ocr4al = Low(slave(ser_oc4a))
Ocr4dbh = High(slave(ser_oc4b))
Ocr4abl = Low(slave(ser_oc4b))
Ocr4ch = High(slave(ser_oc4c))
Ocr4acl = Low(slave(ser_oc4c))

Ocr5ah = High(slave(ser_oc5a))

Ocr5al = Low(slave(ser_oc5a))

Ocr5bh
Ocr5bl
Ocr5ch
Ocr5cl

#telse

High(slave(ser_oc5b))
Low(slave(ser_oc5b))
High(slave(ser_oc5c))
Low(slave(ser_oc5c))

'more elegantly in the future by WIO

Tcdo@_ccabufl
Tcd@_ccabufh
Tcd@_ccbbufl
Tcd@_ccbbufh
Tcd@_cccbufl
Tcd@_cccbufh
Tcdo@_ccdbufl
Tcdo@_ccdbufh

Tcdl_ccabufl
Tcd1l_ccabufh
Tcdl_ccbbufl
Tcd1l_ccbbufh

Tce@_ccabufl
Tce@_ccabufh
Tce@_ccbbufl
Tce@_ccbbufh
Tce@_cccbufl
Tce@_cccbufh
Tce@_ccdbufl
Tce@_ccdbufh

Tcel_ccabufl
Tcel _ccabufh
Tcel ccbbufl
Tcel _ccbbufh

Low(slave(ser_tcde@a))
High(slave(ser_tcdea))
Low(slave(ser_tcdeb))
High(slave(ser_tcdeb))
Low(slave(ser_tcdoc))
High(slave(ser_tcdec))
Low(slave(ser_tcded))
High(slave(ser_tcded))

Low(slave(ser_tcdla))
High(slave(ser_tcdla))
Low(slave(ser_tcdilb))
High(slave(ser_tcdilb))

Low(slave(ser_tce@a))
High(slave(ser_tce®a))
Low(slave(ser_tce@b))
High(slave(ser_tce®b))
Low(slave(ser_tce0c))
High(slave(ser_tceec))
Low(slave(ser_tceed))
High(slave(ser_tceed))

Low(slave(ser_tcela))
High(slave(ser_tcela))
Low(slave(ser_tcelb))
High(slave(ser_tcelb))

tendif
End Sub

13k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 5k 3k 3k 3k 5k >k 3k 3k 5k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k 3k >k K 3k 3k % 3K 3k 3k >k 3k 3k >k %k >k 3k >k %k 3k >k k Kk k k k
T3k ok ok ok 3k ok ok >k ok ok 3k ok 3k ok ok >k k ok >k ok >k 3k >k 3k 5k ok >k >k 5k ok >k >k 3k 5k >k >k 3k ok >k >k 3k >k >k >k >k 3k >k 3k 5k >k >k >k >k 5k >k >k %k 5k >k >k >k 5k >k >k %k 5k >k >k >k %k >k >k %k >k % *k >k >k %

Sub Loopistparser()

Select Case Loopist
latency

'used for feedback control and

Case "alive?" 'estimation. Planned to
implement a "heartbeat counter"
'based on the number of
missing alive?-yes-cycles. Aim:
'Return HOME if heartbeat from
ground is missing.

Print "yes"
Gsmreadyflag = 1
Alivetime = Ggatime

Case "reset_to_upload_firmware"
Do
Loop 'watchdog will reset the AR7212
in 2 seconds
'Better is a direct jump to
the reset vector

Ca

item is valid

to be checked

one blank

blanks between

to be checked

frames in HEX

se Else

For Iby = 1 To 20

Istarr(iby) = ""
Next Iby
Iin = 1

Lin = Len(loopist)

If Lin >= Cmaxchar Then Lin = Cmaxchar

Kst = ""
Kwo = ©
For Jin = 1 To Lin
Jst
If Jst <> " " Then
Kst = Kst + Jst
Kwo = 1

Else
If Kwo = 1 Then
Istarr(iin)

Incr Iin

Kst = ""

Kwo = ©
End If

End If
Next Jin

Istarr(iin) = Kst

Jst = Istarr(l)

If Len(jst) >= 4 Then Jst = Left(jst , 3)

Select Case Jst

Mid(loopist , Jin , 1)

Kst

'prepare for parameter parsing

'clear the old array
'should be done in a better way

'go through the string

'if no seperator

'add char and set flag that

'if item is valid

'keep in list,

'*Compiler concern*: Len Istarr
'increment list counter,

'start new item,

'and reset validity flag after

'this will allow to enter two

'items without problem

'*Compiler concern*: Len Istarr

Case "ar7"
Print "OK"

Case "DX7"
Dx7printflag

Case "pil"
Pilotnames =
Pilotnamee =
Print "OK"

Case "mod"
Modelnames =
Modelnamee =
Print "OK"

Case "flm"

]
ey

Istarr(2)
Pilotnames

Istarr(2)
Modelnames

Iin = Val(istarr(2))
Ist = Istarr(3)

Fltmodenames(iin) = Ist
Fltmodenamee(iin) = Ist
Print "OK"

Case "ser"

Servoadjust

‘ar7
'just For Test

'DX7
'leads to printing of received

'pilot name

'model name

'flight mode

'servo adjust

Case "mix" 'mixer adjust
Mixeradjust
Case "ram" 'write eeram
Printeeram
Case Else
End Select
End Select 'of Loopist cases
Loopiby = ©
Loopist = ""
End Sub

¥k 3k ok ok ok 3k ok 3k ok 5k >k 5k >k ok >k ok >k 3k 3k 3k 3k 5k 5k >k ok ok ok 3k ok 3k 3k 3k ok sk >k sk >k ok ok ok ok >k 3k ok 3k ok sk sk ok sk 3k ok 3k >k ok >k 5k 3k 5k >k 5k 3k ok 5k ok 5k >k 5k >k 5k >k %k %k %k %k k ok kok

‘*****************************SubMenu SERVO ADJUST 3k 3k >k >k 3k >k >k ok 3k ok %k >k 5k >k 5k >k 5k >k 5k >k %k 5k >k 5k kok kok >k

¥k 3k ok ok ok 3k ok 3k ok 5k >k 5k >k ok >k ok ok sk 3k 3k 3k ok 5k 3k ok ok ok 3k ok 3k 3k 3k ok sk >k sk >k ok ok ok ok 3k 3k ok 3k ok sk sk ok sk 3k ok 3k >k ok >k 5k 3k 5k ok ok 3k ok 5k sk ok >k 5k >k 5k >k %k %k %k ok k ok Kok

Sub Servoadjust()

'syntax:
'ser 3 cen 2745
'ser 3 nhi 60
'ser 3 nlo 4 40
'ser 3 mhi 3650
'ser 3 mlo 1900
'mix 2 3 8 -600
'mix 2 4 4 52 20
20
Ist = Istarr(3)
If Len(ist) >= 4 Then Ist =
Iin = Val(istarr(2))
Jin = Vval(istarr(4))
Kst = Istarr(4)

If Len(kst) >= 5 Then Kst =

Select Case Ist

means set servo 3 center to 2745

normal uptravel

normal downtravel

max uptravel

max downtravel

offset for fltmode 2, servo 3 at -600

fltmode 2: mix table entry 51 (master 4, slave 3) to

Left(ist , 3)

Left(kst , 4)

Case "set"
Slave(iin) = Jin
Updateslaves
Case "nam"
Servonames(iin) = Kst
Servonamee(iin) = Kst
Case "cen"
Centers(iin) = Jin
Centere(iin) = Jin
Case "nhi"
Utravels(iin) = Jin
Utravele(iin) = Jin
Case "nlo"
Dtravels(iin) = Jin
Dtravele(iin) = Jin
Case "mhi"
Utramaxs(iin) = Jin
Utramaxe(iin) = Jin
Case "mlo"
Dtramaxs(iin) = Jin
Dtramaxe(iin) = Jin

Case Else

End Select
Print "OK"
End Sub

T3k ok ok ok 3k ok ok >k ok ok ok ok k ok >k >k %k ok >k ok k 3k >k 3k 5k ok >k >k 3k ok >k >k 3k >k >k >k 3k 5k >k >k 3k >k >k >k %k 3k >k 3k 5k >k >k >k >k 5k >k >k %k 5k >k >k >k >k >k >k %k 5k >k >k >k 5k >k >k 3k >k % *k >k >k %

T okoskok sk skok ok skokok kokok ok skokok kokokok kokokkkkkk GuhMenu MIXER ADJUST k% okskskokook skokok ok skosk sk ok sk ok sk ok ok skokok ok skok ok
T3k ok ok ok 3k ok ok >k ok ok ok ok k ok ok >k %k ok >k ok >k 3k >k 3k 5k ok >k >k 3k ok >k >k 3k >k >k >k 5k 5k >k >k k >k >k >k %k 3k >k 3k 5k >k >k >k >k 5k >k >k %k 5k >k >k >k 5k >k >k %k 5k >k >k >k 5k >k >k 3k >k % *k >k >k *k

Sub Mixeradjust()

Iin = Val(istarr(2))
Jin = val(istarr(3))
Kin = Val(istarr(4))
Lin = Val(istarr(5))

Lst = Istarr(5)

Lby = Len(1lst)

Lby = Lby - 1

Kst = Left(lst , 1)

Select Case Kst

Case

ngn

below center input and increases above

Case
input and stays

Case

Mixtype = 1
Lst = Right(lst , Lby)
Lin = Val(lst)

g
at center output above
Mixtype = 2

Lst = Right(lst , Lby)
Lin = Val(lst)

below center input and decreases above

Case
input and stays

Case

End Select

npn
Mixtype = 3

Lst = Right(lst , Lby)
Lin = Val(lst)

Lin = @ - Lin

o

at center output above
Mixtype = 4

Lst = Right(lst , Lby)
Lin = Val(lst)

Lin = @ - Lin

Else

Mixtype = @

Select Case Iin
delays, mixer value and type of mixer

Case

1

If Kin = 7 Then
Offsetml(jin) = Lin

Elseif Kin = 8 Then
Delayml(jin) = Lin

Else

Kin = Kin - 1

Iin = Kin * 12
Iin = Iin + Jin
Lin = Lin + 128

Lby = Lin

center

center

center

center

input

input

input

input

'FltMode

'Servo

'Channel

'Value

'mixer

'Curve

'Curve

'Curve

'Curve

type

stays at center output

increases below center

stays at center output

decreases below center

'Fltmode dependant offsets,

Case

Case

Case

Case

Case

Mixdatml(iin) = Lby
Mixtypml(iin) = Mixtype
End If

2

If Kin = 7 Then
Offsetm2(jin) = Lin

Elseif Kin = 8 Then
Delaym2(jin) = Lin

Else

Kin = Kin - 1

Iin = Kin * 12

Iin = Iin + Jin

Lin = Lin + 128

Lby = Lin

Mixdatm2(iin) = Lby

Mixtypm2(iin) = Mixtype
End If

3

If Kin = 7 Then
Offsetm3(jin) = Lin

Elseif Kin = 8 Then
Delaym3(jin) = Lin

Else

Kin = Kin - 1

Iin = Kin * 12

Iin = Iin + Jin

Lin = Lin + 128

Lby = Lin

Mixdatm3(iin) = Lby

Mixtypm3(iin) = Mixtype
End If

4
If Kin = 7 Then
Offsetm4(jin) = Lin
Elseif Kin = 8 Then
Delaym4(jin) = Lin
Else

Kin = Kin - 1

Iin = Kin * 12

Iin = Iin + Jin

Lin = Lin + 128

Lby = Lin

Mixdatm4(iin) = Lby

Mixtypm4(iin) = Mixtype
End If

5

If Kin = 7 Then
Offsetm5(jin) = Lin

Elseif Kin = 8 Then
Delaym5(jin) = Lin

Else

Kin = Kin - 1

Iin = Kin * 12

Iin = Iin + Jin

Lin = Lin + 128

Lby = Lin

Mixdatm5(iin) = Lby

Mixtypm5(iin) = Mixtype
End If

6
If Kin = 7 Then
Offsetm6(jin) = Lin
Elseif Kin = 8 Then
Delaym6(jin) = Lin
Else
Kin
Iin

Kin - 1
Kin * 12

Iin = Iin + Jin
Lin = Lin + 128
Lby = Lin
Mixdatmé6(iin) = Lby
Mixtypm6(iin) = Mixtype
End If
Case Else
Print "ERROR: Mixtype not recognized"
End Select
Print "OK"
End Sub

T3k 3k ok ok ok 3k ok 3k ok 5k ok 3k >k ok ok ok ok sk 3k ok 3k ok 3k ok ok ok ok ok ok >k ok >k ok 3k ok ok ok k k k%
‘******************************SubMenu Pri
¥k 3k ok >k ok 3k ok 3k ok 5k ok 3k >k ok ok ok ok sk 3k ok 3k ok sk ok ok ok ok ok ok >k ok >k ok 3k ok ok ok %k k ok k

Sub Printeeram()
Stop Watchdog
Ist Pilotnamee
Print "pil " ; Ist
Ist Modelnamee
Print "mod " Ist

3

1 To 6
Fltmodenamee(iin)
"flm " ; Str(iin)

For Iin
Ist
Print

Next Iin

Ist

1 To 12
Servonamee(iin)
"ser " ; Str(iin)
Centere(iin)

"ser " ; Str(iin)
Utravele(iin)
"ser " ; Str(iin)
Dtravele(iin)
"ser " ; Str(iin)
Utramaxe(iin)
"ser " ; Str(iin)
Dtramaxe(iin)
"ser " ; Str(iin)

For Iin
Ist
Print
Jin =
Print
Jin =
Print
Jin
Print
Jin
Print
Jin
Print

Next Iin

nam

cen

nhi

nlo

mhi

mlo

For Iin = 1 To 6
For Jin =1
For Kin
Lin
Lin

To 12

1 To 8

Kin * 12

Lin - 12

Lin Lin + Jin

Lby = Lin

Select Case Iin

Case 1

If Kin

Lin
Print

"mix
" ", Str(lin)

Elseif Kin = 8

Lin

Print "mix

" "5 Str(lin)
Else

3k >k 5k >k 3k >k >k 3k ok >k ok >k ok >k ok >k ok 3k ok 3k >k 5k >k 5k >k 5k >k ok >k %k ok >k ok kok kok %k
nt EERAM 3k 3k >k >k 3k >k >k ok 3k ok %k >k 5k >k 5k >k 5k >k 5k >k %k 5k >k 5k kok kok >k
3k >k 5k >k 3k ok >k 3k ok >k ok >k 5k >k 5k >k ok 3k ok 3k >k 5k >k 5k >k 5k >k ok >k %k ok >k ok kok kok %k

Ist

Str(jin)
Str(jin)
Str(jin)
Str(jin)

Str(jin)

7 Then
Offsetml(jin)

" Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;

Then

Delayml(jin)

" Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;

Iby = Mixdatml(1lby)
Mixtype = Mixtypml(lby)
Lin = Iby

Lin = Lin - 128

Nin = Abs(1lin)

Ist = Str(nin)

Ist = Trim(ist)

Lst = Str(lin)

Lst = Trim(1lst)
Select Case Mixtype

Case 0
Case 1
Lst = "J" + Ist
Case 2
Lst = "F" + Ist
Case 3
Lst = "T" + Ist
Case 4
Lst = "L" + Ist
Case Else
End Select
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
" ", Lst
End If
Case 2
If Kin = 7 Then
Lin = Offsetm2(jin)
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
" ", Str(lin)
Elseif Kin = 8 Then
Lin = Delaym2(jin)
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
" "5 Str(lin)
Else
Iby = Mixdatm2(1lby)
Mixtype = Mixtypm2(1lby)
Lin = Iby
Lin = Lin - 128
Nin = Abs(1lin)
Ist = Str(nin)
Ist = Trim(ist)
Lst = Str(lin)
Lst = Trim(1lst)
Select Case Mixtype
Case 0
Case 1
Lst = "J" + Ist
Case 2
Lst = "F" + Ist
Case 3
Lst = "T" + Ist
Case 4
Lst = "L" + Ist
Case Else
End Select
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
" ", Lst
End If
Case 3
If Kin = 7 Then
Lin = Offsetm3(jin)
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
" "5 Str(lin)
Elseif Kin = 8 Then
Lin = Delaym3(jin)
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
" "5 Str(lin)

Else

"o st

" "5 Str(lin)

" ", Str(lin)

"o st

" "5 Str(lin)

Iby = Mixdatm3(1lby)
M1xtype Mixtypm3(1lby)
Lin = Iby
Lin = Lin - 128
Nin = Abs(1lin)
Ist = Str(nin)
Ist = Trim(ist)
Lst = Str(lin)
Lst = Trim(1lst)
Select Case Mixtype
Case 0
Case 1
Lst = "J" + Ist
Case 2
Lst = "F" + Ist
Case 3
Lst = "T" + Ist
Case 4
Lst = "L" + Ist
Case Else
End Select
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
End If
Case 4
If Kin = 7 Then
Lin = Offsetm4(jin)
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
Elseif Kin = 8 Then
Lin = Delaym4(jin)
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
Else
Iby = Mixdatm4(1lby)
M1xtype Mixtypm4(1lby)
Lin = Iby
Lin = Lin - 128
Nin = Abs(1lin)
Ist = Str(nin)
Ist = Trim(ist)
Lst = Str(lin)
Lst = Trim(1lst)
Select Case Mixtype
Case ©
Case 1
Lst = "J" + Ist
Case 2
Lst = "F" + Ist
Case 3
Lst = "T" + Ist
Case 4
Lst = "L" + Ist
Case Else
End Select
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
End If
Case 5
If Kin = 7 Then
Lin = Offsetm5(jin)
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;

Elseif Kin = 8 Then

Lin =

Delaym5(jin)

Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;

" ", Str(lin)
Else
Iby = Mixdatm5(1lby)
Mixtype = Mixtypm5(1lby)
Lin = Iby
Lin = Lin - 128
Nin = Abs(1lin)
Ist = Str(nin)
Ist = Trim(ist)
Lst = Str(lin)
Lst = Trim(1lst)
Select Case Mixtype
Case ©
Case 1
Lst = "J" + Ist
Case 2
Lst = "F" + Ist
Case 3
Lst = "T" + Ist
Case 4
Lst = "L" + Ist
Case Else
End Select
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
" ", Lst
End If
Case 6
If Kin = 7 Then
Lin = Offsetm6(jin)
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
" "5 Str(lin)
Elseif Kin = 8 Then
Lin = Delaym6(jin)
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
" ", Str(lin)
Else
Iby = Mixdatmé(1lby)
Mixtype = Mixtypmé6(lby)
Lin = Iby
Lin = Lin - 128
Nin = Abs(1lin)
Ist = Str(nin)
Ist = Trim(ist)
Lst = Str(lin)
Lst = Trim(1lst)
Select Case Mixtype
Case ©
Case 1
Lst = "J" + Ist
Case 2
Lst = "F" + Ist
Case 3
Lst = "T" + Ist
Case 4
Lst = "L" + Ist
Case Else
End Select
Print "mix " ; Str(iin) ; " " ; Str(jin) ; " " ; Str(kin) ;
" ", Lst
End If
Case Else
End Select
Next Kin

Next Jin

Next Iin

Print "OK"

Print "completed"

Start Watchdog
End Sub

' APPEEERRREEEEEEEEACAAACALACACEEEEAEEAEAEAAEACAALAAEEEEEEEEAAEAAAACAAAAALECECEAAEAEEAEAEE
' APEAEERRREEEEEAAEEAEAAACALACACEEEEAEEAEAEAAAACALLALACEEEEEEAAAAAACAAAAALECECEAAEAEEAEAEE
' APEAEERRREEEEEAEEEAEAAACALACACEEEEAEEAEAEAAAACALLELACEEEEEEAAEAACAACAAAAALECECEAAEAEAEAEEE
' (PAOPAOAAAAAAAAAA@ END OF BASIC AR7212 FUNCTIONALITY @Q@0CEACOAREAEOACERE

