An Introduction to
Practical Electronics
Microcontrollers and

Software Design

RN KRR AR AR R et
D

R -

~

Instructions

[ben = cancel]

DisplayOldTempr
DisplayNewTempr |

(tempr < satTampd 2 3;':" @

ftantTimerlightalam)

A ReadlMas

DisplayTempt
ReadButtons

[benssetTampi]
——

[btn: reset]
fLightalarmOn

{s0¢5>300]
NightOn

[temps > ‘nﬂ empr}
MightOH AlarmoM
{tempe>setTempi)

Nighict

‘ ReadlMas
< frece > 35) DbiplayTamps
Al armOn ReadButtons

B.Collis

© January-2012 www.techideas.co.nz
This work is copyright. No one but the author may sell or distribute this material.

Table of Contents

1 Introduction to PractiCal EI@CIIONICSuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiibiiiiiiibebbbbbbeeaeeee e 12
1.1 Your learning in TECHNOIOQY........ooeuuiiiiii e e e e e e e aar s 13
1.2 Key Competencies from The NZ CUrTiCUIUMcoooiiiiiiicec e e e e 13
1.3 WHhETE t0 DUY STUMT? . 13
2 MaKING YOUT FIFST CIFCUIT .o 14
2.1 Identifying resistors by their COlOUr COUES...........oiiiiiiiiiiiiiiiiiieiiiieeeeeeeeeeeeeee e 15
2.2 L E D S it tttett ettt ettt ———t——————————————————————————... 16
2.3 SOME LED SPECITICALIONS.uuuiiii it e e e e e e ettt e e e e e e e e e e atr e e e eaaeeaanees 16
2.4 LED FESEAICKH TASKeiiviiiiiiiiiiiiiiiiiiiieieee ettt ettt et e ettt e et a e 16
2.5 AddINg & SWItCH T0 YOUT CIFCUIT.....ceiiiiiiiiiiiiiiiiieeeeeeee ettt 17
2.6 SWILCN AS S GBI ... a e 17
2.7 [gaToTo g =g Mol (ot VT aodo] g ot=T o) P 18
2.8 Changing the value Of FESISTANCEcccoii e 18
2.9 L0 o] LS = PP 19
2.10 Adding a tranSistor t0 YOUF CIFCUILuiieeeeieeeiiiiee e e e e e e s e e e et e s e e e e e e e eae e e e e e e e e eeeeaaaaaas 20
2200 I R O 1 o7 11 8 ¥ =0 PP 21
2.12 THE LDR INPUL CITCUIL. ...ttt 22
2.13 Working darkn@ss AELECIONceuiiiiiiii e e e e et s e e e e e e e e et e e e e e e e e eereaaas 23
220 5 1 To [P 24
2.15 Diode RESEAICH TaSK.....uuueiii i e e e e e e e e e e ettt e e e e e e e e e rar s 24
2.16 Final darkness deteCtOr CIFCUIL..........uuuiiie et e e e e e e e e e e et s e e e e e e eeeeennnes 25
3 Eagle Schematic and Layout Editor Tutorial.........ccoooeeiiie 26
3.1 L (oo 18 ox 1 0T i (o I = G4 = 1P 26
3.2 Y g [oTo [Tex i o] o I (o TN == To | [P 27
3.3 The SChematiC EAItOr..........cooo i 28
34 BN =2 = o =T o I =l {1 o 33
3.5 MaKing NEQALIVE PIINTOULSceviiiiiiiiiiiiiiiiiiiiiei ettt ettt ettt ettt ettt ettt et e et e e et e e e e e e e e e e e e eeeeeeeees 37
4 PCB MaAKING ..o 38
5 Soldering, solder and sOIdering iTONSccoooiiiiiiiiii e e 41
5.1 o) [0 [T g1 g Lo I = T PO SUUPPPPRPNS 42
5.2 SOIABIING SAIETY ... 42
5.3 SOIdEriNg WIFES t0 SWITCNIES ... 43
5.4 (07070 LTS 0)l o] - Vol 1oL PO UUUPPPPPPN 44
5.5 (€Te]0T0 Ir=TaTo Il o= To I=Yo] (o [T o o] 0| £ 00U UUUPPPPPPPIRS 45
5.6 SOIdEriNg WIFES 10 LED S ... 46
6 Introductory EIeCtroniCs TREOIY ..., 47
6.1 MBKING EIECTIIICITY ..eeeviiiiiiiiiiiiiiiiieee ettt ettt ettt ettt et e e e e e e eeeees 47
6.2 ESD electrostatiC diSCHAIGEooviiiiiiiiiiiiiiiiiiiieeeeeeee ettt 49
6.3 Magnets, WIres and MOLIONuuiuiiii e e e e e e e e e et e e e e e e e e e eraaa s 50
6.4 Group POWET ASSIGNIMENTuuiiii et e e e et e e e e e e e e e e ettt e e e e eeeeesss et e saeeeesessttsanaaeeaeeeesnnes 50
6.5 Electricity supply in NEW Zealand...............oouviiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeee e 51
6.6 (@] 0o 113 (o] R 52
6.7 1 IS 0] = (0 PP 52
6.8 WIFE ASSIGNIMIENT. ... 53
6.9 TS 1] (] U 54
6.10 RESISIOr ASSIGNIMENT ...coiiiiiiii i e e e e e e e e e e e e e e e e e e et a e e e eeeeeeas et e eeaeaeeerrtanaans 54
00 I R = =TS Y 11 SR PPPPPTRR 54
B.12 RESISTON PIrEIIXESeettiteeeetieeeeeeee ettt ettt 55
6.13 RESISIOr VAIUES EXEITISESeiiiieeiiiiiii ettt e e e e e e e e e e et a e e e e e e e e eeaetn e e e e e eaeeeeennnnnns 56
L0 S - Vo = od | (0] = PP 58
6.15 CompoNeNt SYMDOIS FEIEIENCEuuiiiiiiiiiiiiiiitiieieeeiiitei bbbt b et e bbb bbb b bebbbesebaebabeeebennnnnnees 59
7 Year 10/11 - Typical test qUESTIONS SO farl.....cccoviuiiiiiiiiie e 60
8 ElECIroNICS TREOIY L. 61
8.1 (0701 0NV =T 11T] g = | I @ UL 1= o) AP SSPUPPR 61
8.2 L] 0 18] o 1SRRI 61
8.3 Preferred reSiStOr VAIUESoceeiiiii et e e et e s e e e e e e e e e et s s e e e e e aeernenes 61
8.4 RESISION TOIEIANCESvvviiii et e et e e e e e e e e et a e e e e e e e e e aaettan e e eeaeaeessennnns 62
8.5 COomMDINING FESISTOIS IN SEIES ...u.iiieeii e ee e e e e et e e e e e e et e e e eet e e eeta e eeeataaeeentnnaeeeannnaaeenes 62

8.6 Combining resistors iN Parallel ... 63
8.7 Resistor CombiNAtioN CIFCUILSvviiiiiiiiiiiiiiiiiiiiii ettt ettt 64
8.8 Y TE LT gL (=T PP PPPPPPPPP 65
8.9 Y1 L =] (=T o o 11 0 LU 66
S 700 O R O g To o 1Sy g ol o) g £ =Tt 0 012 =T GRS =] U o LU 67
8.11 Voltage & CUrrent MEASUIEIMENTSuiiiieieieeiiiiie e e e e e ettt s e e e e e e e e ettt a s e e e e e e e eastt e e e e e eeeeeeeeeananns 68
8.12 MEASUING RESISTANCE. ... eeeiieeeeeieeteeeee ettt e et e ettt 69
8. 13 COMUINMUILY ..ttt 69
S Y T F= 1 [=TT IS (0] PPN 70
ST T - T o = o3 (o] = PP 71
8.16 Capacitor COUES ANU VAIUES..........uuiiiiiiiiiiiiiiiiiie ittt e e e s ebe s b bebes s nsseennnnnnnnne 71
8.17 Converting Capacitor Values UF, NF | PF ..o e e 71
8.18 Capacitor action iN DC CIrCUILScuuuuiii e e e e e e e e e e et e e e e e e e e e eaaaaa s 72
8.19 TNE VOIAGE DIVIUET ...ttt 73
8.20 USING SEMUCONUUGCTONSeeeeeeeeeteeieeeeeeeeeseeeeeeee et e et e st 74
8.21 Calculating current limit resisStors for an LEDcooiiiiiiiiiiiii i 75
S I 1 1= N = 0 S 1] (o | TSP 76
8.23 Transistor SPeCifiCatioNS ASSIGNMIENT.uuuuueuureiieieeiieieeeeeereeeeeea e eserseeseeeeeneensnsesnnnnnnnne 77
8.24 TraNnSISIOr CaSE StYIES...uuuuuii i i ettt e et e e e e e e e e e e e ettt e s e e e ae e e e et eeaeeeearrraan 77
8.25 Transistor amplifier in @ mMicrocoNtroller CiFCUIt.............coviiiiiiiii i 77
8.26 TranSiStOr AUIO AMIPIITIET ... ittt nbbeesennnes 78
827 SPEAKEIS. ...ttt 1ttt £t £t £ £ £ 1 £ £ £ £ £ 18 £ £ 1 £ £t £t £t n e 79
8.28 SWitCh types and SYMOIS........ccooiiiiie e e 80
9 TDA2822M Portable Audio AMPlfier Projectcccoeeeeiiiiiiiiiiiie i 81
9.1 Portfolio ASSESSMENt SChEAUIE............covvviiiiiiiiiiiiiiiiiiee e 82
9.2 INItIal ONE PAQE BIIET ...oeeii et e e e e a e e e e e e e e s e e s 83
9.3 TDA2822M SPECITICALIONSceeeeeeeeee e 84
9.4 Making a PCB for the TDA2822 AMP PrOJECT........cuuiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee ettt 85
9.5 Extra PCB making infOrmMationoooiiiiiiiiiiie et e et e e e e e e e e e naaaa s 89
9.6 Component FOrming Codes Of PracCtiCe.........ccooooiioieeeeeeeeeeee e 90
9.7 TDA2811 WIFNG QIAGTAM....ceeeieeeeeeee e e e e e 91
9.8 SKETCHUP QUICK Start TULOIIAIiiiiiieieiieiie ettt e e et e e et e e e e et e e e eabe e e e seaaaeeaens 92
9.9 Creating reusable components in SKECAUPouviiiiiii i eaeees 93
10 Introduction to Microcontroller leCtIONICSuuuuuuiiiiiiiiiiiiiiiiiieiiiiiieib e 94
10.1 WhAtiS @ COMPULET? ... it e e e et e e e e e ettt e e e e e e e e e e ettt e e e e e e e e e eeastba s seeaeeeesastannaaaeeaeeessnnes 95
10.2 What does a computer SYSTEIM GOcoiiiiiiiiiiiiii i 95
10.3 What exactly iS @ MIiCroCONTIOEI?........coviiiiiiiiiiii 96
10.4 What does a microCcontroller SYSIEM dO?.......cooiiiiiiiiii i e e e et eeaeeeaenes 97
10.5 What you do when learning t0 PrOgraM.........c.oiiiuiiiiieieeeeeeeeetieee e e e e e e e eartaa e e e e e e eeeearraaaaeeaaeeeennes 98
10.6 AVR microcontroller NArdWAIEuuuiiiieiiii e e e e e e e e ettt ea e s e e e e e e e eaeteaaaaeeaeeeennnes 99
O B A =0 VY=Y YU o] o] [T= TSP UURPPPRTPPIRt 99
10.8 BASCOM and AVR aSSIGNMENTouiiiiiiii e e e e e ee s e e e e e e e e ettt s s e e e e e e esattba e e aeaaaeeennes 100
10.9 Programming words you need to be able to use COrrectlyccoovvviiiiiiiiiiiii e, 102
11 Getting started with AVR Programmingccooeriiiiiiiiiii e e e e e e e e e eeennns 103
11,1 BreadbOard ... 103
11.2 Breadboard+Prototyping DOArd CirCUIL.............coiviiiiiiiiiiiiiiiie e 104
11.3 Alternative ATTiny461 breadboard CirCUIL.............cooviiiiiiiiiiiiiiiiiii e 106
11.4 Alternative ATMega48 breadboard CIrCUILuuiiiiiiiiiiiice e e e e eaeens 107
11.5 Alternative ATMega breadboard CirCUILccovviiiiiiiiiiiiiiiiiee e 108
11.6 AVR CIFCUIT AESCIIPLION ...ceiiieieeieeeeeee ettt 109
5 A @ 10 1 01U | o 4 (ot U A = I PP 110
11.8 AVR programming CaDIE ... e e e e et e e e e e e e aae e e e aaeeanae 110
12 Getting started With BaASCOM & AVR ..o e 111
2 R I o= oo o 1] | = PSSP 111
12.2 TRE PrOGIAIMIMET ...ttt ettt ettt ettt et e e e e e aeaees 111
12.3 Anintroduction tO fIOWCHAISccoiiiiiie e e e et e e e e e e eanees 112
12.4 BaSCOM OULPUL COMMIANTS eeeieeieitii e e e e et eeette e e e e e e eeeeeaaen e e e e e eeeeeeaenn e eeeaeeeeennnnnaaeaaaeeennnes 113
12.5 Introducing ‘bugs’ to see what happens ... 114
12.6 Getting started code for the ATMEQA48cooiiiiiiiiiiiiii e 115
12.7 Getting started code for the ATMEQaB535.........uci i e e 116

12.8 Microcontroller ports: write a Knightrider program using LED’S ..., 117

12.9 COMMENLING YOUF PrOGIAIMS ieeteeeeititaeseeeeeeeeettt s eeeaeseaaataaaeaaeeresetaaaaaaaaeeessnssnaaaaaaaeeerrnes 121
12.10 What is a piezo and how does it make SOUNA?..........ccooiieeiiiiiiiiiii e 121
12.11 SOUNAING Off .t 122
13 SWILtCH INPUL CITCUITS .o e e e e e e e e e e ee e e e e eeeeeannes 123
13.1 Single push BULON SWILCHi i e e e e e e e an e e e e e e eaanenes 123
13.2 PUNUP RESISIOIS ...t 125
13.3 Switch in @ breadboard CirCUILcoiiiiiiiiiii 125
13.4 Checking SWItCheS iN YOUI PrOQIraM........uiiieeeii et e e e e e et e s e e e e e e e ettt e s e e e e e e e e aneaesaeeaeeaannes 126
13.5 Program Logic — the ‘If-Then’ SWitch Test...........oooiiiii 127
13.6 SWItCh CONtACT BOUNCE ...t e e e et e e e e e e eeeees 129
13.7 Reading MUIIPIE SWILCNES e e e e e e e e e e e e e e aae e e e eeaeaeannes 131
13.8 Different types of SWItChES YOU CAN USEccovvviiiiiiiiiiiii 132
14 Yearll typical test QUESTIONS SO far.......ccoiiiiiiiiiiieic e 133
15 Variables — data disguised as binary NUMDErS ..o 134
15.1 Variables - nUMDBers inside the AVR........coi e e et eeeeeeeees 134
15.2 Pedestrian crossing lights CONTIOIEr.........coi i e e e eannns 135
15.3 Pedestrian Crossing LIghtS SChEMALICcccoviiiiiiii i e e eeaees 136
15.4 Pedestrian Crossing LIghtsS PCB LaYOUL............ccouiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee e 137
15.5 Algorithm planning example — pedestrian crossing lIghts ..., 138
15.6 Flowchart planning example — pedestrian crossing lightS.............coiiiiiiii e, 139
15.7 Program example - pedestrian crossing lIghtS............oooviiiiiii 140
15.8 Modification exercise for the pedestrian CroSSINGccuviiiiiiiiiiiiiiiiiii e 141
15.9 Changing a variable — simple stepping/COUNLINGcc.oeeiiiiiiiiiiie e e e e eaeees 142
15.10 For-next tricks With flashing LEDSuoiiii i 144
15.11 O =N XL .. 145
15.12 UsiNg vVariables fOr data...........cooiieeiiiiiiiic et e e e e e e 147
15.13 TYPES OF MEBMOIY ..ottt e e e e e et e e e e e e e e e e ettt e e e eeaeeeeestaaa e e aeaeeeesserannnnns 147
15.14 Binary and Hexadecimal NUMDEIS..........oooii 148
15.15 Learning to COUNE IN DINAIY ... s 149
15.16 Learning some Hexadecimal (HEX)ucoiiiiiiiiiicie et 150
15.17 U LS ES= Lo Lo LU | AR 7= U =T o] =2 153
15.18 a few examples of variableS iN USE...........coooviiiiiiiiiiiiiiii 153
15.19 RANAOM NUMDEIS ... e e 154
15.20 The BasCOM-AVR SIMUIALOTuuuuuiuiieiiiiieieueieetuenenneeeeeeesseeseeseeeeeeeeeeeeeeesesseesseeessssessssnsnnsnnnes 155
15.21 Variables research aSSIgNMENT uu it bbeebebeennnneenes 157
15.22 Byte variable IMitatioNS...........coi it e e e e e e e e 158
15.23 (S =To (o] a] (oo [Tt TN o] o[-l APPSR 159
15.24 Programming using variables — diCe........ccooi oo 159
15.25 DICE AYOUL STAGE a e 160
15.26 DICE IAYOUL STAGE 2... . et e e e e e e e e e e e e e e e e e et e e e e e e e e e aa e e aeaas 161
15.27 DICE LAYOUL TIN@U. ... 162
15.28 First Dice Program fIOWCHAITccoooiiieeeeeeee e 163
15.29 A note about the Bascom Rnd cOommandooooviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 164
15.30 1Y oTo 1 1T=To o [Tt TR 165
15.31 Multiple LEDS - 7 SEgMENT iSPIAYS. . .cieeeee oo 167
15.32 Programming using variables - SOUNGcoooiiiiiiiee e 173
15.33 MaKE @ SIMPIE SITEN e e e e e e e e ettt e e e e e e e e e et e aeaaeas 175
15.34 (O 1 [1Ty LI @] o110 | T SRR 177
15.35 Quiz game controller system context diagramcovvviiiiiiiiiiiiiiiiiieeeeeee e 177
15.36 Quiz game controller BIOCK diagramoooieiuiiii e e e 178
15.37 Quiz game controller AIGOItNM e e e et eeeeeeeees 179
15.38 QUIZ game SCHEMALIC........coiiiiiiiiiiiiii e 180
15.39 Quiz game board veroboard 1ayOuULooeiiiiii e 181
15.40 Quiz Controller FIOWCNAITuu e e e e e e r e e e aaa s 186
15.41 'QUiz Controller Program COUE...........uuiiiiiiiiiiiiiiiiee et 187
16 Programming COAEeS Of PraCtiCeiiiiiiiiiii i e e e ens 189
16.1 Three steps to help you write gOOd ProgramsSoiieeeiiieeiiiiaae e e et e e e e e eeeae e e e e aeeeeeeees 189
16.2 SAVING PrOQIAIMS ...cooiiiiiiiiiieeee et 189
16.3 Organisation iS EVEIYENING........uii i e e e e e e e e e e e e e et e e e e aa e e e eatn e e e eaenn s 189

16.4 Programming teMPIALE........... i ittt e e e et e aaaaaanee 190

S 101 o] € 101 A1 =23 TSP 191
17.1 SubroutineS — MOISE COUE EXEITISEuuuii e eeeieiieii e e e ettt e e e e e e e e e ettt e e e e e e eeeeeanennaaaeeaaeeennnes 192
17.2 Traffic lightS SEQUENCING EXEITISEeuuieiiii ettt e e e e et e e e e e e e e e eeaaeana e e e eaaeeeeeees 195
RS I I o T< TN B T Tt e Yo o R SUPTPTPPRIN 203
18.1 DONTAEIAY....cccoiiiiiiiiieeeeeeeee 204
18.2 Modified KNIGNTIOETooiiiiieeeeeeee e 207
19 Alarm SyStem deVEIOPMENTiiiiiiiiiiiiiii ittt 208
19.1 Simple alarm SYStem — STAGE Lcooiiiiiiiiiiiiie e 208
19.2 Alarm SYStEM SCREMALICuuu it e e e e e e e et e s e e e e e e e e aae e s aeaaeaanrnes 209
19.3 A simple alarm SYSIEM — StAQE 2.......cuuuuiiii e e e e e e e e e aaaaaaan 214
19.4 A simple alarm SYSteM — STAGE 3......cooiiiiiiiiiiieee e 215
19.5 A simple alarm SYStEM — STAGE 4.......ccoviiiiiiiiii i 216
19.6 More compleX alarm SYSEEIMcciiiiiiiiii e e e et e e e e e e e et et e e e e e e e e e e aataaaaeaaeeenrnes 217
19.7 Alarm unit algorithm 5: ... 217
19.8 Alarm 6 algorithm: ... 218
19.9 Algorithm example - MURIPHCAtION..........iii e e e e e eaaees 220
19.10 Algorithms for multiplication of very large NUMDbDErScccoooeiiiiiiiiiiii e, 222
19.11 Algorithm and flOWCHhart @XErCISESuuuuiiiiiiiiii e 224
20 ProjeCt Planning ..o 225
P30 R Y £3 (=T o T D TS o 1 = S 226
3 N R Ot 1= 1] Lo = W 1=V o] (o 1= X PSPPSRI 227
122 I o o | = 1= P 228
A TG B 014 11> 1Y/ (= 11 L USRI 228
21.4 Selecting itemMS t0 COPY tNEIMuiiiiiiiiiiieeiiee ettt e et ebs bbb bessenseeeennnnes 229
P R o= 1o o 1= Yo | = T 31 PO UURUPPPRPPRE 229
A e oY =Toa i 1 oV T o B o 1 =T o BTSRRI 230
7 R \Y 1 1=2 1 (o T [= 11 [SRR 231
N U1 (o] g F= LA ol (g T (1ol £ L1 o] o I 231
P22 T e o Y [=Toa o €1 1= 1T = U 232
P2 T R \V 112 (o o T=TN d F= VT V1 o TP USSPPPPPRRP 233
A B S v 1 (=] aTo] o [T @ o g ST 7= o] o 233
23.3 CritICAl FEVIEW POINTSeteeeeeteieiieeeeeeeeeeeeeeeeeee et e st e ettt ettt ettt 233
23.4 Copying Timelines to put them iNto YOUr JOUIM@L............uuuuuruuiiiiiiiiiiieiiiiiiiiniirieieenineeeeeneeneeeeeeenee 233
24 System CONTEXT AIAGIAM ...oooeei e 234
24.1 First step is to create a Main SYSIEM UEVICEuuuuuuuuiiiiiiiiiiiiiiieieiieeieeeeeeeneeeeeeeeeeneneeeneeneeeeeenenes 234
P2 o (o = L] o UL (=TT (o TR £ TS0 (= T = 235
24.3 EXternal SENSOrS N0 ACIUBLOISuuuuuuuueuerureetnnneeeeeeneneeseeseeesnnneeensssesssssnsnessnsssssssnnssnnssnssssssnnnns 236
24.4 User interactions with the system (social €NVIrONMENL)uuuuueuiiriiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeees 237
245 PRYSICAl ENVITONMMIENT. ... itiiiitiiiitiieieieeee ettt e et ettt 238
P G I O 11T oL 3= YT IS £ 1 =] 1] 0 =T 239
24.7 Conceptual statement and physical attriDUIESuuiiiiiiiiiiiiiii e 240
24.8 SECONUArY SYSLEIM UEVICESeeeeeeeeieuiueenneeneeneensaeaetaeeeeeasesessseesesssssssssssesssssssesssessssssessesssssseeeennnes 241
24.9 External SYStEmM CONNECHIONS.oouiiiiii e e ee et eeecee e e e e e et e s e e e e e e e et et e e e eeaeeeessttb e aaeaaeeesrees 242
24.10 Export diagram to written doCUMENTAtIONcouiiiiiiiiieei e 244
AT = (o Yot [= To 1 = o PP 245
26 BOArd LAY OULS ... 247
26.1 BACKOIOUNUSceeeieeeiee ettt 248
26.2 A COMPONENLIS ...ttt e e e e e e e e e e e et a e e e e e e e e e e as et e e eeeaeeeessstaanaaaaaaeaenrees 249
26.3 Add your own pIiCtures t0 the laYOULcooiiiiiiiie et eeeeeeeees 250
26.4 Create your own backgrounds and COMPONENTSuuuuuuruurruriniiiiernenrneeenenneereeneneneeeneeneere 251
P24 S Ko To T 1 1 g 11 1= [| o I 252
P2 < T e 1 1LY o] = U U 254
28.1 Drag and drop flOWCNAIt DIOCKSuuuiiiiiiiiiiiiiiiiiiiiiiiiii bbb neeaeeeeennnnes 255
28.2 Beginning tEMPIALEooiiiiii et e e e e ettt e e e e e e e tantn e e e aaeaeanaes 256
29 Example system design - hot glue gun timer ... 257
A4S I R VA1 (=T ¢ g W oo T o1 (=) (e [=T | = o P 257
29.2 Hot glue gun timer blOCK diagramcuuii i e e e e et e e e e e e e ara s 258
29.3 Hot glue gun timer algOrithim it eneenennebnnnnes 259

29.4 Hotglue gun timer fIOWCHAIT....... ... e e e e e e e eaeees 260

29.5 HOt glue gUN LM PrOOIAM.. .. cciieeeeiiee e e e e e e et e e e e e e e e e e ettt e e e e eaeeeessataaaaaaeaaeesnnees 261
30 Complex interfaces and their programmingccooooe oo 262
30.1 Parallel data COMMUNICALIONSoouuuniiie et e e e e et a e e e e e e e e eeaaen e e e eeaeeeeeeees 263
31 LCDs (liquid crystal diSPlaysS).....cuuuuuiiiiiiiiiei e 264
311 AIPNANUMETIC LECDS ...eiiiieeeiieteeeeeeeeeeeee ettt 265
ATTINY26 Development PCB WIth LCDccuuiiiiiiiieeeeiiiiie ettt e e e e e e 266
31.2 Completing the Wiring fOr the LCD........oii oot e e e e eaanes 268
130 0 T I B @] o 1 = 13 A @] |1 (o PSSP 269
31.4 Learning 0 USE the LCDuuuiiiiiiiiiieeiiiieieeieeeeseee ettt eennnnes 270
31.5 Adding more interfaces to the ATTiny26 Development board.............cccccooeiiiiiiiiiiiiieee, 271
31.6 Ohms law in action —a MUItICOIOUrEed LEDuuuuuiiiiiiiiiiiiiiiiiiiiiiiriieiiiiinenennnreneneneneneeneeeeennes 273
31.7 Repetition again - the ‘For-Next’ and the LCDuuiiiiiiiiiiiiiiiiiiiiiieee e 275
31.8 Defining your OWN LCD Char@CIEIS.......uiii i e ettt e e e e e e e et e e e e e aeanees 276
31.9 LCD cuStoOm CharacCter PrOGIAMuuuuiieeeeeeeeitiiiaa e e e eeeeeeeati e e e e eeeeeeesstaaaaeeaaeesssntsnaaaaaaaeeeernes 276
31.10 To CLS or not to CLS that iS the QUESTIONueiiiiiiiiiiiiiiiiiiiieeeie e 278
31.11 A SIMPIE AIGItAI CIOCK ...t 279
32 Example System Design - TIMe TraCKer.ocouuuuiiiiiieeiiiieiiiie e 281
32.1 System context diagram and DIET......... ... i i 282
32.2 Time tracker BIOCK diagramooouiiiiiiii i e e e e e e et e e e aaeaaanees 283
32.3 AlgOorithm deVEIOPMENTei i e e s e e e e e e e ettt a e e e e e e e eesstta e aaeaaeaeerees 284
G S Yo = o ¢ - 1o PSRRI 284
32.5 Time tracker flowchart and program VEIrSION L.............uuuuuueuuuummummennieneennnenenenrennennennneeenerneeees 285
32.6 TIME TraCKEr STAQE 2 ...cceiiiiiii it e e et e e e e e e e e e ettt e e e e eaeeeeatttaaaaeaeaeeaasrees 286
32.7 TIME TraCKEr STAQE 3 ..ot e e et e e e e e e e e e ettt s e e eeaeeeestttaaaeaaeaaeaeerees 288
32.8 TIME TIACKET STAGE 4eeeeeeeeeeeieieeeieeeeeeeeee ettt ettt ettt 290
33 SHING VariAbIES ..o 294
33,1 SHIINQS @SSIGNIMIENT . .eeeeeeeeeeeeeeeeeeeeeeeeee ettt e ettt e ettt 296
3.2 ASCH ASSIGINMIMIENTtttk 298
GG T T 0 4TI T T T 11 o PO SUSPPPPRRPN 301
33.4 Scrolling MeESSAQE ASSIGNMENT.......cuuiiiii e e e et e e e e et e e e e e e e e e ear e e e e eaaeeeesssraaaaaaeaaeaenrnes 303
33.5 Some LCD Programming EXEICISES.uuuuuuuruuuuenennnnnnnnnnnnnnnnnnnsnnnnnnnnssssssssssnsnssssssssnsnssnnnsmmnnmmmnmnn 304
G o 1YV G T oY (=T o = o =2 305
34.1 Microcontroller POWET MITATIONSuuuiiiieieriiiiiiiieeiieieebeeeee bbb neeneneennnnees 305
1 o 1 T RSP UPPPT 307
34.3 Power diSSIPAtion IN FESISTOISiiiiiiiii e e ee e e e e e e e e e e e e e e e e ettt e e e e eaeeeesatta e aaeaaeeearees 307
K B 110 To [od = 1= T (=T 1S 6o 308
345 USING ZENET QIOUEBSeeeeeetittteeteeeeeeeeeeeeeeeeee ettt et e et et e e et e ettt 309
B G I o [0 LY 10T [T R o 310
34.7 Howdoes a LED give off IgNE? ... e 311
34.8 LCD BaACKIGNT DALA.eeeeeeeieiiiiiiiiiieieieeeeteeeee ettt 312
34.9 TranSiStOrS AS POWET SWITCNIESuuuuuiiiiueiieiiiiieeeeaeeeeeteeeeeeeeeeeeeseeeeeeeeeeseseseeebeeessbssenssesbensseeennnnes 313
34.10 HIGN POWET OAAS ... e e et e e e e e e e et e e e e e 314
34.11 AVR POWET MAIIEIS. ...ttt e e et e et e e et e e et e e et e eeneaeens 314
34.12 Darlington transistors - NIGN POWET ... 316
34.13 ULN2803 Octal DarliNGtON DIIVETcuiiiiii i e et e e e e e e e aab e e e 318
34.14 Connecting a FET backlight control to your microcontroller.............ccoveeeeiieiiiiiiiiiieie e, 320
34.15 FET DaCKIGNT CONTIOL ... 321
35 Power Supply Theory — every micro needs high quality powerccccoeeveeevvveeeinnnnnnn. 322
T A Y/ o (o= LI =] U L PPN 323
35.2 The four stages of a PSU (POWETr SUPPIY UNIE) ...uvuviiruiiiiiiiiiiiiiiiiiiiiiiiiiiiiseiiieeseeeeeeenensnenenneeeennnene 324
35.3 Stage 1: step dOWN traNSTOIMEToueui e e e e e e e et e e e e e eaeeeeeees 324
35.4 Stage 2: AC 10 DC CONVEISION.......ouuiuiiii e e eeeeeeeeteaa e e e e e e e et a e e e e e e eeeaetan e e e eeaaaeeeenennaaaaeaaeeeennes 326
35.5 Stage 3: Filtering AC COMPONENTuuuiiiieiieiieieiiutteeeeeeueeaeeeeeeeeeeeeeeeseeeeeeseeeeeeeeeeeseseessenseseeseeennnes 327
35.6 Stage 4: VOIage REQUIATION.uuiiiiiiiiiiiiiieieiitiiieieeeeeeeeeeeeeeeee e eeeeeeebeeeseee e s eesbssbbeaseeseenessesnnnnes 327
35.7 RIPPlIE (AECIDEI & AB) ...ttt e e et eaaaaeanae 331
o S B [Tl T=To (U] =4[] o PSPPSR 332
Ko B o T: (o [2 (=T [0] =1 1 o] o H TSR 332
35.10 L8[= o I 0 SRR 333

35.11 Power, temperature and heatSiNKiNgcoooo oo 336

35.12 Typical PSU CIrCUIL ABSIGNSevviiiiii e e et e e ettt e e e e e e e ettt a s e e e e e e eaaeaaaas 338
35.13 (Y U I o] (o Tod Qo 7= 1o =2 R 338
35.14 S ST od 1= o = 11 o 338
35.15 Practical current Imit CIFCUIL.cooiiei e e e e e 341
36 Yearll typical test QUESTIONS SO far ... 343
37 Analog to digital INTErfaCEScoiiieeeeci e 344
37.1 ADC - Analog to Digital CONVEISIONuiii i e et s e e e e e e e e e aaa e e e eaaeaaanees 344
37.2 LIGNTIEVEI SENSING ...ttt 344
37.3 VOIAGE AIVIOEIS FEVIEWeeeeeieiiiieieieeeeeeeeeeeeee ettt et 345
K A NV o (@ o] o o T=Tox 1 o] TR 345
O A S S T =T ot = PPN 346
37.6 Reading @n LDR’S VAIUES...........uuiiiiiiiiiiiieiie ittt nnnnnnnnnnes 348
37.7 Marcus’ Nightlight ProjEC........cooiiiii e e e e e e e aaeees 350
37.8 Temperature measurement USiNg the LIM35..........oiii i 353
37.9 A sSimple teMPErature QiSPIAY uuuueeereeeeeeiieieieeeeeeeee e e e e e e e e eee e e eennnneenennsnnnnnnnnes 354
37.10 LM35 teMPEIAtUIE GiSPIAY ... 357
37.11 Voltage measurement using a voltage diVIdErccoooieeiiiiiiiiiiin e 360
37.12 Variable power supply VOItMELEr Programoouuiiiiii e e 362
37.13 FOrCE SENSILIVE RESISIONS.uuuii e eeii ettt e ettt e e e e e e et e s e e e e e eeeaatnn e aeeees 364
37.14 PIBZO SBINSON ... 364
37.15 Multiple SWItChES @Nd ADC...... ..ot e e e e e e e e aar e e e e 365
1G] N = V£ PSPPI 366
39 DC MOtOr INTEITACING oo 371
TS A o =TT [TR 373
39.2 H-BriAQE BraKiNg. eeeeeeeeiieieiiiieieieiieteeeeeseeeeeee ettt ettt n e 375
TS B 22 1 | I o =TT [T 376
L S I 1 T =4 o o - [378
TS IV [S5 0[O I = o o = 20 379
11 N T 1V 1 0 S 2 010 I o 0o | = o PP 382
39.7 Darlington H-BIOQEcoouiiiiiiiii e e e e e e e s e e e e e e e ettt e e e e e e e e eesattaaseaeeaeaaenees 383
1 G TS (=T o] o 1= a1 o [0 (o £ PSPPI USURPPPPRPPTN 386
39.9 PWM - pulse Width MOUIALIONuuiii e e e e e e e e e e aeanees 393
39.10 YA Y 0 T 11 o 11 =P 394
39.11 USES TOF PWIM ...ttt e e e e e e e ettt e e e e e e e e e e att e e e e e e e eeeantnnn e eaaes 395
39.12 ATMEL AVRS PWIM PINS ...t eee et e ettt s s e e e e e e e ettea s e e e e e e eeaatana s s e eaaeeeeestnnnaaeaeees 396
39.13 YA Y o T =V | o T P 397
39.14 VLYY 1 (=T g = LU 398
A0 AVR PUI-UP FESISTOIS wuuuiiiiiie et e e e e et e e e e e e e e e e e e e e e e e e eanaaaas 400
41 Keypad INTerfaCing......coooi i 401
41,1 KEYPAA PrOGIAIM L ..oeieiiiiiiiiiittiititteieeaeeeeeeeee s 401
N A o)/ o= o [T 0T [= o 4 2 ST PTTOPPRR 403
41.3 Keypad program 3 — CUISOr CONIIOLciiiiiiiiiiii e e e e e e et e s e e e e e e e e e e e e e e eeaeraaaaaes 404
41.4 Keypad tEXIEN PrOGIAM VL ittt sssneesneeee 407
415 Keypad tEXIEr PrOgIaM La.......ooouuiiiiieiieeeeiieeiiee s e e e e e e ettt ee e e e e e e e e e e e et e e e e e e e e e eestabaaasaeeeeeessreaanaans 411
41.6 ADC KEYPAA INLEITACE ..uuuui i et e e e e e e e e e e ettt e e e e e e e e e e e et e e e eeeeesreraaaans 412
42 Do-Loop & While-Wend SUDLIELIEScoooiiiiie e 415
42.1 While-Wend or Do-Loop-Until OF FOr-NEXE?.......ciiiiiiieeiee et 416
43 System Example — Alarm CIOCKooooiiiiiiiiiii 421
43.2 Analogue seconds diSplay 0N 8N LCD.........uuuuuuiiiiiiiiiiiiiiiiiiiiiiiaiiiiiibbe bbb aeeeenennnes 426
2 T T I @ 0 N o] o o [0 1 £ 429
44 ReSISTIVE TOUCKH SCIEEN ... e e s 437
45 Sounding Off - 1oUAlY ... 443
45.1 Attaching a speaker t0 & MICIOCONIIOIIEYuuuuueiiiiiiiiiiiiiiiiiiii b eeeeennene 443
45.2 AUdio ampPlifier SUDCITCUITuuiiiiiiiiiiiiiiitii s 444
4B SYSTEM DESION ..o 445
46.1 Understanding how systems are put tOgELNENuuuuuiiuiiiiiiiiiiiiiiiiiiii e 445
46.2 Food Processor system DIOCK QIagramuuuuuuuueiiiiiiiiiiiiiiiiiiiiiii e neeeeennnne 445
T T 18| o 53] (=T 0 NP 445

46.4 Food Processor system functional attributes- algorithm ..., 445

46.5 Food Processor system fIOWCHArtcoooiiiiiniiii e e 446
I ST o = 1] (1 g D= T | o PR 447
46.7 Toaster - system DIOCK dIagramooooiiiiiii e e e eeeenns 447
TR T o = 13 (Y N [o 1 o o R 447
46.9 Keeping control so you dont 10S€ your ‘StacK’............ooevuiiiiiiii i 448
47 System Designh Example — Temperature Controller........cccccoevieeiiiiiiiiiiiiieee e, 449
48 State Machine diagramsS ... 452
48.1 Daily routing State MACKHINEuuuiiiiiiiiiiiiie bbb nnnnnennnnes 452
48.2 Truck driving StAte MACKHINEuiiiiiiiiiiiie bbb esnnnnnnes 454
48.3 Developing a State MACKhINEuuiii e e e e e e e e e e e e e e e eearraas 457
48.4 A state machine for the temperature alarm SYSIeMceiiiiiiiiiiiiiiie e e 458
48.1 Using System Designer software to design state machinesccccceiiiiiiiiiiiiiiiiiiiiins 461
48.2 State Maching t0 Program COUEuuuiii i e e e e e e e e e e e e e e et e e e e e e e eearraaaas 463
48.3 The power of state machines over flIOWChartsiiiii i e 466
48.4 Bike light — state maching @XamMPIEuuuuiiiiiiiiiiii e eennnnnne 468
48.5 Bike light program VEISIONLDuuuuiiiiiiiiiiiiiiiii e 470
48.6 Bike light program VEISIONZ..........uuuiiii e cie e e e et e e e e e e e et a e e e e e e e e e e ettt e s e e e aeeeeareaaas 472
49 AlArm ClOCK PrOJECT. ..o 474
49.1 System Designer to develop a Product BrainStormccoooeeeeiiiiiiiiiiis e 474
49.2 |Initial block diagram for the alarm CIOCKcooiiiiiiiiii e 476
49.3 Afirst (simple) algorithm iS deVEIOPEM.........uuuuiiiiiiiiiiiiiiiii e eneeee 478
49.4 A statemachine for the firSt CIOCKcoiiiiiiiiiiii e e 479
49.5 Alarm clock state machine and COOE VEISION 2...........uuuuuuuuuuummuuiiniiineinnnnnnnnenrnenennnnnnreenerns 481
49.6 Token game — state machine design exampleoouuiiiiiii i 482
50 Window controller StUdeNnt ProjJeCT......coic i 487
50.1 Window controller State€ MAaCHINE HL..........uuuuuuuiiiieiirieiuiieieereeeeereeeeaeereerrrereererrrr e 487
50.2 Window controller state Mmaching #3.........ooo i 488
50.3 Window controller state Maching #5..... ..o e 489
50.4 WiIndow CONrOIEr PrOGIaIMcoiiiiiiiiiee e e e s e e e e e e e ettt a e e e e e e e e eeattaa e e aeaaeaeanees 490
51 Alternative state machine coding teChniques ..., 497
52 Serial COMMUNICAIIONS .. cuuuiiiiiiiii et e e e e e e e e e e e e s e e e sab e e sabeesaneesaaneees 499
521 SIMPIEX @N UPIEX.......oeuiiiiiii e e e e e e e e e e e e ettt a e e e e e e e e eaatt e e aaeaaeaaaraes 499
52.2 Synchronous and ASYNCNIONOUSuuuuuuuuueutenieineteeeaeeeeeeeeseaeaeesaeseeseesseseeeseesesseeeeeseneensesesnnnnes 499
52.3 Serial communications, Bascom and the AVR ..o 500
52.4 RS232 Serial COMMUINICALIONSuuuuuuetuueeueenneeeaeeeseeneeenneseesesesenssssesssesenssssnesssssssssssnssnnsssssssnsnnnns 501
52.5 BuUild yOUr OWN RS232 DUFTEI ...ttt nseeeennnnes 503
52.6 Talking to an AVR frOmM WINGOWS XPuuuuuuiiiiiiiiiiiieiieiiieneeneneenesneeseeesseesnensessesseseneeeneeneeeeennnne 504
52.7 Talking to an AVR frOmM WINT7 ...t e e e e e e e e e ettt e e e e e e e aeanees 506
52.8 FirSt BaSCOM RS-232 PIOQIAMNuuuuuuutttuutuetnnnntnneenneseeeaeesesseessseseseesssssesssesssesssssssssessssnssnssssnnnnnes 508
52.9 ReCEIVING tEXE TTOM @ PC ...ttt ettt 509
52.10 BASCOM Serial COMMEANTUSiiiiiieieeeeeee e a e e e e e e e e e e e e e e e e e aaaaeas 510
52.11 Serial [O USING INKEY() ...uuuuiiieeei et e e e e et e e e e e e e e e eabb e e e e eaeaeesnees 511
52.12 Creating your own software to communicate with the AVR ..o 514
52.13 Microsoft Visual Basic 2008 EXPress EditiON............coiiiiiiiiiiiiiiiiii e 515
52.14 Y= (o [T R 1 o =T 11T o O SUPUPPPRURPRt 516
52.15 Stage 2 — Coding and understanding event programmingceeeeeeeereieeeiiieieieeeeeeeeeeeeeeeee 525
52.16 Microsoft Visual C# commport @ppliCatiONcccooieeeeeeeee e 530
52.17 Microcontroller With Serial 10, ... 535
52.18 PC software (C#) to communicate with the AVR ..., 540
52.19 Using excel to capture Serial datacoooeoeeiieeeeeeee e 544
52.20 0T I 7 R 546
52.21 0 = 10 110 = o S ERPPRSR 547
52.22 Serial to PArAllE]oooiiiiiiii 549
52.1 Keyboard interfacing — Synchronous Serial datal...............uuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeee . 554
52.2 Keyboard as asynChronOUS 0ata.............cooeiiiiiiiimiiiiie e e e e e e e e e e e eeeeees 561
53 Radio Data COMMUNICALIONcciiiiiiiiiii ettt e e e e e e e e e e eaeeanann s 564
53.1 An Introduction t0 data OVEIr FAAIOiii i e e e e e e e et e e e e e eeeeneees 564
53.2 HTI12E Datasheet, transmission and tIMINGcooeuuiiiiriiiiiiieeir e e s e e e e e eana s 571

L3 TR T o I I A (T R =1 (1 o PP PP T SRRPPPPPPPTN 574

L3 T N I 2 o o T = 1 o PSP 576
CSIC T o I 2 B R0 = =T T T TP 577
L3 T T o I I 2 B o o o | =T g o PP PP SRPPPPRPPTN 579
53.7 Replacing the HT12E encoding With SOftWAIEuuiuiiiiiiiiiiiiiiiiiiiiiiiiee e 580
oY A [Y 4 o Yo [0 Yo A o o N (o T 122 S PUR 583
541 12C RAI TIME CIOCKS ..ot ittt e e e e e e e ettt s e e e e e e e e eeattn e e e eeaaeeennees 584
54.2 REAITIME CIOCKS......eeiteeiiietiieieeeteeee ettt 585
oY N o] o 1= Tox 11 o T { L= = 1 S SSPPPPPRSP 585
54.4 Connecting the RTC t0 the DOAIT............uuiiiiiiiiiiiiiii e 585
Lo R [10T g Fo I 1= 10 =TSRSS 586
54.6 DS1307 RTC COUR.....uuuuiiiiiiiieiiiitit ettt e e e ettt e e e e e e e et e e e e e e e e et e e e e e e e e r e e e aeeeeaaaaes 587
547 DSL1B78 RTC COUR.....uuutitiiiiieeaeiiiiitt ettt e e e e e e ettt e e e e e e e e bbb ettt e e e e e e s e s bbbee et e e e e e e e aannbbbneeaaeaeeaaanns 592
55 Plant watering timer StUdeNt ProJECT.......coiiiiiiiiiiii e 597
B55.1 SyStem DIOCK iagram........uui i e et s e e e e e e e ettt a e e e e e e e e esatt e e e aaaeeaaarnes 597
LT S = | (=3 0= T 11 =PSRRI 597
55.3 PrOQIAIM COUE ...ttt sttt 598
8 A DI T e 608
57 Bike audio amplifier PrOJECT ... 608
58 GraPhiCS LCDS .. .o 614
58.1 The TBO63 CONIIOIIRTceeeiieii e e e e e ettt e s e e e e e e e ettt s e e e e aeeeeeenesnasaeeaaeeennees 614
58.2 Graphics LCD (128X64) — KSOL08.......cceeeiiiiiiiiiiiiieieeee ettt e e s e e e e reaeeeaaane 619
58.3 Generating a negative supply for a graphics LCDccoooviiiiiiiii et 624
59 GLCD Temperature Tracking ProjeCt.......cooooiiiiiiiiii i 626
59,1 PrOJECEL NAIAWAIE..... oo e e e e et e e e e e e e e e e et et e e e e eaeeeessttaa e aaeaaeeennnes 626
59.2 Project SOftWare Planningcooiiiiiiiiiii e e e e e e aaaaaarae 628
59.3 Draw the graph SCAIESeeieiiiieiiiiiiiee ettt ettt s bbb n e e 629
594 REAU thE VAIUBSottt e ettt e e e e e e e e e e ettt s e e e e eeeeeeaassnaaaeeaaeeeennes 630
ESLS TS (0T (=R 1 AT C IV | UL P 632
59.6 PIOt the VAlUES @S 8 GIaPN.......ueeiiiiiiiiiiiiiiiiieieett ittt ee e nnnbbennnnes 633
59.7 FUIl SOMWAIE lISTINQeeeeeeeeeeitiiieeeeeeeeee ettt 635
60 Computer programming — low level detail..............uuiiiiiiiiiiiiiiiis 638
60.1 LOW IEVEI |ANQUAGES:. ... e ettt 638
60.2 AVR Internals — how the miCroCoNtroller WOIKSuuuuiiiiiiiiiiiiiiiiiiiiiiiieeiiie e 639
LSO T I U=] o1 F= L= o 11 640
(10 I S |V [T o ¢ o] Y TP P PP PPPRPPPUPPPPPRPPPN 640
60.5 3. SPECial FUNCHON FEOISTEIS ... eititiieiitiiiitieeieettteteeeeeeetee ettt 641
60.6 A simple program to demonstrate the AVR in Operation..........cc..coooiiiiiiiiiii e, 641
G N [o =T U] PP PSPPPPPPPPTN 643
61.1 Keypad- polling VErsus iNtEITUPT AIIVENuuuiiiiieiieiiiiiiieieieeeeieaeeeebeeeeeeeeeeneeeeeeeeseeenseeneeneeeeennnnes 645
61.2 Improving the HT12 radio system by Using iINTEITUPLS..........uuuieiiieeeiiiiiciee e, 650
61.3 MAQNETUIC CAId REAUENeeiiiiiieiieeieeeee ettt 652
61.4 Card reader JAtA SITUCTUIEuuuieiieeteieeieeeeeeeeeeeeeee e eeee et e ettt ssseeeenenes 652
61.5 Card reader data tIMINGcoooe i e e s e e e e e e e e ettt a s e e eaeeeesrtta e aaeaaeaserees 653
61.6 Card reader data fOMMALSuuueueeeeeeiieeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeeeaeeeeeesesessesssssssssssnssssssnsssssnnnnns 654
61.7 Understanding interrupts in Bascom- triallinguuuuuueiiiiiiiiiiiiiiiiiiiiiiiiiieieeeieeeeeeeeeeeeeeenen 654
61.1 Planning the PrOgIaM........uu i e e e e e e e e et e e e e e e e e e e e e as st e e e eeaaeeessstsaaaaaaaaeassrees 657
Gy 1 4 1=T /O 1 UL a1 (=T SRR 660
62.1 TIMEr2 (16 DIt) PrOGIaIMeeieiiiiiiiiiiitetieeeiee ettt 661
(S W 1001 (O (2] o1 TN (oo | = o U SSUPPPRSR 662
62.3 Accurate tones using a timer (Middle C).........oooiiriiii i 663
62.4 TIMErL CalCUIALOr PrOQIAMuuuitiiitiiieieeitittateatseeeseeeeesaeeseseseeesessssessseeessessssesssesssssesssssesnnsseennnnes 664
62.5 Timer code to make a siren by varying the preload value................cccoiiiii e, 665
63 LED dot matrix scrolling display project — arrays and timerscccccuvvvveviinnnnnnnnnns 666
L3 I ST o] |1 g o [(=) (A o Lo [TP 669
63.2 Scrolling text — algorithm deSIQNii i e e e e e e 671
(30 75C T Yor 0] 11T o TR (=TS AR o7 Yo [P 672
64 Medical machine project —timer implementationcccccovv i, 677
(S R =1 o Tod Qo =T | = 1 o o P 677

B4.2 BlOWET = SEALE MACIHING. ... ce et ettt et et e e e et et e e e e e et e e e ee e e e eenaanns 678

64.3 BlOWETN PrOgram COUEcouuiuiii i e e eei et e e e e e et e e e e e e et et et e e e e e e e e e e aett e e e e eaeeeessttsnaeaaeaaeasnnnes 679
65 Multiple 7-segment clock project — dual timer action.........cccoooeeviiiiiiiiiii e, 683
65.1 Understanding the complexities of the SItUALIONuuueriiiiiiiiiii e 683
65.2 Hardware UNAerStandiNg:ccoeiiiieiiiiie e e e e e e e e e e s e e e e e e e e et e s e e e aeeeesaataa e aaeaeeaearnes 684
65.3 Classroom clock — BIOCK diagram..........ciiieeiiiieiiiee e e e e e e e e e e e e e eanees 685
65.4 Classroom ClOCK - SCNEMALIC.ouuiiiiii e e e e e e et e e e e e e eeeeenees 686
65.5 Classroom ClOCK - PCB [QYOUL...........uuuiiiieeeiiieiiiie e e e e e e e e et e e e e e e e e e eeaaea s e s aeaaeaeenees 686
65.6 Relay CirCUIt EXAMPIE......uuiii i e e e e e e e ettt a e e e e e e e e eaatta e e aaeaeeaaannes 687
65.7 Classroom CloCK — fIOWCRNAITS.........oouiiii e e et e e e e e eeeees 691
65.8 ClasSroOmM ClOCK — PIrOGIAM. e eiiiiiiieeiiieieeeeeee ettt e e esessnnnneennnnes 692
66 The MAX 7219/7221 display driver IC’s...........cooooiiiiiii 707
(ST 200 R ANV o o (o Tod 10 [0 o || = o1 PSPPSR 711
67 Data transmission acroSs the INTEINEL........ooeiuiiiiii e 712
L0 R = To [| (== PSRRI 713
67.2 MAC (PNYSICAI) BUUIESS ...ttt et et e e s et s s seennnnes 713
LA T S 10 o 1= 11 = TP 714
L S o T PR 714
Ol T = o £ £ SR P PRSPPI 715
LA G - Vo = PR 715
L A €= (= 1= | P 716
LS T V1 S 718
LA VAV 17 | I 1 R 719
67.10 WIZNEL 812 WEDSEIVET V... eiiiiiiiiiiiiiitiinittueteeeteeseesaessessesssssssesssssssssssssssssssssssssssssssssssssssnnnnns 726
67.11 TraNSMILEING QALA ...evvueiii e e e e e e e ettt e e e e e e e e e ettt e e e e eeeeesarraaans 731
67.12 WIiZNET SEIVEI2 (VEISIONL) ...ttt 743
67.13 BT =11 e T [0 3N (o To] o TP 745
67.14 process any messages received from DrOWSErcooiiiiiiiiiiiiiiei e 746
67.15 Served WeDPAGEoooiiiiii 748
68 Assignment —maths inthereal World ..., 750
68.1 Math SSSIGNMENT = PAIT L....uuuiii i e e e e ettt e s e e e e e e e e ettt e e e eeaeeeeesttan e aeeaaeessrnes 753
68.2 Math ASSIGNMENT = PAIT 2eeeiieeiieiieieeiiieeeee et eee e et e e e e e e e ettt sbbebnnnes 754
68.3 Math asSSIGNMENT - PAIT 3uii i e e e e et e e s e e e e e e e ettt e e e eeeeeeessttaa s aaeaeeesnrees 755
68.4 Math asSSIGNMENT - PAIT 4 ...eueiii e e e e s e e e e e e e ettt a e e e eaeeeeeattaa e eaeaeeeaerees 756
68.5 Math aSSIGNMENT - PAIT Deeiiiiiiiiiiiiiee ettt ettt eeeeennnee 757
68.6 Math ASSIGNMENT = PAIT 6eeiieiiiiiiiiieiiiieieeeee et eeee bbb bbb et e et et e bbb e et b et sssnbebeeenenee 758
LTS A 4 =] 0 S0 =3 = o £ 758
69 SSD1928 based colour graphiCS LCDccoiiiiiiiiii e 759
69.1 SyStem DIOCK QIAgram.......uuuii e e e e e e e et a e e e e e e e e e aatt e e aeaaaaaarees 759
LTS 02 I e T 1 5 760
69.3 SYStEM MEMOIY FEQUITEIMIEINTSeuueeetettieeitetteteaeeeaeeeeeeaeeseseeeesseseseesssseesssessseeseessseseesbsnseseeeeennnnes 761
B9.4 SYSTEIM SPEEM ...ttt £ £ttt 761
LTSRS TS 1S 1 I = 1 o G [761
69.6 COlOUI CAP@DIITY ...ttt 761
69.7 SSD1928 and HX8238 CONIIOl r&QUITEIMENTS.uuuueuiiiiiiiiiiiiiiiiiiieeieeeebeeieenebbeeeeeeeeeneeeneeneeneeennees 762
69.8 SSID1928 SOMMWEAIEeeeeeeeieieiiiieieieeteeeatetaeeaeeeeseeeseeeeeeaeesesseseessssssssssssssssssssssssssssssssssssssnssssnnnnnns 763
69.9 SSD1928 microcontroller Nardware INTEIMACEuuuuuuruuiiiiiiiiiiiiiieiiiiieieneereeeeerernrereeeerennee 767
69.10 ACCESSING SSD CONTIOI FTEQISTEIS ...ttt eeenees 768
69.11 SSD1928 Register routineS.Dasccooooi i 771
69.12 ACCESSING the HXB238. ... i e e e e e e e e e 775
69.13 SSD1928 GPIO_IOULINES.DAS.cciiiiiiiiiiiiiiiiiiiie e 775
69.14 LCD IMING SIGNAIS ... 777
69.15 [QT (0] o ST TUPPP PR UPPPTP 778
69.16 IS B] (1] o J TP PRSPPI 779
69.17 SSD lIN€ / HSYNC tIMING .eeiiiiiiiiiiiiiieeeeeee ettt 780
69.18 SSD row / VSYNC/ frame tIMINGeeee oo e e e e e e e e e eeaee e e e e e eeaeenaees 781
69.19 HX @nd SSD SELUP FOULINEuui et e e ettt e e e e e e e e ettt e e e e e e eeeeaenn e eeeeeas 783
69.20 'SSD1928 HardwareSetup_ROULINES.DAS..........ccoiviiiiiiiiiiiiiiiiiieeeee 783
69.21 SSD1928 Window_Control_ROULINES.DASccovviiiiiiiiiiiiiiiiiiiie 787
69.22 Colour data in the SSD MEMOIYcccuii e e e et e et e e e aaa s 790

69.23 Accessing the SSD1928 COlOUN MEMIOIYuuuuuuuiiiiiiiiiiiiiiiiiiibebi e eeeenenneneenee 791

69.24 'SSD1928 Memory ROULINES.DAS.....ccoooiiiiiieeie e e 791
69.25 Drawing SiMpIe graphiCsuuue e 793
69.26 'SSD1928 Simple_Graphics_ROULINES.DAScoiiiiiiii e 793
69.27 SSDI1928 tEXE_FOULINESeiieeieeeiieiee e e ettt e e e e e e ettt e e e e e e eeeeetata e e eeeeeeeannannaaaeeaeeeennnes 796
70 Traffic Light help and SOIULIONiiiiiiiiiiii e 800
71 USB programmer - USBASP ...t 806
72 USBTINYISP PrOQraMIMIET . .uuiiiiiiiiiiiiiiiiiiiietiiaeiiesseseseaseessssseesss e saessbebbssbssssnnnessnnnnnne 808
73 Various AVR development board schematics and layoutS............cccoevvvvviiiiiiieeeeeeeeenns 812
73.1 AVR DeVelopmeNnt BOAIA 2coouuiiiiiiiii et es s e e e e e e e ettt a e s e e e e e e e aantaaaeaeeaaeaennnes 815
73.2 Dev board version 2 CirCUIt QIAGIAIMuueueeieieeerieeieiieeeeeeeeeeeeeeeeeeeeeeeseeesneeeeeeesneseeseennsnennnennnnes 816
73.3 Dev board pCh [ayOUL VEISION 2.........uueiiiiiiiiiiiiiiiieiieeieeieeeeeeee bbb snsesnennnnneennnnes 817
73.4 ATMEGA V4b development board circuit — 12TCE 2011cooiieeeiiiiiiiiiiiie e e e 818
73.5 VAb devboard layout 12TCE 2011uuiiiieeiiieieiee e e et s e e e e e e e et e e e e aeeeeannes 819
73.6 ATMega Dev PCB V5DSChemMAtiC (2012)uuuuuiimeeeeiiieiiiiniiiiiieiiiesseessssesnensssessnsssnseennnnnnnennnnne 820
73.7 ATMega Dev PCB V5DLAYOUL (2012)ccceiieeiiiiiiee e e eeeeee s s e ettt s s e e e e e e e eaanta e s e e e aeaaannes 821
73.8 ATMega Dev PCB V5D COPPEr (2012)ccciieeeiiiiee ettt ttss s e e e e e et a e s e e e e e aaannes 822
74 ATTiny26 V6d development DOardcooooe i 823
74.1 ATTiny26 V6d development board IayOULS............coiiiiiiii i e e e e aaenes 824
74.2 ATTiny26 V6b development board iIMagES.........uuuiiiiiiiii i e e e e e aanees 825
75 ATMEGA Protoyping DOArdccoooiiiiiiiiiii e e e e e e eeanes 826
75.1 128x64 GLCD Schematic — VerC -data 0N POIBc.oooiiiiiiiiii e aanees 827
75.2 128x64 GLCD Layout — VerC —data 0N POIBuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeneneeneeeeeeeneeneeeeenneee 828
75.3 128x64 GLCD Schematic — VerD -data 0N POIBuuuiiuimiiiiiiiiiiiiiiiiieiiiiieiennneeeneeneneeees 829
75.4 128x64 GLCD Layout —VerD -data On POIMBcooiiiiiiiiiiiiiiiis et e e e e e aanees 830
76 GLCD 192X64 SCREMALIC ..vvuvuiiiieeeeieiiiiiiii ettt e e e e e e et e e e e e e e e eeeesannaeeeeeeeeeennes 831
76.1 GLCD L192XB4 [AYOUL......eeeeieiieeeiieiiite et e e e e ettt e e e e e e ettt et e e e e e e e s bbb et e e e e e e e e s anbbbbbeeeeeaeeaaanns 832
77 ATMEGA microcontroller pin CONNECHIONSuuuuuiiiiiiiiiiiiiiiiiiiiiiiieeeeaeees 833
77.1 ATMEGA8535/16/32/644 40pin DIP package— pin CONNECLIONS..........uuuuuuurriirieiiiiiiieiieieniinnnnnns 834
4 S T Y= =T = SRR 835
78.1 Eagle - creating YOoUr OWN lIDIAIY i ieiiiieiieieieiiieiiiieiieeeieeeeeeeeeeeeeeeeeseeesseeeesesseeseeseeeenennesnnnnes 835
T8.2 MDD ...ttt e oo ettt e e e e e h bbbttt e e e e e e e e bt b e e e e aeaeeaaanns 842
4= T T = 11,0 o o IR PO SURUPPPRRPR 842
4= T S o oY, TP SURPPPPRPPN 843
T8.5 EIECIIOQAIV ...ttt 843
79 Practical TECHNIQUESooeeiiii e e e e e e e e e e e e e e eeeennes 844
T79. 1 PCB MOUNTINGttt e e et e e e e e e et ee e e e e e e e e e e eat it e e e eeeeeeesasstaa s seeaeesssssssanaaaaaaeeenrnes 844
79.2 Countersink holes and jOiNING MDF/WOOMuuuuuuiiiiiiiiiiiiiiiiiieiiiieeieieeeeeneereeeeeeeeeeeeeeee e 845
79.3 AULOIOULING PCBSt e et e e e e e e e e e ettt e e e e eaeeeeaeata e aaeaaeaeenees 846
79.4 ChOOSING TASIENEISot e e e e e e e e e e e e e ettt a e e eeaaeeeaaata e eeaeaaeaearees 848
79.5 WOIrKSNOP MACKHINEIY ...ttt 849
T79.6 GlUES/AGNESIVESo e e e ettt e e e e e e e e e e ettt a s e e e e e e e eeettn e e aeaaeeeannes 851
79.7 W00d JOINING LECNNIGUESuuiiieeieeeee e e s e e e e e e e ettt a e e e e e e e e e aatbb e e eeaeeaaenees 852
79.8 Codes Of PractiCe fOr STUAENT PrOJECES.uuuuuuuiiieieiieiitiieitittetieieaeeeebeebeeeeeebseeseeeeseeeeneeeneenenneennnnes 853
79.9 Fitness for purpose definitions and NZ 1€giSIationuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee. 854
< O\ 855
80.1 MACKINE OVEIVIEW ...t e e et s e e ettt e e e e e e et et aat e e e e e e eeeeeaetanaasaeeaeeeessnssnnaaaaeaaeeennnes 856
SO 2 -V o 1] = =1 o TR PP UPPPR 857
80.3 CaMBAM OPLIONSot e e e e e e e e e e e et e e e e e e e e e e e e e e e as st e aeeaeeeessttba e aaaaaeaeernes 857
80.4 Drawing SHaPES iN CaMBAM.......uuuuuiiieiiiieiiuuttttaaeetaeeeeeaeeeeeeeeeeeeeeeeeeee e e s e e aeeeessessssenssenessesssesnnnes 858
80.5 MACKHINING COMMIANUSttttteitiieeieeiteeeeeeaeeeeeeeeee ettt s e et e s sttt 860
80.6 CINC SIMUIALON ...ttt e e e e e et ettt e e e e e e e e e e e ettt e e e e e eeeeeeenenn e eeeaaeeennnes 862
S 30 R [Yo =G 863

Xi

1 Introduction to Practical Electronics

This book has a number of focus areas.

Electronic component recognition and correct handling
Developing a solid set of conceptual understandings in basic electronics.
Electronic breadboard use

Hand soldering skills

Use of Ohm's law for current limiting resistors
The voltage divider

CAD PCB design and manufacture
Microcontroller programming and interfacing
The transistor as a switch

Power supply theory

Motor driving principles and circuits

Modelling solutions through testing and trialing
Following codes of practice

Safe workshop practices

ATREL
ATS0S3515
8PC
9919

CRC R N R B N B R
1 1y i 3 A

v ol
948-19ZANILLY e
Y i

610

12

1.1 Your learning in Technology

1.1.1 Technology Achievement Objectives from the NZ Curriculum

Technological Practice
Brief —develop clear specifications for your technology projects.
Planning — thinking about things before you start making them and using drawings such as
flowcharts, circuit diagrams, pcb layouts, statecharts and sketchup plans while working.
Outcome Development — building electronic circuits, designing and making PCBs and
programming microcontrollers.
Technological Knowledge
Technological Modelling — before building an electronic device, it is important to find out how well
it works first by modelling and/or trialling its hardware and software.
Technological Products — getting to know about components and their characteristics.
Technological Systems - an electronic device is more than a collection of components it is a
functioning system with inputs, outputs and a controlling process.
Nature of Technology
Characteristics of Technological Outcomes — knowing about electronic components especially
microcontrollers as the basis for modern technologies.
Characteristics of Technology — electronic devices now play a central role in the infrastructure of
our modern society; are we their masters or do they rule our lives?

1.2 Key Competencies from The NZ Curriculum

Thinking — to me the subject of technology is all about thinking. My goal is to have students
understand the technologies embedded within electronic devices. To achieve this students must
actively enage with their work at the earliest stage so that they can construct their own
understandings and go on to become good problem solvers. In the beginning of their learning in
electronics this requires students to make sense of the instructions they have been given and
search for clarity when they do not understand them. After that there are many new and different
pieces of knowledge introduced in class and students are given problem solving exercises to help
them think logically. The copying of someone elses answer is flawed and students are
encouraged not to do it as they must understand the material to eventually master it. At the core
of this is learning to build correct conceptual models and relationships between things, to have
things in the context of the ‘big picture’.

Relating to others — working together in pairs and groups is as essential in the classroom as it is
in any other situation in life; we all have to share and negotiate resources and equipment with
others; it is essential therefore to actively communicate with each other and assist one other.

Using language symbols and texts — At the core of our subject is the language we use for
communicating electronic circuits, concepts, algorithms and computer programming syntax; so
the ability to recognise and using symbols and diagrams correctly for the work we do is vital.

Managing self — This is about students taking personal responsibility for their own learning; it is
about challenging students who expect to read answers in a book or have a teacher tell them
what to do. It means that students need to engage with the material in front of them. Sometimes
the answers will come easily, sometimes they will not; often our subject involves a lot of trial and
error (mostly error). Students should know that it is in the tough times that the most is learnt. And
not to give up keep searching for understanding.

Participating and contributing — We live in a world that is incredibly dependent upon technology
especially electronics, students need to develop an awareness of the importance of this area of
human creativity to our daily lives and to recognise that our projects have a social function as well
as a technical one.

1.3 Where to buy stuff?

In New Zealand there are a number of reasonably priced and excellent suppliers for components
including www.surplustronics.co.nz and www.activecomponents.com Overseas suppliers | use include
www.sureelectronics.net www.futurlec.com & www.sparkfun.com for specialist components.

13

http://www.surplustronics.co.nz/
http://www.activecomponents.com/
http://www.sureelectronics.net/
http://www.futurlec.com/
http://www.sparkfun.com/

2 Making your first circuit

e ...

. RASAS SALEN AABAN AALES . A breadboard is a plastic block with holes and metal
LT rrrrer connection strips inside it to make circuits. The holes are
TErrEaiaEaiiiIIIiIi arranged so that components can be connected together to

: ; form circuits. The top and bottom rows are usually used for
TERRAARIIIIIIIIINIIin] power, top for positive which is red and the bottom for
O S A negative which is black.

. AESAS SBIRAE FRAAF Eamaas .

This circuit could be built like this, note that the LED must go
around the correct way. If you have the LED and resistor
connected in a closed circuit the LED should light up.

Schematic or circuit diagram Layout

. 4

@
L]
&
&

Light Ernitting Diode f,SZ

2
urrent Limit Resistor - :
1K [] v E
(1000 ohms) n= -

L 4
@
L 4

>

———

The LED requires 2V the battery is 9V, if you put the LED across the battery it would stop working! So a
1k (10000hm) resistor is used to reduce the voltage to the LED and the current through it, get a
multimeter and measure the voltage across the resistor, is it close to 7V?

If you disconnect any wire within the circuit it stops working, a circuit needs to be complete before

electrons can flow.

14

2.1 Identifying resistors by their colour codes

Digit Digit Digit Multiplier Tolerance

NN\ /S

100 1%
add 4 more 0's

M

1 Meg’

1 Million Ohms
1M Q
1,000,000 ohms

Digit Digit Digit Multiplier Tolerance | 10k
~N N /S S 10 thousand ohms
10,000 ohms
10k Q
1 00 1%
add 2 more 0
Digit Digit Digit Multiplier Tolerance | 1y
\ \ / / / 1 thousand ohms
1,000 ohms
1k Q
1 00 1%
add 1 more 0
Digit Digit Digit Multiplier Tolerance | 399
NN /S 390R
390 ohms
390Q

3 90 1%
add no more 0's

When getting a resistor check its value!

In our circuits each resistor has a special pupose, and the value is chosen depending on whether we

want more or less current in that part of the circuit,

The higher the value of the resistor the lower the current
The lower the value of the resistor the higher the current.

15

2.2 LED's

Light Emitting Diodes are currently used in indicators and displays
on equipment, however they are becoming used more and more

as replacement

s for halogen and incandescent bulbs in many

different applications. These include vehicle lights, traffic signals,
outdoor large TV screens.

Compared to incandescent bulbs (wires inside
glass bulbs that glow), LEDs give almost no heat
and are therefore highly efficient. They also have
much longer lives e.g. 10 years compared to 10
months. So in some situations e.g. traffic signals,
once LEDs are installed there can be significant
cost savings made on both power and
maintenance. There is a small problem with LED
traffic lights though — they don’t melt snow that
collects on them!!!

flat edge

Cathode
negative — |
shorter lead

2.3 Some LED Specifications

. Intensity: measured in mcd (millicandela)

. Viewing Angle: The angle from centre where intensity drops to 50%

. Forward Voltage: Voltage needed to get full brightness from the the LED
. Forward Current: Current that will give maximum brightness,

. Peak Wavelength: the brightest colour of light emitted

2.4 LED research task

Anode

- positive

longer lead

From a supplier in New Zealand (e.g. Surplustronics, DSE, Jaycar, SICOM) find the information and the
specifications for two LEDs, a normal RED 5mm LED and a 5mm high intensity LED.

LED

RED 5mm

High intensity 5mm

Supplier

Part number

Cost ($)

Brightness (mcd)

Forward voltage (Vf)

Wavelength (nm)

Forward current (If)

16

2.5 Adding a switch to your circuit

Schematic or circuit diagram Layout

\ 4

LED
Light Emitting
Diode

a B
"R

] <
,‘+

¢

$

q

&

$

L1975 9]

g

V.

L e e B < - "o "]
P PeGePd GG

Current Limit
Resistor

.
<

(v}
_C
2
m
=

GGG GGGy
GGG GGG
GGG GGG
P PeP) GGG
GGG GGGy
GGG GGG

—

Switch

o

et et

»

A switch is the way a user can manually control a circuit

2.6 Switch Assignment

Find a small switch and carefully disassemble it (take it apart) draw how it works and explain its
operation. Make sure you explain the purpose of the spring(s).

Here are simplified drawings of a small slide switch when it is in both positions.
When the switch is on electricity can flow, when it is open the circuit is broken.

Switch Switch
closed open

17

2.7 Important circuit concepts
A circuit consists of a number of components and a power supply linked by wires.

———
NSZ
R
T
<

9V

Electrons (often called charges) flow in a circuit;
however unless there is a complete circuit (a
closed loop) no electrons can flow.

Voltage is the measure of energy in a circuit, it is
used as a measure of the energy supplied from a
battery or the energy (voltage) across a part of a
circuit.

Current (1) is the flow of electrons from the battery
around the circuit and back to the battery again.
Current is measured in Amps (usually we will use
milliamps or mA).

Note that current doesn't flow electrons or
charges flow. Just like in a river the current

doesn't flow the water flows.

Resistance works to reduce current , the resistors in the circuit offer resistance to the current.

Conductors such as the wires connecting components together have (theoretically) no resistance to

current.

A really important concept to get clear in your mind is that:
Voltage is across components and current is through components.

2.8 Changing the value of resistance

What is the effect of different resistor values on our circuit?
The resistor controls the current flow, the higher the resistor value the lower the current. (what would a

10K resistor look like?

STRONG CURRENT ||

390R 1

LITTLE CURRENT || NO CURRENT I

1k

18

2.9 Ohms law

This is the most important formula in electronics. You must be able to use it

correctly and develop a comprehensive understanding of its meaning.

In a circuit one volt will drive one ampere of current through a one ohm

resistor (or when one amp is flowing in a one ohm resistor one volt will be
developed across the resistor)

The formula is Voltage = Current times Resistance or V=IXR

If 0.5A is flowing through a 10 ohm resistor then what is the voltage across the resistor?

Answer: V=I*R, V=0.5*10, V=5Volts.

If the voltage is 10volts and the resistance is 2ohms then what current through the circuit?

Answer:1=V/R, 1=10/2, I=5A.

At 9V, if 0.0019A is flowing through the circuit what is the value of R?

Answer: R=V/l, R=9/0.0019, R=4,700 ohms

|I= 0.002A, V=16V

R =V/I, R=16/0.002, R=8000 ohms

V=12V, 1= 0.015A

V=9V, |I= 2A

|= 0.0001A, V=5V

R= 2000, V=6V

V=50V, R= 10,000

V=3V, R=100,000

R= 47,000, V=20V

Ol N[l |w|d|IF

|I= 0.00183A, R= 12000 ohms

=
o

|=0.0015, R= 1000 ohms

=

R=20R, 1= 0.2

=
N

= 0.4, R=120R

19

2.10

Adding a transistor to your circuit

Schematic (circuit diagram)

!

Bias
Resistor
10k

e

¥

A4

Current Limit +"
Resistor [] —l—
C -
B .
N]
Transistor E
\ v,
&

Breadboard layout diagram

4+
=
m
"~

BC547

A transistor is a control
component that amplifies
small signals.

It has three legs or leads:
E — Emitter

B — Base

C — Collector

Only a small signal is
required through the base
to control a larger current
through the emitter to the
collector.

The collector current is the
same current which lights
the LED

The 1k limits this current to
an acceptable value for the
LED.

20

2.11 Circuit theory

Electronics is all about controlling the physical world. Physical objects have properties such as
temperature, force, motion, sound/radio/light waves associated with them

Physical World

Electronic World

distance

motion

sound waves
direction

Electronic devices have input circuits to convert the physical world (light sound etc) to different voltage

levels.
They have process circuits that transform, manipulate and modify information (the information is coded

as different voltages).
They have output circuits to convert differen coltgae levels back to the physical world where we can

sense the outcome of the process (light, sound etc)

Physical World

Ear:rtes radio
waves
force .
Electronic World
INPUT >| PROCESS | OUTPUT
distance_/_/
motion
temperature sound waves

direction

Take an example such as a television, the physical world radio signal on the input is converted to an
voltage level, this is processed by the electronic circuit and converted to light which we see and sound

which we can hear.

21

2.12 The LDR input circuit

The LDR or Light Dependant Resistor is a common component used in
circuits to sense light level. An LDR varies resistance with the level of light
falling on it.

LDRs are made from semiconductors such as Selenium, Thalliumoxid and /

Cadmiumsulfide.

As photons of light hit the atoms within the LDR, electrons can flow through
the circuit. This means that as light level increases, resistance decreases.

Find an LDR and measure its resistance:

in full daylight the LDRSs resistance is approximately

in darkness the LDRs resistance is approximately

redle
waues

|_)| ouUTPUT |

Tores

Electromic World
| INFUT |—5 PROCESS

p \ LDRs can only with stand a small current
- [] flow e.g. 5mA, if too much current flows
they may overheat and burn out. They
Sarosd il o J are used in voltage divider circuits with a
Resistor + i i
oy [] —=_ series resistor.
Voltage i

Divider C ——
O
[(P\E
\ N : The components are a 1M (1,000,000)
Transistor E ohm resistor, an LDR, a 9V battery and

\\QD the circuit is a series one.
L LDR

When it is dark the LDR has a high resistance
and the output voltage is high.

When it is bright the LDR has a low resistance
and the voltage is low.

2
E
H
z
3

v}
(=
p

2.13 Working darkness detector
4
‘OUTPUT |
d INPUT A
1M [] POWER
SUPPLY
+
Current Limit “
Resistor [] —l—
390 I
Voltage . I
Divider rFRDCESS C N 1—T
(D;
LS
* LI I
|.
Transistor
\\qD EJ
LDR
\, A
& S

NOTE the 1k has been changed for a 390 ohm resistor so that the current will be higher

23

2.14 Diodes

Diodes are very common components, they come in all shapes and sizes.

PR
Jl't

R
!

The key characteristic of a diode is that there is current in only one direction so you cannot reverse it in
the circuit and expect it to work.

BC547

M
N1N4004

oV

2.15

In this modified circuit the power is supplied from the battery.
The circuit is protected by a diode, this means if the battery is
connected in reverse then there is no current because the
diode blocks it (this is commonly used in the workshop to
protect our circuits from a reverse polarity situation).

Of course no diode is perfect and should the voltage of the
power supply exceed the voltage rating of the diode then the
diode would breakdown, this means the current would
increase rapidly and it would burn up. The 1N4004 has a
400V rating.

Diodes can only take a certain current in the forward direction

before they overheat and burn up. The 1N4004 has a
maximum forward current of LAmp.

Diode Research Task

Research the specifications for these two common diodes (ones we use often in class) and find out
what each specification means.

Description

1N4007 1N4148

Peak
reverse
voltage

Maximum
forward
current

24

2.16 Final darkness detector circuit

The function of the input part of the circuit is to detect light level.

The function of the process part of the circuit (the transistor) is to amplify the small change in voltage
due to light changes.

The function of the output part of the circuit is to indicate something to the end user.

The function of the power supply is to safely provide the energy for the circuit to work

When it is dark the LED is switched on, when there is light present the LED is switched off. This circuit
could be used to help a younger child orientate themselves at night and to find the door in a darkened
room.

The DIODE, LED and TRANSISTOR are polarised, have positive and negative ends and therefore
require wiring into the circuit the right way round or it will not work

You can identify the DIODE polarity by the line on the cathode (negative)

You can identify the LED polarity by the flat on the LED body(negative-cathide) or by the longer lead
(positive or anode)

You can identify the TRANSISTOR polarity by the shape of the bidy and the layout of the three leads

Draw lines from the components to the symbols to help you remember them. Remember the resistor in

the output circuit was made a lower value (changed from 1k to 390ohms) to make the LED brighter in
the final circuit.

N

®

M
N1N4004

BC547

25

3 Eagle Schematic and Layout Editor Tutorial

3.1 Introduction to PCBs

The darkeness detector is no good to us on a breadboard it needs a permanent solution and so we will
build it onto a PCB (printed circuit board).

TN4148

ROOS nsl

to(hhsd

26

3.2 An Introduction to Eagle

Eagle is a program from www.cadsoft.de that enables users to draw the circuit diagram for an electronic
circuit and then layout the printed circuit board. This is a very quick start tutorial, where you will be led
step by step through creating a PCB for a TDA2822 circuit.

The version used is the freeware version which has the following limitations; the PCB size is limited to
100mm x 80mm and the board must be not for profit

3.2.1 Open Eagle Control Panel

Bl Cpmorn Wndow Hele
| | Desceguon

U EAGLE

Dz Fudes
% Uiy g oy Ao Graphcd L £ Skn Start - Programs - Eagle - Eagle 4.13
S0t Fles
DM Praocesor e Veeson 4 (1 lor Windows
Pragect Folde

Lght Edien

S o 4] 100 I |
R

Singie Lo Licwnsw SE19IEBMELSRWLARL
FOR EDUCATIDNAL USE DRCY

Hegurndts

v wyshasbon puapcees Sae the
e “Ymavvonn by ' o e LIFEL
"o cadrott dasYmeves by’

FAGLE Yargon 4,01

3.2.2 Create a new schematic
On the menu go to FILE then NEW then SCHEMATIC

7 4 Schamatic - CoProgsee FRUEAGLE 4,00/ untitled s TEX)) .
ER R Do e By, ol aon D You will see the schematic editor
eE® alneEwQARAr - T8 2

% [01meni0ag] [-

3.2.3 Saving your schematic

It is always best to save your data before you start work

Eagle creates many temporary files so you need to keep your folders tidy.

If this is the first time you have used Eagle create an Eagle folder within your folder on the server.
Within the Eagle folder create a folder for the name of this project e.g. DarkDetector

Save the schematic as DarkDetector verA.sch within the DarkDetector folder.

27

3.3 The Schematic Editor

& 1 Schematic - C:/Program Files/EAGLE-4.01 /untitled.sch

File Edit Draw View Tools Library Options Window Help

e [&[7 @] E

ti @—10,1 inch (6.4 4.0 | | \ ﬂ
L RN \@@

‘? A2 TOOLBAR

E3 4

I

o N

X &

% % | [.TOOLBOX

s

iIT 8

7 33 DRAWING AREA

£

O

= =+

D : 2

The first part of the process in creating a PCB is drawing the schematic.
1. Parts will be added from libraries
2. and joined together using ‘nets’ to make the circuit

3.3.1 The Toolbox

As you point to the tools in the TOOLBOX their names will appear in a popup and also their description
will appear in the status bar at the bottom of the window

Find the following tools

. ADD A PART

° MOVE AN OBJECT

. DELETE AN OBJECT

. DEFINE THE NAME OF AN OBJECT
. DEFINE THE VALUE OF AN OBJECT
o DRAW NETS (connections)

o ERC (electrical rule check)

28

3.3.2 Using parts libraries
Selecting parts libraries to use.

Parts are stored within libraries and there are a large number of libraries in Eagle.

It is not hard to create your own library and modify the parts within it. The cls.lbr has many already
modified components within it. If Eagle is not setup to use the cls library you will need to do it now.

From your internet browser save the file cls.lbr into your Eagle folder.

In Eagle's control panel from the menu select options then directories

In the new window that appears make sure the directories for the libraries are highlighted
Click on browse and find your Eagle.directory

Next highlight the directories for Projects

Click on browse and find your Eagle directory again.

Choose OK.

You might need to close EAGLE and restart it to make sure it reads the libraries ok.
To use a library right click on it from within the Control Panel

Make sure Use is highlighted. It will have a green dot next to it if it is selected

At this time right click on the other Ibr folder and select Use none.

RHBpOoOo~NoOrwhE

= O

Control Panel - EAGLE 4.13 Light

File ‘iew Options ‘Window Help

Mame D escription
EI Libraries
= _Hclslbr

= T o

[:] Ibr LIpen Libraries
-- Crezign Rule Renarne Dezign Rules
[#- Uzer Langu 5 Uzer Language Programs
--Scripts =Ry Scnpt Files
-- CéM Jobs Delete CaM Processor Jobs
[+ Projects v Use
|pdate
IUpdate in Library

NOTE THE IMPORTANCE OF THE GREEN DOT NEXT TO THE LIBRARY,
if its not there you will not see the library in the schematic editor!

29

3.3.3 Using Components from within libraries.

From your schematic Click the ADD button
in the toolbox

A new window will open (it may take a
while)

Find the CLS library

Open it by double clicking on it or by
clicking the + sign

Open the R-EU_ section (Resistor-
European)

Here you will find the 0204/7 resistor
Select it and then click OK

Add 3 more resistors of the same type.

Add all of the following parts

I ADD

x)

Mame

|

Descripkion
MICROCONTROLLER
RAMDOM-PHASE OPTOL...
MICROCONTROLLER.

MEGABS3S-P

MOC30%M

PIC16FE*

PICAKEDS

PICAXELS

POT

POTF_1

POTH_2

R-EU
R-EL1WPOWER
R-EUSWPOMWER
R-EUDZ04/5
R-ELI0Z04/7
R-ELI0ZO04/10
R-ELIDZO7(2Y

RTRIMM

SK104-PaD

SK129-PaD

TDAZE22

TICZ255

TIMY2E*

Dual In Line

061717
KHZ205-5
0204/5
0204/7
0204/10
02072

Package: 0204/7
RESISTOR

HEATSINE manufacturer...
HEATSIMK manufacturet...

bype 0204, qgrid 7.5 mm

TRIAC

8-bit AYR Microcontroller.. o

Search

Smds Descripkion Preswview

v

| et] [o

LIBRARY PART Qty
cls REU-0204/7 4
cls 2,54/0,8 (wirepads) 2
cls led 5SMM 1
cls 1N4148 D41-10 1
cls RTRIMMECP10S 2
cls GND 3

A wirepad allows us to connect wires to the PCB (such as wires to switches and batteries)

3.3.4 Different component
packages

There are several different types of
resistors; they all have the same
symbol however resistors come in
different physicalpackages so we must
choose an appropriate one.The 0204/7
is suitable for us but any of the 4
smallest ones would be OK.

IO

GO
- E=
S

R-EUQZ072V
2.74 mm

R-EU0204/5
55 mm

R-EU0204/T
7.5 mm

R-EU0204/10
'o 11 mm

+

R-EU0G17TMT
18 mm

+ @

R-EUKHZ08-8
32 mm

+

Moving parts

Move the parts around within the schematic editor so that they are arranged as per the schematic
below. Keep the component identifiers (numbers like R1, R2, R3) in the same places as those below.

X

"X
<

3.3.5 Wiring parts together

These form the electrical connections that makeup the
circuit. Select the net button from the toolbox.

wX,

Left click on the very end of a component and draw in a

. . . . Click at the end of the
straight line either up, down, left or right.

component to start and
finish a net

V4

Left click again to stop at a point and draw before drawing in
another direction. l

Double left click at another component to finish the wire.

31

3.3.6 Zoom Controls

There are a number of zoom controls that can be used to help you work in your circuit.

A e GO

Find these on the toolbar and identify what each does.

Nets

Nets are the wire connections between the components, each has a
unique name.

Find the info button in the toolbox and check the names and details of the
components and nets/wires.

When you want to connect a new net to an existing net, Eagle will prompt
you as to which name to give the combined net.

If one of the nets has a proper name i.e. VCC, V+,V-, ground... use that
name, otherwise choose the net with the smallest number

3.3.7 Junctions

Bl Connect Nets?

Connect Nets?

Resulting hame:

N$3

oK

Cancel

Junctions are the dots at joins in the circuit, they are there to make sure that the wires are electrically
connected. Generally you will NOT need to add these to your circuit as the net tool puts them in place

automatically

\. Iq

AV
.
7

Junction

Click at the end of the
component to start and
finish a net

32

3.3.8 ERC
The ERC button causes Eagle to test the schematic for electrical errors.

Errors such as pins overlapping, and components unconnected are very common.

The ERC gives a position on the circuit as to where the error is; often zooming in on that point and
moving components around will help identify the error.

You must correct all errors before going on.

3.4 The Board Editor

The board editor is opened using a button in the toolbar, find this button and answer yes to the question
about creating the board.

The new window has a pile of parts and an area upon which to place them.
WARNING: once you have started to create a board always have both the board and schematic

open at the same time, never work on one without the other open or you will get horrible errors
which will require you to delete the .brd file and restart the board from scratch.

33

3.4.1 Airwires

The wires from the schematic have become connections called airwires, these wires will shortly become
tracks on the PCB.

These connections can look very messy at times and at this stage it is called a RATSNEST.

3.4.2 Moving Components

ol==J0 —o[<-e

O == @

@
o+ o 1@

=Y,

Move the components into the highlighted area. In the demo version you cannot place parts outside this
area. Keep the components in the lower left corner near the origin (cross).

Reduce the size of the highlighted area you are using for the components. Then zoom to fit.
Progressively arrange the components so that there is the minimum number of crossovers.

As you place components press the Ratsnest button often to reorganize the Airwires. Eventually your
picture will look like the one on the right.

Good PCB design is more about placement of components than routing, so spending most of

your time (80%) doing this step is crucial to success.
You want to make track lengths as short as possible

34

3.4.3 Hiding/Showing Layers

The DISPLAY button in the TOOLBOX is used to turn on and off different sets of screen information.
Turn off the names, and values while you are placing components. This will keep the screen easier to
read. Turn off the layer by selecting the display button and in the popup window pressing the number of
the layer you no longer want to see.

et | B
Mt Mame W .ﬂ ' .Kfé f*}'
g . Yias /F\
. nrouted i (/ .>
h” = E?'Fi;nensi.;..-. deselect top names '\’
2 e and walues to reduce
= lt:'gl‘_a':_e clutter on your
23 Figins . ~ =
24] borigins display .17,0
25 . tMames y
26 . brames
27 . Evalues hal N .
[M] ’ Change] ’ Del] .:{/—0 .‘
’ &l] ’ Mane] - - °
®__ o
[8] 4] ’ Cancel]

35

3.4.4 Routing Tracks

Now is the time to replace the airwires with actual PCB
tracks. Tracks need to connect all the correct parts of the
circuit together without connecting together other parts.
This means that tracks cannot go over the top of one
another, nor can they go through the middle of
components!

Go to the Toolbar, Select the ROUTE button

On the Toolbar make sure the Bottom layer is selected
(blue) and that the track width is 0.04. Left click on a
component.

Note that around your circuit all of the pads on the same
net will be highlighted. Route the track by moving the
mouse and left clicking on corner points for your track as
you go. YOU ONLY WANT TO CONNECT THE PADS
ON THE SAME NET, DON'T CONNECT ANY OTHERS
OR YOUR CIRCUIT WILL NOT WORK. Double click on a
pad to finish laying down the track.

Track layout Rules

1. Place tracks so that no track touches the leg of
a component that it is not connected to on the
schematic

2. No track may touch another track that it is not
connected to on the schematic

3. Tracks may go underneath the body of a
component as long as they meet the above
rules

3.4.5 Ripping up Tracks

Ripping up a track is removing the track you have laid
down and putting the airwire back in place. This will be
necessary as you go to solve problems where it is not
possible to route the tracks. You may even want to rip up
all the tracks and move components around as you go.

36

Component Airwire
Body

Wrang! The track is touching another pin

Wrong! The track touches another track

d

Caorrect! The track doesn't touch any other track or any other pin

3.5 Making Negative Printouts

Eagle is straight forward at producing printouts for a positive

1 photographic pcb making process
(NOTE THE TEXT ON THE PCB APPEARS REVERSED THIS IS

I CORRECT)
210
LOOS nsl
However if your photosensitive board
Ts(Il)hsCI requires a negative image such as this,
another stage on the process is
required..

3.5.1 Other software required

The following software is required to manipulate the special CAM (computer aided manufacturing) files
created by Eagle (and other pcb CAD software) into the printed image you require. All this software is
shareware with no fees attached for its use by students.

* Install GhostScript - from http://www.ghostscript.com
* Install GSView - from http://www.ghostgum.com.au/

Conversion process
This process creates a ".ps' (postscript file), it is the best output from Eagle to use. It will keep the board
exactly the same and correct size for printing.

* Open TDA2822verA.brd in Eagle
* From within the Eagle Board Editor start the CAM Processor

* select device as PS_INVERTED
*Seale = 1 2= 3 CAM Processor - EAGLE 5.3.0 Light EEx

Be layer Window Help

*file = .ps

* make sure fill pads is NOT selected this . :
makes small drill holes in the acetate which =n 2 LI F
we use to line up the drill with when drilling SR [] govate A e

* for layers select only 16,17,18 and 20, - oy -

* make sure ALL other layers are NOT e e 3 ; bt
selected. 2 =y 42 Documer

* Select process job e — aar

* if you will use this process a lot save this : 5 0w

cam setup as so that you can reuse it again

Open the TDA2822verA.ps file with
Ghostview for printing and print it onto an
over head transparency. Make sure you can ; :
see the drill holes! froassioh | grocws svcion) { peeoten J__wig. L1 o

7:Yeachel aSoAmps | TDAZEZ2sten t 0 .00 d

37

4 PCB Making

Plastic Protective Costing

PCB Board Layers

Phota Sensitive Coating —____

Fibreglass Board

Measure, Cut:

Photosensitive board is expensive, so it is
important not to waste it and cut it to the
right size.

It is also sensitive to ordinary light so when
cutting it don’t leave it lying around.

Expose:

This over head projector is a great source of
UV — ultra violet light, it takes three minutes
on the OHP in my classroom.

The overhead transparency produced earlier
must have some text on it. The text acts as
a cue or indication of which way around the
acetate and board should be. We want the
text on the board to be around the right way.

Develop:

The developer chemical we use is sodium
metasillicate which is a clear base or alkali.
It will ruin your clothes so do not splash it
around, it is a strong cleaning agent!

It should be heated to speed up the process.
The development process takes anywhere
from 20 seconds to 2 minutes. The reason
being that the chemical dilutes over time
making the reaction slower.

The board should be removed twice during
the process and washed gently in water to
check the progress.

38

Rinse:

The developer must becompletely removed
from the board.

At this stage if there is not time to etch the
board, dry it and store it in a dark place.

Etch:

The etching chemical we use if ferric
chloride, it is an acid and will stain your
clothes.

The tank heats the etching solution and
there is a pump to blow bubbles through the
liquid, this speeds the process up radically
so always use the pump.

Etching may take from 10 to 30 minutes
depending upon the strength of the solution.

Rinse:
Thorughly clean the board.

Remove Photosensitve Resist:

The photosensitive layer left on the tracks
after etching is complete must be removed.
Thee asiest way to do this is to put the
board back into the developer again. This
may take about 15 minutes.

39

Laquer:

The copper tracks on the board will oxidise
very quickly (within minutes the board may
be ruined), so the tracks must be protected
straight away, they can be sprayed with a
special solder through laquer (or tinned).

Drilling & Safety:

Generally we use a 0.9mm drill in class. This
suits almost all the components we use.
Take you time with drilling as the drill bit is
very small and breaks easily.

As always wear safety glasses!

Use a third hand:

When soldering use something to support
the board. Also bend the wires just a little to
hold the component in place (do not bend
them flat onto the track as this makes them
very hard to remove if you make a mistake).

40

5 Soldering, solder and soldering irons

Soldering is a process of forming an electrical connection between two metals.

The most important point is GOOD THINGS TAKE TIME, SO TAKE YOUR TIME!

Quick soldering jobs can become really big headaches in the future, and people learning to solder tend
to be quick because either they believe the temperatures will damage the components or they think of
the solder as glue.

Soldering is best described therefore as a graceful process.

So approach it from that way, always slowwwwing down to get a good soldering joint.

Follow these simple steps to get the best results.

NookrwhE

8.

9.

The materials must be clean.

Wipe clean the iron on a moist sponge (the splnge must not be dripping wet!)

The iron must be tinned with a small amount of solder.

Put the tinned iron onto the joint to heat the joint first.

The joint must be heated (be aware that excessive heat can ruin boards and components)
Apply the solder to the joint near the soldering iron but not onto the iron itself.

Use enough solder so the solder flows thoroughly around the joint- it takes time for the solder to
siphon or capillary around all the gaps.

Remove the solder.

Keep the iron on the joint after the solder for an instant.

10.Remove the soldering iron last — do not clean the iron, the solder left on it will protect it from

oxidising

11. Support the joint while it cools (do not cool it by blowing on it)

DO NOT - DO NOT - DO NOT - DO NOT repeatedly touch and remove the soldering iron on a joint this

will never heat the joint properly, HOLD the iron onto the joint until both parts of it COMPLETELY heat
through .s

SOLDER goes onto the joint

Tinthe end of the not the iron.
iran with solder

When you are soldering properly you are following a code of practice

41

5.1 Soldering facts

Currently the solder we use is a mix of tin and lead with as many as 5
cores of flux. Don’t use solder whichis too thick.

When the solder flows smoothly onto surfaces it is know as "WETTING".
Flux is a crucial element in soldering it cleans removing oxidisation and
prevents reoxidisation of components by sealing the area of the joint as
solder begins to flow. It also reduces surface tension so improves
viscosity and wettability.

Our use of lead solder may change in the future with the trend to move to non lead based
materials in electronics.

If a solder joint is not heated properly before applying more solder or the solder is applied to the
iron not the joint then the flux will all burn away or evaporate before it can do its proper job of
cleaning and sealing the materials.

A new alloy of tin and copper must be formed for soldering to have taken place, it is not gluing!
The new alloy must have time to form, it will only be around 4-6 um thick

As solder goes from a solid to a liquid it goes through a plastic state. This is the state of risk for
your joint, if something moves during that time the solder will crack.

It is for this reason that we don't dab at a joint with a hot iron, the joint never really becomes hot
enough to melt the solder hence no wetting takes place and the joint is going to be unreliable. If
you apply the solder to the joint not the iron you will know the joint is hot enough because the
solder will melt.

Flux is useful for only about 5 seconds. Reheating joints without fresh solder often doesn't do
much good, in fact it could even damage them.

Too much heat on components during soldering can destroy the component or lift the tracks from
the PCB.

If components get very hot while your circuit is on, then they can deteriorate your solder joint and
cause it to fracture.

Soldering provides a certain amount of mechanical support to a joint, however be careful as to
how much support you expect it to give. Very small components through the holes in a PCB are
fine, some larger components may need other support, often just bending the legs slightly before
soldering is enough.

5.2 Soldering Safety

Lead is a poison so don’t eat solder!

Solder in a well ventilated area as the fumes coming form the solder are the burning flux and are
a nuisance in that they can lead to asthma.

The soldering iron needs to be hot to be useful around 360 degrees Celsius - it will burn you!

Good solder joints

42

5.3 Soldering wires to switches

LED's and Switches are most often attached to the circuit board with wires. These
must be correctly measured, cut, stripped and soldered.

Step 1.

Cut wire lengths to 190mm +/- 2mm

Strip the insulation from the ends of the wire

—> N
8 +i-1Tmm B +i-1mm

Step 2:

H

Hook the wires through the switch terminals and solder them

L

Step 3:

GET YOUR SOLDERING CHECKED
The solder should cover the joint fully, and after the joint has cooled the

wire should not be able to move in the switch contact.

Ztep 4.

Use heatshrink tubing over the switch connections

L

M

switch terminals and solder them

Hook the wires through the Use heatshrink tubing over

the switch connections

The wire and the switch t;rminal
must be completely covered

Follow these recommended codes of practice with your work

43

5.4 Codes of practice

Codes of practice are industry recognized ways of carrying out work on your project, so that it is safe for
users and provides reliable operation. But how important are they?

This metal strip is a “wear strip”, it should have been made from stainless steel but was however made
from titanium which is much stronger. A “wear strip” is a sacrificial metal strip that protects an edge on
an aircraft; it is designed to be worn away with friction.

This titanium strip was a replacement part on a Continental Airways DC-10 aircraft. It was also not
properly installed. The strip fell off the DC10 onto the runway at Charles de Gaulle airport, north of Paris

The next aircraft to take off was an Air France Concorde. Before a Concord takes off the runway was
supposed to be inspected and cleared of all foreign objects, this was also not done. The aircraft picked
up the strip with one of its tires. The titanium strip caused the tire to burst, sending rubber debris up into
the wing of aircratft.

The aircraft stores its fuel in tanks in the wing. The wing is not very thick material and the tank burst
open, the aircraft leaked fuel which ignited, sparking a bigger fuel leak and fire that brought the plane
down.

The Air France Concorde crashed in a ball of flames 10km passed the runway, killing all 109 people
aboard and four people at a hotel in an outer suburb of Paris.

Since the incident all Concorde aircraft have been retired from service, and in July 2008 it was
determined that 5 people would stand trial for the crash.

So how important are codes of practice?
How important is your soldering?

44

5.5 Good and bad solder joints

Component lead

okder - SnP'b

Mew Allay farmed Snlu
The finished solder joint should be cone

Tack-cunoozainches — Shaped and bright in colour

Q.07 mam thick
When a solder joint is correct there will be
a new alloy od Sn-Cu formed between
= the solder and the track or component

lead.

3

Too little solder, not enough heat

Too much solder Heated only the pcb track

-+t

Too little solder

Too much solder, Heated only the leg of the
it has flowed onto another trac k _ component

Only soldered on one side of the | A whisker of solder is touching
leg another track Forgot to solder it!!

45

5.6 Soldering wires to LED’s

LED's and Switches are most often attached to the circuit board with wires. These must be
correctly measured, cut, stripped and soldered.
To begin improving your accuracy practically keep to these measurements

Cut LED leads to
8mm +- 1mm

Step 1.

MM mm +i- 1mm

Cut wire lengths to 190mm +/- 2mm

Step 2: Strip the insulation from the ends of the wire
— I —

8 +i-1Tmm B +i-1mm

Tin one end of the wire

solder

Step 3:)
Soldering

iron

Only a small amount of solder, NO BLOBS!

Solder the wires to the LED leads

Step 4.

Step 5. | GET YOUR SOLDERING CHECKED

Step 6: | CHECK THAT YOU GOT YOUR SOLDERING CHECKED!!!

Step 7:

Use heatshrink tubing over the LED leads

Heatshrink needs to provide BOTH mechanical and electrical cover!

46

6 Introductory Electronics Theory

6.1 Making electricity

Electronic circuits need energy, this energy is in the form of moving charges

There are a number of ways that we can get charges moving around
circuits.

::.I:.F:er

from chemical reactions (cells, batteries and the newer fuel cells),
from magnets, wires and motion (generators and alternators),
from light (photovoltaic cells),

from friction (electrostatics e.g. the Van de Graaff generator),
from heat (a thermocouple),

from pressure (piezoelectric).

6.1.1 Cells
A cell is a single chemical container, and can produce a voltage of 1.1 volts to 2 volts depending on its
type.

In the diagram on the copper side there are plenty of electrons(-), on the zinc side (+) there is an
absence of electrons.

Here is a tomato cell powering an LCD clock.

Lemons make good cells too!

6.1.2 Batteries
A battery is a collection of cells in series e.g. a 12 volt car battery is six 2 volt lead-acid cells in series.

.|.

a7

6.1.3 Different types of cells

o Primary cells (not rechargeable)

O

o O

Zinc-carbon - inexpensive AAA, AA, C and D dry-cells and batteries. The electrodes are zinc
and carbon, with an acidic paste between them that serves as the electrolyte.

Alkaline - Used in common Duracell and Energizer batteries, the electrodes are zinc and
manganese-oxide, with an alkaline electrolyte.

Lithium photo - Lithium, lithium-iodide and lead-iodide are used in cameras because of their
ability to supply high currents for short periods of time.

Zinc-mercury oxide - This is often used in hearing-aids.

Silver-zinc - This is used in aeronautical applications because the power-to-weight ratio is
good.

e Secondary Cells (Rechargeable)

o

Lead-acid - Used in automobiles, the electrodes are made of lead and lead-oxide with a
strong acidic electrolyte.

Zinc-air - lightweight.

Nickel-cadmium - The electrodes are nickel-hydroxide and cadmium, with potassium-
hydroxide as the electrolyte.

Nickel-metal hydride (NiMh).

Lithium-ion - Excellent power-to-weight ratio.

Metal-chloride

6.1.4 Electrostatics

When certain materials such as wool and a plastic ruler are rubbed against each other an electric
charge is generated. This is the principle of electrostatics.

+
*

The rubbing process causes electrons to be pulled from the

—————— surface of one material and relocated on the surface of the other

material.

As the charged plastic moves over a piece of paper the electrons

+ + + + within the paper will be repelled (The paper is an insulator so the
- = - electrons cannot move far). This causes a slight positive charge
+ + + + on the paper.

This will mean that the negatively charged plastic will attract and

pick up the positively charged paper (because opposite charges attract).

The positive side effects of Static Electricity

Smoke stack pollution control, Air fresheners, Photocopiers, Laser Printers, Car Painting,

The negative side effects of static electricity

Lightning

Sparks from car — they hurt,
Damage/reduce life of electronic components
Danger around any flammable material (like at petrol stations)

48

6.2 ESD electrostatic discharge

Antistatic bags Electrostatic tester

r , ALSO Gloves, Swabs, Finger Cots, Wipers
o Cleanroom Suits, Smocks, and Shoes
Cleanroom Masks and Shoecovers
8 : Sticky Mats and Rollers
& :
A / ' ' AR Ve :
A Static dissipative mats/sheets @ sT-Poly APET Wet tissue with antistatic agent
B Antistatic flooring [Rl ESD shoes and slippers (M Cconductive adhesive mat
€ PcBHolders | wrist straps and alarms © Wwafer Transport System
D Parts Boxes J lon Blower [P static eliminators
E K
F L

Static dissipative seat cover

Grounding Wire & Conductive Steel Plate

Many components can be damaged by the high voltages of static electricity that we produce (we can

easily generate several thousand volts). A large industry exists to provide anti-static devices to prevent
this from damaging electronic components.

49

6.3 Magnets, wires and motion

When a wire moves in a magnetic field
electricity is produced. This picture shows the
process of generating electricity from motion.

This mechanical torch has no batteries, this means that it
will only generate electricity while the lever is being
worked.

Turning the hand crack on the front of this radio will charge the internal rechargeable
batteries. A one minute crank will give 30 minutes of listening; 30minutes of cranking
will fully charge the batteries for 15 hours of listening

6.4 Group Power Assignment

In groups of six, choose one of the following each:

A. Power stations: Geothermal, Gas Fired, Hydro, Wind, Solar, Wave

Describe in detail its operation, typical uses, hazards, advantages and disadvantages, where it is used
(if used) In New Zealand

B. Cells and Batteries

Zinc Carbon, Alkaline, Lithium, Lead Acid, NiCad, NiMh

Describe in detail its operation, typical uses, hazards, advantages, disadvantages

Achieved Merit Excellence
Power Station | Diagram, location(s), Pictures and Thorough explanations and
technology some attempt at Diagrams with clear | clear diagrams and pictures of
description of descriptions of working, sources are
operation in own words | operation. referenced.
Battery / Cell Diagram, location(s), Pictures and Thorough explanations and
Technology some attempt at Diagrams with clear | clear diagrams and pictures of
description of descriptions of working, sourc, explains mAH
operation in own words | operation. ratings, energy to weight ratio,
sources are referenced
In your group you will need to agree on a common format for presentation: A2, A3 or Web, fonts,
colours, layout. You will have 2 periods in class to work on this together. Please do not copy
information straight from wikipedia or some other source, write the information in your own words.

50

6.5 Electricity supply in New Zealand

L

@ Main generation sources
@ Main load centres

= Core grid
=== HVDC link

The National Grid transports
electricity from where it is
generated, to where it is

‘ . needed.
HEN-MPE-A Silverdale In Auckland the mains
power comes up from
IEN-MDN-A ALB-SVL-A power stations in the
ALB-HPI-A south via over head
£ Albany lines that carry voltages
Huapai - of 220,000 Volts
\ AR (220kV) at thousands of
OTA-PEN-€
HEN-RO B \ Henderson o amps.
HEN S8 . £ g OTA-PEN-A
Hepbum Road A anrose PAK- P[-_:NA A
HEP-ROS-A e L
Mt. Roskill e ‘qb e Pakuranga Underground cable
N &) from Fahuranga
MNG-ROS-A Southdown’ / Wiri

MNG-OTA-A
BOB-0TA-A

GLN-DEV-A ARI-PAK-A
Glenbrook Bombay ® , MER-TAK-A
s08.ER 4—\ N OTA-WKM-A
HLY-0TA-A . \\\ -WKM-
Meremere \\ OTA-WKM-B
- \\
HAM-MER-B '\ \\

6.6 Conductors

When a difference in energy exists in a circuit electrons (charges) want to flow from
++£ e the negative to the positive.
M

Materials that allow charges to flow freely are called conductors. Insulators are
materials that do not allow charges to move freely.

Materials that have high conductivity are silver, gold, copper, aluminium, steel and
iron.

To understand why these are good conductors some knowledge about atoms is
required. Everything is made up of atoms or structures of atoms. Atoms themselves are made of a
nucleus of protons and neutrons surrounded by numbers of electrons. The electrons spin around the
nucleus. Electrons have a negative charge, protons a positive charge, neutrons no charge. The sum of
all charges in a normal atom is zero making the atom electrically neutral.

HYDROGEN HELIUM

/ "= "“Hm*x PROTONS

}I": ri L1 .
(aﬁﬁwnmusl}u‘r 3
%HUCLEUS“"’H—J

.’-‘h“"s. .-of""jJ

NEUTRON

@ ELECTRONS & PROTONS @ NEUTRONS

The numbers of different neutrons, protons and electrons determine what type of material something is.

With larger atoms the nucleus contains more protons and neutrons, and the electrons are arranged in
layers or shells.

Less electrons in the outer shell means that a material is better at conducting.

A single electron in an outer shell on its own tends to be held weakly or loosely
bound by the nucleus and is very free to move. This is shown in the copper atom.
The atoms in the outer shell are known as Valence electrons

6.7 Insulators
When the outer shell of an atom is full there are no free electrons, these tightly bound valence electrons
make the material better at insulating, i.e. no current can flow.

Insulators are used in electronics just as much as conductors to control where current flows and where it
doesn't.

An insulating material can break down however if enough voltage is applied.

52

6.8 Wire Assignment

We use different types of wire for different jobs. Wires can be categorised by the number and diameter
of the strands and whether they are tinned or not.

Collect samples of the different types of wire used in class, label each with the wires by its
characteristics: e.g. single or multi-stranded, tinned or un-tinned and number and thickness of the
strands.

mm
0,21 0,25

Tinned single strand 0.25mm ‘ ‘
-\I

In groups work on the following questions and record the answers in your exercise book.
e What are some advantages, disadvantages and characteristics of each type of wire?
e What is tinning, and why are wires tinned?
e When would you prefer single over multi-stranded wire?
e When would you prefer multi-stranded over tinned wire?

53

6.9 Resistors
Resistors reduce the current (flow of electrons/charges) in a circuit.

The unit of resistance is ohms and the symbol is the Greek symbol
omega. (Note that we often use the letter R on computers because an
omega is harder to insert.)

Resistors can be variable in value (used in volume controls, light
dimmers, etc) or fixed in value. Common fixed resistor types are Metal
Film and Carbon Film.

6.10 Resistor Assignment

Write a description of how a metal film resistor is constructed.
Write description of how a carbon film resistor is constructed.
Include pictures with both.

6.11 Resistivity

Resisitivity is the measure of how a material opposes electrical current, it is measured in ohm-meters.

Silver 1.6 x 10 ® Q/m | 0.000000016 Q-m Silver cadmium oxide is used in high
voltage contacts because it can withstand
arcing, resists oxidation

Gold 2.44 x10® Used in sliding contacts on circuit boards,
more corrosion resistant than silver, resists
oxidation

Copper 1.68 10°® Electrical hookup wire, house wiring,
printed circuit boards

Aluminium | 2.82 x 10°® Used in high voltage power cables, it has
65% of the conductivity by volume of
copper but 200% by weight

Tungsten 5.6 x 107 High melting point so good for lightbulbs

Iron 1x107 Used to make steel

Tin 1.09 x 1g‘7 Used in Solder

Lead 2.2x10 Used in solder

Mercury 9.8 x 10~ Used in tilt switches, because it is liquid at
room temperature

Nichrome 1x10° Used in heating elements

Carbon 3.5x 10" Used in resistors

Germanium | 4.6 x 19'5 Was used in making diodes and transistors

Seawater 2x10

Silicon 6.4 x 10° 640 Q-m Used as the main material for
semiconductors

pure water | 2.5 x 15° Doesn’t conduct!

Glass & 1x10%° Used in power line insulators

porcelain

Rubber 1x 10" Insulating boots for electrical workers

Quartz 7.5 x 10" silicon—oxygen tetrahedral -used for its

(Si04) piexo electric properties

PTFE 1x 10% Polytetrafluoroethylene, insulation for wires

(Teflon)

54

6.12 Resistor prefixes
Some common resistor values are 1k (1,000) 10k (10,000) 1M (1,000,000) 2k2 (2,200) 47k (47,000).
Conversions between, ohms, kilo and Mega are very important in electronics.
So how do you remember that 1 kOhm = 10000hms or 22,000 Ohms = 22k?
First know that the prefixes are normally in groups of thousands and secondly writing them into a table
helps.

Gigal Mega kiloj milli micro nano pical
G M| K R m u n p
110 0 0]0
2 210
0
1802 0 0
2 0]J]0 0 0JO0 O O
1Mohm = 1,000,000 ohms 2.2 ohm = 2R2 ohms
22k ohms = 22,000 ohms 4,700 = 4k7 ohms

Every conversion in in groups of three or thousands so decimal points and commas can only go when
lines are shown on the table Note the special case in electronics where we use 2k2 not 2.2K. The
reason for this is that when a schematic or circuit diagram is photocopied a number of times then the
decimal point may disappear leaving 2.2 as 22. This cannot happen when using 2k2 (2,200), 2R2 (2.2)
or 2M2 (2,2000,000).

Convert the following:

Ohms Correctly formatted

1500 1K5

5,600,000 5M6

3,300 3k3

12.5 12R5

9,100,000

22,000

4,700

5.6

10,000

9100

1.8

22,400

10.31

100,000

1000k

4,300,000

0.22

3,900K

91,000

3.1k

55

6.13 Resistor Values Exercises

Resistor values are normally shown on the body of the resistor using colour codes
There are 2 schemes, one with 4 bands of colour and one with 5 bands of colour

Digit Digit Multiplier Tolerance Digit Digit Digit Multiplier Tolerance

N | S NN\ /S

—L M T—

The colour code is

black

brown
red

yellow . |
green
blue
purple
8
9

103 Gilwer

silver

i1 =) oy on B

wihite

iln]

0L

£ A0
G RROSE B
b i =
5% Gaid
i R T

5 band code

+——+

resistor

You will need some practice at using this table.

Here are some common values

Digit Digit Digit Multiplier Tolerance

N\ /S

I1stband, Bn=1

2nd band, R=2

3rd band, BK =0

4th band, Y = 0000 (4 zero’s)
5th band, Bn = 1%

Answer: 1,200,000 ohm, +/-1% = 1M2

5-band code
1st band: Y 1st band: BN
2nd band: Pu 2nd band: Bk
3rd band: Bk 3rd band: Bk
4th band: Bk 4th band: Bk
5th band: Bn 5th band: Bn
Answer: Answer
1st band: BN 1st band: Or
2nd band: Bk 2nd band: Or
3rd band: Bk 3rd band: Bk
4th band: BN 4th band: R
5th band: Bn 5th band: Bn
Answer: Answer
1st band: BN 1st band: Or
2nd band: Bk 2nd band: Wh
3rd band: Bk 3rd band: Bk
4th band: R 4th band: Bk
5th band: Bn 5th band: Bn
Answer: Answer:
1st band: Gn 1st band: Bn
2nd band: Bu 2nd band: Bk
3rd band: Bk 3rd band: Bk
4th band: Bk 4th band: Gold
5th band: Bn 5th band: Bn
Answer: Answer:
1st band: BN 1st band: Y
2nd band: Bk 2nd band: Pu
3rd band: Bk 3rd band: BK
4th band: Silver 4th band: Gold
5th band: Bn 5th band: Bn
Answer: Answer:

Find the colour codes for the following resistors (5 band)

1K2 1% (1,200 ohms = Bk — Rd — Bk — Bn _ Bn)
18k 1%
AM7 1%

8K2 1%

57

6.14

Capacitors

There are two different symbols for the two main categories of capacitors

and many several types within each category

Polarised
+

such as an electrolytic

Note the 50V voltage rating on the electrolytic, all
capacitors are rated up to a particular voltage,
exceeding this may cause the capacitor to overheat
leak and even explode!

Values will be written on these capacitors,
generally in microfarads

non polarised

such as ceramic disc

And polyester

Values will be written on these capacitors,
generally in picofarads and in code
104 = 100,000 pF
(mans 10 + 4 more zeros)
The main one of these we use in the workshop
will be the 0.1uF = 100nF = 100,000pF

58

6.15

Get to know the first 11 of these straight away

Component symbols reference

e

Resistor

NPN Transistor

F - - ~| |— Battery

LDR -
Light Dependent

=

Resistor

LED - Light

Emitting Diode

Wires — joined
(junctions used)

Wires —
unjoined (no
junction

&
o

O——

Switch

Capacitor
(non polarised

type)

Ground, Earth or OV Capacitor
Capacitor (polarised type
\/ — e.g.electrolytic)
m Zener Diode » Motor

PNP Transistor

(or

Potentiometer)

| MOSFET
Speaker (enhancement

| mode)
Thermistor

(senses temperature)

Piezo or crystal

+—0NO

o
NC

Relay

17
B
||
| |
Al
! Variable Resistor
S S
—1
1T

Transformer

Microphone

59

7 Year 10/11 - Typical test questions so far

Here are some questions to help you prepare for your test

Darkness Detector

©CoNo,~wNE

What are the color codes for all the resistors used in the darkness detector?

Draw the circuit for the darkness detector

What is the diode for?

Draw a breadboard with a resistor, LED, switch and battery connected so that the LED lights up?
What is the device with three legs called?

How can you tell the right way to put in an LED?

What is your electronics teachers favourite flavour of chocolate?

What does LED stand for?

What does LDR stand for?

. When a switch is turning a circuit on and off what is it actually doing?
. What is the LDR for?

. What components make up the input part of the circuit?

. What components make up the output part of the circuit?

. What components make up the process part of the circuit?

. What components make up the power supply part of the circuit?

Eagle

16.
17.
18.

What is the difference between the various different resistor packages?
What is an airwire?
Explain the three layout rules

PCB Making

19.
20.
21.
22.
23.
24.

What is the length of time for Exposing a PCB

What comes after exposing and before etching?

What chemical do we use for etching PCBs?

Why do we use a lacquer on the PCB?

What safety precautions should be taken when making PCBs?
What safety precastons should be taken when drilling PCBs?

Soldering

25.
26.
27.
28.
29.
30.
31.
32.
33.

What is solder made of?

What is flux for?

What temperature is a soldering iron?

What is a code of practice?

Think of at least one terrible thing that could go wrong due to poor soldering
Why must the sponge be damp but not wet?

Describe three types of bad solder joints

Describe a good solder joint

Why do we put heatshrink over wires?

General Electronic

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

What is current?

Where does electricity come from in NZ?

What is the voltage of a AA cell?

When is static electricity bad?

Does current flow in a circuit? (trick question!)

Why do some things conduct and others not?

Name three conductors used in electronics.

What are some different types of wire and where do we use each one?

Use a resistor colour code table to find the values of 3 different resistors used in the workshop.
Draw and name the first 11 symbols in the symbol table.

60

8 Electronics Theory |

8.1 Conventional Current

Before the electron was discovered it was thought that the movement of charge was from positive to
negative. Itis common when current is being discussed for conventional current to be meant, that is
current will be from positive to negative. If we want to make the difference clear we will say
conventional current (positive to negative) or electron current flow (negative to positive)

8.2 Ground

‘ ‘ In a circuit we need a reference point for all the voltage measurements, we often
refer to this point as ground. At the ground point in the circuit the voltage potential
/ — is zero. In a battery powered circuit the negative side of the battery is often referred
to as ground. These are the symbols you will see for a ground connection.

8.3 Preferred resistor values

Not every resistor value is made, there are ranges called the E series (Exponent?) This is useful
because then not all values have to be held in stock by a company for manufacturing purposes.

E6 series | E12 series | E24 series
1.0 1.0 1.0
1.1
1.2 1.2
1.3
15 1.5 15
1.6
1.8 1.8
2.0
2.2 2.2 2.2
2.4
2.7 2.7
3.0
3.3 3.3 3.3
3.6
3.9 3.9
4.3
4.7 4.7 4.7
5.1
5.6 5.6
6.2
6.8 6.8 6.8
7.5
8.2 8.2
9.1

In the E6 series there are 6 values per decade, so the following values are made:
0.1, 0.15, 0.22, 0.33, 0.47, 0.68

1,15,2.2,3.3,4.7,6.8.

10, 15, 22, 33, 47, 68,

100, 150, 220, 330, 470, 680,

1000, 1500, 2200, 3300, 4700, 6800,

10000,

61

8.4 Resistor Tolerances

Resistors are not perfect values they are made by machine and therefore have a NOMINAL value which
is correct to a reasonable accuracy. Usually we buy 1% resistors for the workshop so they are

guaranteed to be close in value.

Calculate these tolerances:

Nominal Value | Tolerance | Min value

Max value

390R 1%

390-1% =390-3.9=386.1R

390+1% =390+3.9=393.9R

1K

4Kk7

10K

33K

8.5 Combining resistors in series

Sometimes it is necessary to put resistors in series to get the value we need.
In circuit diagrams we use names for components such as R1, R2, R3, R4 and_Rt means the total

resistance. (Wherever you see ohms you can replace it with the symbol Q in your work)

1.
R1= 100R _
R1 R2
2.
R1= 10k _
R1 R2
3.
R1=1k8 _
R1 R2
4.
R1 = 4k7 Rt =
_l I_l |_| I_ R2 =1K8 |Rt=
5.
R1=2M6 |Rt=
_l I_l |_| I_ R2 = 110K |Rt=
— 1] [1
R1 R2 R1 = 1M8
R2 = 720K |Rt =
R3 = 390K
— — ——— |R4=180K
N R3 R4

62

8.6 Combining resistors in parallel
When two resistors are put in parallel the current has 2 paths it can take.

The current will split between the two resistors, the current in
each split will be related to the values of each resistor.
— The overall effect is the same as if a smaller value of resistance

- 1
| I
R1
IZI was used.
R2

The formula for calculating the total resistance is:

1/Rt = 1/R1 + 1/R2 or
Rt=1/(1/R1 + 1/R2)

On a calculator this can be entered directly using the inverse function the 1/x button.
Enter value of R1

press 1/x

press +

enter value of R2

press 1/x

press =

press 1/x

R1 =100 Rt =
R2 =400

R1=1K
R2 = 2K2

m aﬁ E|I|

R1
— R1 = 2K2
3 R2 | R2 = 3K3 Rt =
| — RA = 4K
R4 = 4K7
R3
R4
You need 180R, you have the following resistors choose 2 in parallel that
would give the value closest to the desired value:
4.

360R, 4k7, 680R 2k2

63

8.7 Resistor Combination Circuits

When solving these circuits you have to look for the least complicated thing to solve first.

This can be thought of as which resistors are in a very simple combination, one that | could replace with
a single resistor and not affect the current flow and voltage in another part of the circuit (its not easy and
takes a lot of understanding to be able to do this, the yellow colours are hints to help with the first few)

1. R2 and R3 can be replaced by a single
resistor that would not affect the current Rt=
through or voltage across R1
R1 =10k
R2 = 2k
R2 — R3 =3k
R1
R3
2. R1 and R3 can be replaced. [Ri=
R1 = 4k7
R2 = 8k2
R3 = 1k5
IRt=
R1 =16k
R2 = 12k
R3 = 18k
R4 = 15k
IRt=
R1 = 1k1
R2 = 1k5
R3 =470R
R4 = 680R
IRt=
5.
R1 = 4k7
R2 = 1k8
R1 R4 | |R3=33R
R5 = 330R
R2 R5

64

8.8 Multimeters

To understand how circuits function and to find faults with them when they are not working it is
necessary to know how to use a multimeter.

JCK SMITH ELECTROMICS - 1ae

Snnn

CAT| GOV
CATII 300V

There is a rotary switch to select the correct measurement scale.

If you are measuring voltage in a circuit with a 9V battery you would put the meter scale onto 20V

. As the range gets closer to the actual value the accuracy gets better.

65

8.9 Multimeter controls

This multimeter is a common type.

The display has digits. It can display numbers
from 0.00 to 1999.

There are different positions on the rotary
switch.

V is for and the ranges are

Ais for and the ranges are

The ohms scalehasan__ symbol.

Its ranges are

There are 3 different sockets for the probes to plug into
these are labelled

The hFE selection is for testing

COM stands for and the black/red probe goes into it.

The black/red probe goes into one of the other sockets.

What is the power source for the meter itself?

66

8.10 Choosing correct meter settings

Selecting the switch position is very important to making accurate measurements.
Know what you want to measure voltage, current or resistance.

The second step is selecting the range of the measurement. If an approximate value is known then choose the
next higher setting on the range switch. Generally we use 9 volt batteries in our circuits, if you want to measure
voltages around a 9 volt circuit then what range would you choose for the meter?

If you did not know the voltage in the circuit which range would you
choose?

Many of the resistors we use are 5 band, very small size and hard to
read. What range would be best to choose first on the meter?
What range would you choose to measure a resistor you thought was

91Kohms.

What range would you choose to measure a resistor with colours red,
red, orange, brown?

What is the highest resistance value that can be read on the meter?

What is the lowest resistance that could be measured on the meter?

When measuring current where would you put the probes and what range would you choose to start with?

If no current readings are being shown on the meter it is possible that the

When making a measurement and its value is greater than the scale used the display shows

67

8.11 Voltage & Current Measurements

8.11.1 Measuring Voltage
. Calculate the voltage across each resistor
. Circuit current first.
. | =VIR =
. V(1k1) = IXR =
. V(150R) = IXR =
. Setup the multimeter correctly and measure the voltages in this
circuit.
. What was the voltage measured across the 1k1

across the 150R

8.11.2 Measuring Current

To measure current in a circuit the circuit must be broken and the meter inserted into it.

. Calculate the current through each resistor.
& ° IA = V/RA, IA =
° Ig = V/RB, Ig =
o ° Ic = V/RC; Ic=
. Measured Values
gy . Ia = :

Ig = :
IC:

I} I
K2
470R

There are at least two reasons for differences between calculated and measured
values in this circuit what could they be?

8.11.3 Meter Safety

. The meter is a delicate instrument handle it with care.

. Estimate what your measuring first and set the meter range to a larger value(or even to the maximum
value),

. Do not measure resistance in a circuit when the circuit is on.

. Check the internal fuse is correct before measuring current.

. Turn the meter off after use.

8.11.4 Circuit Safety

. Using the meter on a current setting when wanting to measure voltage can easily damage components
and even the circuit board.

. Take care not to short parts of the circuit with the probes.

8.11.5 Battery Life

. Switch the meter off when finished using it.

68

8.12 Measuring Resistance

8.13 Continuity

One range on the meter will beep when the probes are shorted together, or a very low value of resistor is
connected. It is very useful for

. checking cables are not broken
. checking that tracks between parts of a PCB are not broken
. checking that tracks are not shorted together on a PCB

Find 6 items that are good conductors

and 6 items that are poor conductors

8.13.1 In-circuit measurements

When a resistor is unknown or suspected faulty its resistance can be measured using the multimeter on
ohms range. When measuring resistors "in circuit" you must disconnect the power. To measure
resistance the meter puts current through the resistor and measures the voltage across it so current
from within the circuit will confuse the readings and the meter or the circuit could be damaged.

Measure the resistors in the following circuits.

1KZ2
A70R

Can you explain your readings for the second circuit.

9JUe)SISaJ paulquiod |9|eded ay3 Ajuo
SpeaJ J91aW 9Yy3 0S 92U0 }e PaINSESW dJe S101SISa4 924y ||e

69

8.14 Variable Resistors

Variable resistors or potentiometers, are used to change the input to an electronic circuit.

They come in different shapes, sizes and values as well ‘dual-gang’ (what use is a dual one?)

Some are designed to be varied by the user of the circuit, and are fitted with knobs to turn them, such as those
used as volume controls.

Others are called trimpots and are meant to be varied only by service people when working on
the inside of equipment, these are turned with a screwdriver.

Most pots vary over 270 degrees not the full 360 degrees.

The resistance between the two outer terminals does not change, only the resistance between
the centre terminal and both the outer terminals.

For this 10k pot, fill in the missing values from the table

centre to
angle| O to centre 10K

0 OR 10,000 R
30 | 1,000 R
108 | 4,000 R

5,000 R 5,000 R
190| 7,000 R

1,000
10.000R 270 | 10,000 R OR

4,000 R

If a lever was attached to the control of a pot what sort of things could be sensed by the circuit?

70

8.15 Capacitors

A capacitor is made from 2 conductors separated by an insulator.
Electrons do not flow through a capacitor, they flow onto one plate
top plate causing electrons to flow away from the other plate. Once the
capacitor is full no more electrons can flow. A capacitors action is to
store charges.

insulation
lower plate | (dielectric)

wire

8.16 Capacitor Codes and Values

Capacitors not only come in a variety of packages but there are also a number of different ways that
their values can be printed onto them. Some values are in uF, some in nF and some in pF, and it can
be confusing until you learn the few simple rules.

1. learn the prefixes first, micro uF, nano nF, and pico pF micro is the biggest, nano in the middle and pico the
smallest and learn how to convert between them.

2. Look at the capacitor to see what is written on it. If it has 10uF or 22n the it is obvious what value it is.

However when it is written with 3 digits such as 333, then it will be in pF even though it it not stated, and the last
digit will be the number of zeros (a bit like resistor colour codes) so 333 means 33,000 pF.

Convert the following

333 = 33,000pF 33 = 33pF
330 = 330pF 685 =
221 = 220 =
470 = 68 =
474 = 276 =

8.17 Converting Capacitor Values uF, nF , pF

farads micro nano pico
units u n p
1
110 0 O
110 0 0]J]0O0O O O
1uF = 1,000nF = 1,000,000pF
1
1 00O

1 00 O 0 O
0.1uf = 100nF = 100,000pF

10nf to pf

82nF to uF
2200pf to nF
100,000nF to uF
370pF to nF

o

moOw >

71

8.18 Capacitor action in DC circuits

12V In this circuit when the switch is in the upper position the capacitor
will store the charges on its plates; when moved to the lower
position the stored charges will be released back to ground through
~ the LED and resistor. The higher the value of the capacitor and the
-~ lower the value of the resistor the longer the capacitor will take to
discharge and the longer the LED will glow.
The value of capacitance is the amount of charge that can be
stored; it is related to the size of the plates and the thinness of the
oV insulator. A Capacitor is fully charged when the voltage across it
equals the supply voltage.
This ability to store charge is absolutely crucial in circuits that need quality power. In a computer circuit
that switches signals at megahertz or gigahertz a lot of power can be required for tiny periods of time
e.g. 1 nanoseconds (0.000000001 second).
If there is no capacitor close to the IC, it pulls the extra charges it needs from the power supply wires
close to the chip, this
Capacitor MNo Capacitor appears as rapid changes in
voltage level or ‘spikes’ in the
voltage, these spikes transfer
1 along the power lines on a
1 Tyl— v JLr 4 IC1 v J‘-r IC2 pcb and upset nearby ICs as
5\ well.
PSU

_C

Capacitor Capacitor at each IC
A common

practice in
y electronics is to
= V— _ T have a 0.1uF cap
— | V[=q Ic1 < €2 next to the power
5V pins of every IC to
PSU minimise this
effect.

Capacitor Capacitor at each IC

5V

Another common
practice nowadays
is to have large
areas of copper on
the circuit board
connected to
ground (OV). This
acts as a large
store of charges.
Many circuit boards
have multiple layers of copper tracks inside the board, one of which is ground and another of which may
be the power (e.g. 5V).

PsSU

Groundplane

72

8.19 The Voltage Divider

The voltage divider is is one of the most important circuits in electronics. It is used extensively in input
circuits. To understand its operation you must know about ohms law.

Below is a 2 resistor voltage divider circuit. The output voltage is the voltage across R,
Step 1. Voltage and total resistance are known, so | =V /R;
Step 2: R, and Current through R, are known, so Vo = I*R;

\With 9 volts across both resistors then:
R1[]4K | = V. /R,
| = 9/(4000 + 5000)
1 J | = 9/9000
T ov | = 0.001A
T across the 5k resistor
Vour = I*R>
R2 [] 5K V..« = 0.001*5000
Vou = 5V
\Work out the solution to the following.
IR, = 1K
Rl []4!: 1= Vi/R;
| = 9/ (4000+)
T ey | =
Vou =1 * R
R2 []
Vout = * 1000
Vout =
R, = 8K IR, = 4K
= Vv,/rR, 1=
| = =
| = =
Vou = | * Ry Vour™
Vout = * 1000 Vout =
VOUt - Vout =

73

8.20 Using semiconductors

Semiconductors are the group of electronic components responsible for everything smart that electronic
circuits do. Made mostly from the semiconductor silicon, which is itself a very poor conductor, they take
on fantastic features when mixed with other material.

Since the first
transistor was
developed in 1947
they have come a

-
ﬁ long way.

3
~
-1

They now come in
all shapes and
sizes. from
miniature surface
mount packages to
large high power
packages.

They amplify,
switch, and control
every conceivable

process

all over the world

74

8.21 Calculating current limit resistors for an LED

Light Emitting Diode fSZ

,‘+
-

Current Limit Resistor []

b

In the amplifier circuit there is an LED to indicate that power is on.
The resistor in series with the LED functions to limit the current through the LED.

AN LED requires a small forward voltage e.qg. V across it to operate, however the circuit is
powered by a 9V battery. The rest of the battery voltage must be dropped across the resistor.
Ohms law will assist with this calculation.

The resistor will have 9V - V= V across it.
An led draws about mA of current, this current goes through the resistor so
the resistor willneedtobe R=V/ I = / = ohms.

Choose the closest value from the available values of resistors.

If two LEDS were placed in series what value of resistor would be required?

75

8.22 The Transistor

There are thousands (millions?) of different types of transistors made by different manufacturers all over
the world, and they come in all shapes and sizes. The correct name for the transistor we are using here
is Bipolar Junction Transistor.

Transistors are semiconductor devices with three leads: an emitter, a base and a
collector.

The BC547 transistor is just one of the many different types of transistor. The
BC547 is an NPN transistor, there are also PNP transistors the BC557 is an
E equivalent PNP transistor .

n1 MN4004

52;
oV 1
M2 390R
1K
) —:l—@ BC547
LDR

Transistors are amplifiers, a small voltage across the base-emitter junction (the small arrow in the
transistor symbol) will control the current (the large arrow) from the emitter through to the collector.

collector
c The small voltage across the base is called Vy. , the current through the
base caused by this voltage is called I,. And the current through the
base collector is called ..
b I C Small variations in the base voltage Ve can create large changes in the

collector current I..

The voltage required across the base of the transistor (Vy.) is normally
around 0.6V to 0.7V when it is fully conducting.

emitter

76

8.23

Transistor Specifications Assignment

Transistors have current gain (hee), this is the ratio of base current (ly) to collector current (lg). If Iy is
2mA and Ie is 100mA then the gain is said to be 100/2 = 50.

Transistors have limits to the voltages and currents applied to them in circuits. They should not be
exceeded. If the voltages across the base or collector are too high then the transistor will most likely
blow up internally; if you try to draw too much current from the collector then it will most likely overheat

and burn up

Look up the specifications for the following transistors in a catalogue

BC547 | BC557 | BC337 | BC327 | BD139 | BD140 |TIP41C| TIP42C | 2N3055
Type NPN
Case T092
Ilc (mA) | 100 mA
Vee max 45V
hee (gain)| 110-800
Pror | 500 mw
(power)
8.24 Transistor Case styles
TO TO TO TO
r
8.25 Transistor amplifier in a

1N4004
1N4007
1N5817

MICRO

77

microcontroller circuit

We often use a NPN transistor in our circuits so that the
0.1aF microcontroller can control low to medium power devices
such as small motors or lots of LEDs

8.26 Transistor Audio Amplifier

Audio signals are not DC like that in a microcontroller circuit they are alternating current (AC) signals.
AC is measured in frequency (number of cycles per second) and amplitude (size).

Time

low

frequency
(]
k)
: -
£ medium
E‘ frequency
g

high
frequency

Audio signals such as voices are not single waves but complex waves of many frequencies each of
differing amplitude as in the picture below.

When amplifying audio through a transistor amplifier the
m ﬂn M Mﬁ ﬂﬂ J\ “ n frequency should not change but the amplitude will.
Am ﬁﬂ AfH N\n ml (In a single transitor circuit the signal is inverted, but that

w wv \)fvw WW\J UWW WW ||| doesn'treally make any difference to what we hear)

.
[] [] This transistor circuit is
setup to amplify small
audio signals (it is not a
—— veryhigh
* +[|I_ =—— gain/amplification circuit)
“— . Alot of components are
3¢ nl| | ¢ E _—_ required to control the
—— " transistor circuit so that it
T doesn’t distort the audio
X [' signal.
1 I
]
. . . .

78

8.27 Speakers

Sound is vibrations of air particles; a speaker will change the audio signal from an amplifier by moving
the cone of the speaker rapidly back and forth vibrating the surrounding air.

=
X

Dizphragm

hragm
or cone

vy
AL signal

Speakers come in various types each with specific frequency ranges they can reproduce: subwoofers
(very low frequencies), woofers (low frequencies), mid-range speakers (middle frequencies), and
tweeters (high frequencies).

Speakers have a resistance and typical values are 4
or 8 ohms. They also have a power rating e.g. 100W,
20W or 0.25W.

If you connect a speaker directly to a battery you will
destroy it (no smoke or explosion just a dead
speaker).

79

8.28 Switch types and symbols

Symbol

Switch description

Example

Example name

SPST Switch
Single pole single throw

Toggle switch
Mecury Switch

Rocker switch

push to make

Push Button Switch

push to break

Push Button Switch

i
_0__4/ DPST switch
o— :
: Double pole single Rocker switch
! throw
—o o—
SPDT switch , Toggle switch
/ Single pole double ¥ Or Microswitch
— throw >
—O/I/O_ -
' DPDT Switch
y O Double pole double - Toggle Switch
: throw E—~ or slide switch

4 way (or more)

Rotary Switch

9 TDA2822M Portable Audio Amplifier Project

This project is based around the
TDA2822M IC (integrated
circuit) from a company called
SGS Thompson
Microelectronics.

ouTPUT() input-01)
SUPPLY vOLTAGE | inPut.01)
OUTPUT{2) ineuT.(2)

GROUND | input-(2)

The project involves making a
portable (battery powered) audio
amplifier that can be used with an
MP3 player and keeping a
portfolio of the processes used.
You may design and make or
modify something else fro your

81

You will design and make
the printed circuit board and
case for the amplifier. You
may use the provided
speakers (50mm, 8 ohm
0.5W) or find your own.

9.1 Portfolio Assessment Schedule

Achieved

| Merit

| Excellence

Workbook content

Printed Datasheet

Printed Datasheet

Printed Datasheet

Component Price List

Component Price List

Component Price List

Schematic Diagram

Schematic Diagram from

Schematic Diagram from Eagle

from Eagle Eagle

Layout Diagram from Layout Diagram from Layout Diagram from Eagle
Eagle Eagle

OHT of PCB OHT of PCB OHT of PCB

Board works

All solder joins reliable,
heat shrink used correctly
to strengthen joints, stress
relief on all wires

All solder joins reliable, heat shrink
used correctly to strengthen joints,
stress relief on all wires

CAD Design drawing for
case

At least two design
drawings for case With
changes made

AT least two design drawings for case
With detailed explanation for changes

Photo of case

Photos of case
+ some description of
process of making

Photos of case
With detailed explanations of process
of making

Final Outcome

Quality outcome, (refer to
codes of practice)

Final product shows some flair,
elegance, innovation or creativity, and
explanation is given of these elements

Workbook Presentation

Material is readable

All materials are clear,
labelled, named and follow
a logical sequence

Overall presentation is easy to follow
and all materials are very well
presented, a table of contents is given
and page numbers are used.

Key Competencies

Interacts with others
occasionally or when
asked to work in groups

Works cooperatively,
relates easily and shares
workshop resources freely
with others.

Helps others and seeks others help in
the workshop often

Cleans up after self

Works cooperatively with
others to clean up the
workshop

Takes initiative in keeping the
workshop clean and tidy, puts tools
and materials away for others
regularly

Generally uses
workshop time well

Efficient use of workshop
time

Disciplined, optimised and efficient
use of workshop time

82

9.2 Initial One Page Brief

Project: TDA2822 Portable Audio Amp Date:

Client, customer or end-user: ME!

Description of the problem, issue, need or opportunity(diagrams may be required):
MP3 players are useful personal items however the music cannot be shared with
others

Conceptual Statement:
Design and construct a portable audio amplifier to allow music to be played when
with a group of friends

System Block Diagram: (include all input and output devices)

3x AL
Batteries

power indicator

onfoff switch

| o]
[!

TDA2E22M

MP3 Player

Further written specifications:
Need to make or find a case for it all

83

9.3 TDA2822M specifications

Electronic components are complex (especially IC’s) and manufacturers provide detailed specifications
called datasheets for their products.

Find and print the datasheet for your portfolio of the TDA2822M, it is easily available on the WEB. It
contains things such as the pin connections, a simplified internal schematic diagram, recommended

circuits and voltage, current and power specifications.
SCHEMATIC DIAGRAM

Vs

THER b

ar s ! ‘
_f“'\"JF .
f CONTROL
You J_
s . s
A s
az
out a4 a8 aie a5 016 o out
'(. £ an a4 . —00
o oo
bz R2 Lel R o
T a3 . o o:_ R
o L 4
:} ******)_'QL ae) Ll’
o | an anr
J! 0% Dé v o7
ann h 4
& O

INPUT Q-

O
z
]
~Cr
¥

ELECTRICAL CHARACTERISTICS (Vs =6V, Tamb = 25°C, unless otherwise specified)
| Symbol | Parameter | Test Conditions | Min. | Typ. | Max. \ Unit |
STEREO (test circuit of Figure 1)
Vs Supply Voltage 1.8 15 vV
Vo Quiescent Qutput Voltage 2.7 V'
V=3V 1.2 V
lg Quiescent Drain Current 6 9 mA
In Input Bias Current 100 nA
Po Output Power (each channel) mwW
(f=1kHz, d = 10%) RL. =320 Vs=9V 300
Vg =6V 90 120
Vs =45V 60
Vs =3V 15 20
Vs =2V 5
RL.=16Q Vs=86V 170 220
R =8Q Vg =9V 1000
Vs = 6V 300 380
RL =4Q Vs =6V 450 650
Vs = 4.5V 320
Vs = 3V 110
d Distortion (f = 1kHz) RL=320 Py,=40mwW 0.2 %
RL=16Q Po=75mW 0.2 %
RL.=8Q Py=150mW 0.2 %
Gy Closed Loop Voltage Gain f=1kHz 36 39 41 dB
AGy Channel Balance +1 dB
Ri Input Resistance f=1kHz 100 kQ
eN Total Input Noise Rs=10kQ B =Curve A 2 uVv
B = 22Hz to 22kHz 25 Y
SVR | Supply Voltage Rejection f=100Hz, C1 = C2 = 100uF 24 30 dB
Cs Channel Separation f=1kHz 50 dB

84

9.4 Making a PCB for the TDA2822 Amp Project

Open eagle and create a new schematic.
From your schematic Click the ADD button in the toolbox and the ADD dialog box will open (it may take
a while)

Open the CLS library
Add all of the following parts

LIBRARY PART Qty - MADS-2 ::s:ri;;
C:S 2REU/—0204/ 7 6 MEGAS535-P MICROCONT
Cls ,04/0,8 10 % PICIGFE* MICROCONT
cls C-EU050-025x075 2 - PICAXEDS
cls C-POLB45181A 5 - PICAXE18 Dual In Line
cls C-POLE5-10,5 2 =-R-EU
cls led 5MM 1 R-EL 0207/2¢
cls TDA2822 1 R-ELD204/5 0204/5
FELI0204/7 [l
cls RTRIMMECP10S 2 R-EU0204/10 0204410
cls GND 3 REUD207/2¢ 0207/2
RTRIMM
TIP41C NPN TRANS
9.4.1 Moving parts TIP42C PNP TRANS
Move the parts around within the schematic editor so that : 3?322:33? they are

arranged as per the schematic below.

! A
VIN
LIN
w L
g N~ IC1A < co -
= + i P I~ M~ +
054 I, ' H ~ . ™, T
- +

1k

TR []
Iy 3 O 8 L A 10uF &
o — —
- T TDA2822 J_C1 Lout ¥Ta
[]x +| C5 %
bl M =] 0.1uF
eT- 100uF GND
GND
glls
e «
) i FaY
- LOUT-
GND
[T
T 3
3 + 5 IC1B ® =
x:{lj‘}—JIL SN Bs v
= 8 [&] 5 +

N-

| | Fay
.~ TDA2822 ROUT
G2
| ce 0.1uF
TOOuF

* A
_L ROUT-

GND

Xz

85

9.4.2 Wiring parts together

Select the net button from the toolbox.
Remember to left click on the very end of a component and
draw in a straight line either up, down, left or right.

Left click again to stop at a point and draw before drawing

in another direction. e—— |eft click at the
ends of the

component
< leads

Click at another component or net to finish the connection.

X

9.4.3 ERC
The ERC tests the schematic for electrical errors.

Errors such as pins overlapping, and components unconnected are very common.

The ERC gives a position on the circuit as to where the error is; often zooming in on that point and
moving components around will help identify the error.

You must correct all errors before going on.

9.4.4 Laying out the board
Open the board editor

Remember: once you have started to create a board always have both the board and schematic
open at the same time, never work on one without the other open or you will get horrible errors
which will require you to delete the .brd file and restart the board from scratch.

» + ¥+ + P o+Q °+0

7 20> &8 e ®e:eo
2 @ gees
o0 00 oie—oie —oie U000

86

9.4.5 Minimise airwire length

Move the components into
the highlighted area. Keep
the components in the lower
left corner near the origin
(cross).

Reduce the size of the
highlighted area you are
using for the components.
Then zoom to fit.

Progressively arrange the
components so that there is
the minimum number of
Crossovers.

As you place components
press the Ratsnest button
often to reorganize the
Airwires. Eventually your
picture will look like the one
here.

Good PCB design is more about placement of components than routing, so spending most of

your time (90%) doing this step is crucial to success.

You want to make track lengths as short as possible

9.4.6 Hiding layersto help you see the airwire paths clearly

The DISPLAY button in the TOOLBOX is used to turn on and off different sets of screen information.
Turn off the names, and values while you are placing components. This will keep the screen easier to
read. Turn off the layer by selecting the display button and in the popup window pressing the number of

the layer you no longer want to see.
Turn off thames and tvalues now

87

9.4.7 Routing Tracks

Now is the time to replace the airwires with actual PCB tracks. Tracks need to connect all the correct
pads of the components together without connecting together other pads or tracks. This means that
tracks cannot go over the top of one another!

Select the ROUTE button and on the Toolbar make sure the Bottom layer is selected (blue) and that the
track width is 0.04. Left click on a component. Note that around your circuit all of the pads on the same
net will be highlighted.

Route the track by moving the mouse and left clicking on corner points for your track as you go. YOU
ONLY WANT TO CONNECT THE PADS ON THE SAME NET, DON'T CONNECT ANY OTHERS OR
YOUR CIRCUIT WILL NOT WORK.
Track layout Rules

1. Route tracks so that no track touches the leg of a component that it is not connected to by

an airwire
2. No track may touch another track that it is not connected to by an airwire
3. Tracks may go underneath the body of a component as long as they meet the above rules

After track routing add holes for mounting the board and any for looping wires through to act as
stress relief DO NOT ROUTE TRACKS BETWEEN THE PINS OF IC'S

9.4.8 Make the Negative Printout

(Remember the text on the PCB appears

SEEsadT
gmAcIbuA reversed)
=10
<S8SAAT

O 4:*n‘:_oz'3uF'
@ elyal) SHAY

* Open TDA2822verA.brd in Eagle

* From within the Eagle Board Editor start the | e S
CAM Processor B px v D

* select device as PS_INVERTED

s lval) 8688S

*Scale=1 :'_" W w,-,-:- ~
H Secton *] Moo 40 bXeepot

Jfle=ps . O | B2

* make sure fill pads is NOT selected this (] st o 3 et

\2p [¥] pes. Coard
4 poe- S 45 Holes

46 My

47 Messure
= - = 48 Document
scale i | Filpack 49 Refererce
S0 cef

makes small drill holes in the acetate which we
use to line up the drill with when drilling
* for layers select only 16,17,18 and 20,

Qevice PS_IWERTED ~

* make sure ALL other layers are NOT : ' 52 boom
selected. e P 86 wert
. X Onch Haght 1 linch
* Select process job | PRt

Open the TDA2822verA.ps file with Ghostview.
Double check that you can see the drill holes - 7
and then print it on to an OHT (transparency) process b | (process secton) [vesowoon | | ads | [ow

7o SoAnps | TDAZEZZsten 1 0. Ee d

o13]

9.5 Extra PCB making information

Grids

An important point to note is that the rulers and grids in Eagle are
generally in inches, this is because IC’s (such as the TDA2822) and [
other components have legs that are 0.1 inch between centres.

il

The current grid spacing is shown in the layout window most likely as

0,05 inch, if you want to see the actual grid, type grid on. For all

layouts we will use inches because that is the spacing of component

legs. Although when we specify a drill size wew ill use mm. Also T
never change the grid size, we will use 0.05 inch (50 thou). If you 01
want ot start squeezing things together — well don’t especially in your Inch
first few boards. it just makes the boards hard to etch and to solder.

Track width, copper thickness and current ratings

The board we buy is 20z (ounces), that means the amount of copper in one square foot of pcb is 20z,
That equals 0.0028 inches thick (2.8 thou — or just to confuse you PCB people often say 2.8mils). We
generally use 0.032 or 0.04 inch tracks on our boards in the classroom as they print and etch easily.

Even though tracks are made of copper and are a conductor, they are not perfect conductors and have
some resistance. This means that as charges move through the circuit the tracks get warm! The thinner
they are the higher the resistance and the warmer they get. If they get too hot they will burn up (and
smoke and possibly flames will appear).

A track of 0.04 inches width on the boards we use is about 0.006 ohms per inch will when carrying a
current of 4 amps will rise in temperature by around 10 degress which is ok. Our circuits don’t in general
need to carry 4 amps but its good to know this sort of thing. If you want to carry 10amps then go to
about 0.15 inch to be on the safe side!

Grounding

The ground connection is a circuit is the path for current back to the power supply, and the bigger and
the more of it we can make the better. We almost always make single sided pcbs so its a good idea to
put a ground right around the whole circuit board. There is an example of using polygon fill later on.

Forwards and Backwards

You must always have your schematic and layout open at the same time, if you have only one open
then any changes you make to one will not appear on the other. Then when you open them both Eagle
will complain and say that no forward-backward annotation will happen, now you are stuffed, it can
actually take longer to fix annotation problems tha starting all over again!

89

9.6 Component Forming Codes of Practice

—
-
1 1N
— -

Component leads are bent at least 2 mm away
from the component body, not bent close to the
body as this would stress the component and
reduce its life expectancy.

The component is placed firmly against the PCB.
This helps mechanical rigidity. (Components
would only be put up off the board if during
normal operation they would become warm
enough to damage the PCB itself)

If there is not enough room to lay the component
flat on the PCB then one leg may be bent over.

Under the pcb the component leads are bent
over slightly to hold the component in place
during soldering, they are not bent flat as then it
would be difficult to remove the component later
on.

Component leads are cut off after soldering; during soldering they act as a heat sink and keep

excess heat away from the component.

90

9.7 TDA2811 wiring diagram

All the wires loop through the
holes on the pcb, this stops
them breaking off the pcbh.

Make the wiring as neat as possible on the speaker connector

Solder it and get your soldering checked by the teacher Cover it with heatshrink, make sure the heatshrink
covers the wire and connector to protect the wire
from being pulled off

91

w N

9.8 SKETCHUP Quick Start Tutorial
From the menu select Window then Model Info and then i ®

select units, set up units as shown in this picture. Lergth Urnds

otgonerts

Fomal' [Decnad v| Moo =

Close this dialog box

Select the Rectangle tool in the toolbox (the set of tools on
the left hand side of the SketchUp window).

Click the nouse mouse pointer once on the origin and move it | |
right and upwards to start drawing a rectangle (do not click Arcfe Ul

again to stop drawing). Sreve| 99

Frecanoey |0 Do -

¥ Enabie langh snaoping {1 0mm

¥ Duopla wet lomy

¥ Enable angle snagpng | 150 -

5. In the bottom right hand
corner the dimensions of the
rectangle are shown; without
clicking there just type on the keyboard 200,100 and press Enter. The
rectangle will take on the dimensions you have typed in.

6. Your rectangle may well have disappeared because you are
zoomed out too much. From the tool box, identify the zoom extents
tool by hovering the mouse pointer over the buttons. Get use to the other zoom controls now and
zoom out a little.

From the menu select Window then Display Settings and change the Edge Color to By Axis (now
you can see whether what you are drawing ;

lines up with the axis you want it in). |
Under the menu is the tool bar identify the Iso
view button (isometric) and click it.

In the toolbox identify the Push/Pull tool and
then move the mouse pointer over the
rectangle, the rectangles surface will change in
appearance. Click once on the surface and
drag the rectangle upwards along the blue axis
into a 3D box; type 75 as a dimension and
press enter. Your box should be aligned to the
three axes and the edge colours should match
the axes colours.

10. Select the Tape Measure from the toolbox and

click on the upper front right corner and then move along the green
axis, type 30 and press enter, a grey construction point will appear.
From the same corner place another construction point 50mm down

the blue axis. -
11.From the toolbox choose the line : f

tool and draw a line between the guus Construction

two construction points, notice = i

has a different colour). o
12.Using the push pull tool push the \

13.From the toobox select the Dimension tool, add

points
how the cursor snaps to the
construction points as it nears
them (it also snaps to edges,
ends and centre points and each

new surface completely away to B
change your box to one with a
sloping front panel.

dimension lines by hovering the mouse over an
edge line (it will change to yellow), then click on the
line and drag the new dimension away from the
edge to place it.

92

9.9 Creating reusable components in SketchUp

Creating a component that you can reuse in other SketchUp drawings is simple if you follow a few simple steps

1.

larger than the breadboard to start with

(e.g. 300 x 300mm).
2.
breadboard component (e.g. a
rectangle 165 x 55 mm).

3.
4,
mark out the two points for the groove
in the centre of the breadboard

5. Then draw two parallel lines.
6. Extrude downwards 3 mm to
make the slot

7. Select all of the entities you

want to include in the component.
Then right click and in the drop down
menu select Make Component.

The Create Component dialog
box opens:

Name. Type a name for the
component.

Description. Optionally enter a
description of the component.

Glue to. Select a glue-to
alignment. The most flexible choice for
components you want to glue is "Any."

8.

o

o

O

O

Create the base for the

Extrude the breadboard 10mm.
Use the TapeMeasure button to

Cut opening. Select this if you

You need a large surface on which to create the component. For
example, if we are to make a breadboard, create a flat horizontal surface

|
]

i
[

want the component to cut an openlng in the face to which it is being

glued. For example, you would

typically use this option for a el
window. Name:
9. You need to view the Description:

components in your model. From

the menu select Window then click | aigamen:

Components. In the Components
window click the “In Model” button
(little house),

10.
right click the component and save
it somewhere you can find it again.

I BreadboardComp

Glue to: IAnv 'I Set Component Axes I

15¢
]
i

)

¥ cutopening
I™ Always Face camera
I™ (shadows face sun

In the components window

¥ Replace selection with component

Cancel

I Create I

Adding a component to another drawing:

1.

2.
3.
4

In the new SketchUp drawing
From the menu choose File then Import

Select the component you want to import
It should ‘glue’ onto faces of your model.

93

Select |Edit | Statistics |

P B

| by Uskmown
No Desciption

10 Introduction to microcontroller electronics

Microcontrollers are a fundamental electronic building block used for many solutions to needs
throughout industry, commerce and everyday life.

They are found inside aircraft instruments.

They are used extensively within cellular phones, modern
cars,

94

10.1 What is a computer?

A computer system that we are familiar with includes components such as DVD writers, hard drives, a
motherboard which has a CPU, RAM and other things on it, and a bunch of 1/0O devices connected to it.

long term data and short term data and
program storage program storage IO devices

Hard Drive mouse

keyboard

motherboard

Program code
uses maths to work on or

make decisions about data
{binary numbers)

10.2 What does a computer system do?
A computer carries out simple maths on data.

Data is information which is input from 1/O devices and stored inside the computers memory
devices in the form of binary numbers.

But don’t computers do complex things? Yes, but as you will learn, the art of computer science is to
break big complex tasks down into a lot of simple tasks.

95

10.3 What exactly is a microcontroller?

A microcontroller has the same things in it that bigger computers have, data and program storage, 1/0
control circuits and a CPU (cental processing unit) however it is inside a single IC package.

CPU FLASH
RAM
EEPROM
Input /
Output
control

A Microcontroller

The purpose of the parts of a microcontroller are exactly the same as in a larger computer. Data and
programs are stored in memory and a CPU carries out simple maths on the data.

short term
data storage

long term
data storage
long term
program storage
IO devices
LEDS
Switches
Keypads

Program code
uses maths to work on or

make decisions about data
(binary numbers)

However don't think that because a microcontroller is smaller than a PC that it is the same comparison
as between a real car and a toy car. The microcontroller is capable of carrying out millions of
instructions every second. And there are billions of these controllers out there in the world doing just
that. You will find them inside cars, stereos, calculators, remote controls, airplanes, radios, microwaves,

washing machines, industrial equipment and so on.

96

104 What does a microcontroller system do?
Microcontroller System
Light &« D_ ||<| ¢<— Direction
Distance . ETE— =524 Sound
Input Output
Motion «—» | Circuits Circuits J<—— Force
A
Radio A .
Signals — I:I% §Z <—— Heat

As with any electronic circuit the microcontroller circuit is a system with three parts,: INPUT, PROCESS
(or CONTROL) and OUTPUT. Input circuits convert physical world properties to electrical signals
(current/ voltage) which are processed and converted back to physical properties (heat, light etc)

O

Microcontroller Hardware

~

I
00—

Input
Circuits

mory
Program memory

E2H

Output
Circuits

- L &

In a microcontroller there is a second conversion, where the electrical properties of voltage and current
are changed to data and stored in memory. The programmer writes programs

(program code) which are made up of input instructions (convert electrical signals from input circuits to
data), control instructions (which work on data) and output instructions (convert data to electrical

signals)

Microcontroller Hardware

Program memory

Process Code

1
00—

E2H

Output
Circuits

A
7

1. Input circuits convert light, heat, sound etc to voltages and currents.

2. Input instructions convert the electronic signals to data (numbers) and store them in its data
memory (RAM) — A variable is the name for a RAM location.

3. The processor runs a program which carries out mathematical operations on data or makes
decisions about the data

4. The output code converts the data (numbers) to electronic signals (voltage and current).

5. Output circuits convert electronic signals to light, heat, sound etc

Input
Circuits

Variables (Numbers)
ata Memo

In a microcontroller circuit that creates light patterns based upon sounds the control process is

SOUND to ELECTRICITY to DATA
Processing of the DATA (numbers)
DATA to ELECTRICITY to LIGHT

97

10.5 What you do when learning to program

1. Develop an understanding of what a computer is and build a correct mental model for one
a. Input and output conversion at the voltage level
b. Conversion of input and output voltages into data
c. Processing and manipulating data which is stored in variables
2. Get to know about the hardware you are using
Get a copy of the datasheet
Learn about the power supply required
Learn how to configure pins as either input or output
Learn how to interface common |/O circuits: LED’s, Switches, Piezo, LDR...
Find out about the different types of memory and amount of each
Find out about the speed of processing
3. Get to know the language and the IDE you are using
Learn to access the helpfile (e.g. highlight a word and press F1)
The language has syntax (specific grammar/word rules) you must use correctly
The IDE (Integrated Development Environment) has special commands and built in
functions you must know and use: F7, F4, $crystal, $redfile, config, alias, const, port, pin
Learn common /O functions: set, reset, locate, LCD, GetADC
Understand the limitations of and use variables: byte, word, long, single, double
Use constants instead of numbers in the code (e.g. waitms timedelay)
Get to know the control functions: Do-Loop (Until), For-Next, While-Wend, If-Then (Else)
Get to know about text and math functions (read help file, write a few simple programs
using the simulator)
4. Develop Algorithms (written plans for the process the program must carry out)
a. Have a goal in mind for the program — use specifications and write a simple brief
b. Plan your I/O by drawing a system block diagram
c. Determine variables and constants required in the program
d. Determine the state of all the I1/O when the program begins
e. Write the algorithm — Identify, order and describe the major processes the micro must do.
5. Draw Flowcharts or Statecharts (visual diagram for the process the program must carry out)
a. ldentify the blocks/states that will be used
b. Use arrows to link the blocks and visualise control processes and program flow
6. Develop code from the flowcharts
The outer looping line is replaced with a do-loop
Backwards loops are replaced with do-loop do-loop-until, for-next, while-wend
Forward loops are generally replaced with If-Then-EndIf
Replace the blocks with actual commands
Layout the code with correct indentations(tabs) to improve readability
Learn to comment code so that it explains what is happening (not just describes)
Use subroutines to organise complex code so that logic code is separate from I/O code
Trial different ways of solving the problem and keep records of you experiments

OIS N i

oo

S@ oo

S@moo0oTy

This is not a step by step process; as when you get to know about one area you get to know about
others at the same time. The key to gaining depth in your knowledge and understanding comes from
LOTS OF EXPERIMENTATION! That means making mistakes and above all having fun, you need to
know that good decisions come from experience and experience comes from bad decisions!!! So
experimenting is ok.

In your electronics courses at school the aim is not to make you an expert in all the above (expertise
comes after about 10 years working in an area), the aim is to introduce you to microcontroller
electronics and programming, and to understand some of what is happening in the world around you
and to feel able to see that you can control it and not have it control you.

98

10.6 AVR microcontroller hardware

A microcontroller is a general purpose electronic circuit; it is a full computer inside a single integrated
circuit (IC or chip). Often ICs have fixed functions e.g. the TDA2822M amplifier or LM358 opamp, they
only do one job and their input and output pins have fixed roles, so you have limited control over what
they do, and therefore limited control over how to connect them.
With a microcontroller however you are in control, you decide:

e what the function of the IC is

e what most of the pins are used for (inputs or outputs)

e and what external input/output devices these pins are connected to.

If you want an egg timer, a car alarm, an infrared remote control or whatever, it can all be done with a
microcontroller.

A commercial range of microcontrollers called ‘AVR'’ is available from ATMEL (www.atmel.com). You
could start with the ATTiny461, it has 4kbytes of Flash for program storage, 128 bytes of Ram and 128
bytes of EEPROM for long term data storage. Or you could start with the ATMega48, it has 4kbytes of
Flash, 512 bytes of RAM and 256 bytes of EEPROM.

ATTiny461 ATMega48

PCINTIARESET) PCE]
PCINT1GRXD) PDO [} 2

00
> 3 3 P > >
T E-EE-

Important pins:
e VCC & GND are dedicated for power, VCC is positive voltage and GND is negative
e AVCC and AREF are special pins for measuring analog voltages (connect to VCC).
e |/O ports are a group of 8 1/0 pins which can be controlled together
e MOSI, MISO, SCK and RESET are pins used to upload the programs.
(You cannot use RESET as an I/O pin, but MOSI, MISO, SCK can be used with care)

10.7 Power supplies

Most microcontrollers work off low voltages from 4.5V to 5.5V, so yours can be run off batteries or a dc
power pack, voltages in excess of these will destroy the micro. Check the datasheet to see what the
range is for your micro, the ATTINY26-16PI will work from 4.5 to 5.5V, the ATMEGA48-10PU will work
from 2.7V to 5.5V.

99

10.8 BASCOM and AVR assignment

Learning goal:
Students should become independent learners able to find support to help their own learning

The AVR is a microcontroller from which manufacturer

The URL for their website is:

Download the specific datasheet for our microcontroller (the summary version not the full version) and
print the first 2 pages and put them in your journal.

The Programmable Memory size is The SRAM size is The EEPROM size is

The number of I/O lines is and they are arranged in ports

BASCOM-AVR is a compiler from

The URL for their website is:

Download the latest version of the BASCOM AVR demo and install it on your PC.

There are a number of application notes on the website for the AVR
Describe what AN128 is about

There are a number of other great resource websites for the AVR and BASCOM
Find 3 websites on the internet that have useful resource information on BASCOM
List the websites URL and what you found there

100

The ATTiny26 datasheet is full of useful information here is what some of it means

The speed of the micro -

Program Features or number of operations
:::}‘ig]ﬂ:g use the * High-performence, Low-power AVE™ &-bit Microcontroller Pel SE'?:GIHI IS set h]i'_r qa
: ' ¢ RISC Architecture clock signal - we will
Aema version o - 118 Powerful instructions — Most Single Clock Cyele Execution . .
Bascom which _ 32 x 8 General Purpose Working Registers use-_ the internal clock
| 1k limit - Fully Static Operation which has heen factory
1as a K i, - |Up to 18 MIPS Throughput &t 16 MHz . =
this chip has ' Dete and Non-volstile Frogram Memory set at 1MHz, ."“"PS'_1
'IZI'I'I|}|’ 2K H‘% — 2K Bytes of In-System Frogremmeble Frogream Memory Flash million opeartions pelr
Endurence: 10,000 Write/Erese Cycles second.
- 128 Bytes of In-System Frogrammable EE FROM
Endurence: 100,000 Write/Eress Cycles
- 128 Bytes Internal SRAM
— Frogramming Lock for Flesh Frogrem snd EEFROM Dets Securi
* Feripheral Festuras \ i -
EEPROM is non - &-bit Timer/Counter with Separete Prescaler Rﬂm I.S II'E!I'I'I|]:'DI. ary
volatile data - B-bit High-speed Timer with Separate Frescaler o1 """":"I‘-“"_'E _'[I'-“ﬂ
.. 2 High Frequency FWM Outputs with Separete Output Compare Registers storaqe {|t is lost
storaie {II 15 not Non-overlepping Inverted FWHM Cutput Fins I #l)
lost when the - Universal Serisl Interface with Start Condition Detector when the powel
_ - 10-bitADC goes off)
power qoes ":"ﬂ} 11 Single Ended Channels

& Differential ADC Channels
T Differential ADC Channel Pairs with Frogrammable Gain (1x, 20x)
— On-chip Anglog Comparator
— External Interrupt
— Pin Chenge Imterrupton 11 Fine
— Frogrammable Wetchdog Timer with Separate On-chip Gecillator
* Special Microcontroller Festures
- Low Fower |dle, Nolse Reduction, and Power-down Modes
— Power-on Resst and Frogrammable Brown-out Detection
— Externel and Internal Interrupt Sources
- In-System Frogrammable vie 5F1 Fort
— Imternal Calibreted RC Cecillator
* ¥ and Feckeges
[= #0-lead FDIFSDIC: 16 Frogremmeble 1/0 Lines |

- 32-lesd GFNMALF: 16 progreammaeble /C Lines "'-,t

* Opersting Voltag o .
s sy hﬁ.rﬂwm_ We are using the ATtiny26-16PU,

the 16 is the speed grade
not the number of 10 pins

P means dip package
{dual in line plastic)

* Speed Grades
— 0 - 8 MHz for ATtiny28L
[- T - 18 WMHz for ATtinyE &

* Power Consumption at 1 MHz, 3V and
- &ctive 16 MHz, 5V and 25°C: Typ 15
— Active 1 MHz, 3V and 25°C: 0.70 maA
- ldle Mode 1 MHz, 3V and 25°C 0.18 m&
— Power-down Mode: < 1 pa

“Cfor ATtiny26L

we use the 26 not the 26L
note the voltage range

get to know the pin although there are 16
numbering its the same BDIPISOIC I/0 lines we cannot
for all dip package I1Cs use PBT beacuse we
(MOSIDVSDATTTE) B ,1' 20 |3 PAG (ADCO) need the RESET pin for
in 1 all [MISCY Ta) PE1]2 18 [PA1 (ADCH) programming the IC
pin 1 generally &%/ 8CLOTTE) PE2] 2 18| PAz (ADCZ)
has a dot next to it [OeE) PR3 C] 4 17 FA3 [AREF)
oo [s 161 aND
) GND |5 15] AVCE
there are 16 10 [ADCT/XTALY) PB4] 7 14[T] PA4 (ADCS)
lines hut we can |ADCE/XTALZ) FES]2 13 PAS (ADT4)
. (ADCEINTITD) FES] 8 12 [FAs [ADCS/ AIND)
only use 15 as PB7 AP=®INT0 T :
]Hr . ' (ADC10/RESET) F 10 11 FAT [ADGE/AINT)
or reset is needed

for programming

101

10.9 Programming words you need to be able to use correctly
Find definitions for them

computer

microcontroller

hardware

software

memory

RAM

variable

data

byte

word

program

algorithm

flowchart

BASIC

port

code

upload

compile

command

repetition

do-loop

for-next

subroutine

gosub

return

102

11 Getting started with AVR Programming

Microcontrollers, such as the ATMEL AVR, are controlled by software and they can do nothing until they
have a program inside them.

The AVR programs are written on a PC using BASCOM-AVR.
This software is a type of computer program called a compiler, it comes from www.mcselec.com. It
comes in a freeware version so students may download it and use it at home.

The AVR is connected to the PC with a 5 wire cable.

11.1 Breadboard

Often in electronics some experimentation is required to prototype (trial) specific circuits. A prototype
circuit is needed before a PCB is designed for the final circuit.

A breadboard can be used to prototype the circuit. It has holes into which components can be inserted
and has electrical connections between the holes as per the diagram below.

Using a breadboard means no soldering and a circuit can be constructed quickly and modified easily
before a final solution is decided upon.

All these holes are connected together
u

Here are all of the connections on the board

These 5 holes are connected, but
they are separate to the next 5 holes

103

11.2 Breadboard+Prototyping board circuit
This prototyping board along with a breadboard works well for trialling circuits.

x H]
X B
X 8
—A
* 2]
BSFE— X B
. - 7_)(\/»_;
A
R3¢ A
EE—A
Al | 22 ¢ —_
"Toe les o pA2 fE —X A
|1 |@ ‘ |
)(—0 ° +

sn.02.269b1dass

Wil

Cr_m

{

e8

104

a @
99 °
163 .

1 ‘f o

[_“ : rouo

0000000000 Oll“
AUR-ATTINY ‘_“’_,7,

momm

oo

w0
o

- mENRT

" 5 R R aw
- " RN

On this breadboard a single LED
has been setup along with the
ground wire to complete the circuit.

105

11.3 Alternative ATTiny461 breadboard circuit

+

X2
a

il

[ua]
T
¥ SUITCH
| =
Qi T, Complete the
Ziﬁ[]% 7 1. layout design
r —
[]*“ for the above
SU1 o= circuit on the
5 c1 breadboard
4 5 .
— 2 uce
3 7 [| diagram.
f 18l arri0/RESETSPES .
¢HDCS/INTE/ TEYPES
(BOCE/XTHLPES | It helps to put
CHOCZ/XTHLOPES | a label on top
cwocimees [3
g ¢SCK/SCL/OCIEPEZ of the IC with
¢MIS0./00/0C1AIPEL .
1 Mos1/DL/sDA/OCLAIPED the pin _
" connections
CHOCE SATNAPAT .
(ADCS/AINDPAE |22 on it so that
wocHpas ou can easil
o1 o - AOCTPA4 i—; youc Sily
- = (AREFPA3 [identify which
00 o4 o cocopsz K18 v . .
: : 5| sho @ocDPAL 1D ¥ pin is which.
GND cocmpaE (28
TINYZaP
('\l[]_\.z
[—

o <

—-— I @m moo o >

o

106

11.4 Alternative ATMega48 breadboard circuit

ELJ
A
Faay
Ut .
©
—
i
—A| =
[]i e N
s N
MEGARE-P
L1 posc/RESET PCBADCE)Y |22
pricADCdy |22
AGHD PCoADCTY |22
L | wRer pracaDcdy |25
2 1 aucc PrC4¢ADC4/80A) 22
PCRCADCEFSCLy 22
2 | PR&CKTALL/TOSCL)
19 | PErexTAL2/TOSCZY PDBCRXD) %
SLIITCH POLCTHDN N
POZCINTEY |t
1'_!_'3 g 1 G POZCINT L) %
agla) =
gl Lz L3 POSCAINGY |2
—— AV pO7eAmNLY |12
Yo loa | @ T
PEECICP) %
PEACOCAAY |12
PE2(SS/0C1ED % SSUE
PE3CMOSI/OC2) |12 -
[] PEACHISD) |5 -
i PES(SCK) -
1
GHO IC1
A4
s
EHO
v
0
A 3 d 3 M N M N N N X
=5 - U U B A B B B A
C N N Crassasiasiasienisskanieenieetee——— N W W W W W W W W
D Cmzms=emmmy ™ M N N N N M N N N N N N N N N N N N N
E X |— . T — I — [— [~ | M N N N N
F m
G H
H &
| W
J N
1
0 L R008 :

Breadboard layout using VirtualBreadboard from MFOS

107

11.5 Alternative ATMega breadboard circuit

HL)
» > » .4
PADL
$ 0 0
ﬂ - =HE ol
e AERRAE
| =
E | =) £ =) L
[
[pSZ.N
@l o
IC1
33
RESET (ADCTIPA? 53
N
(ADCEPAG 2= 0o
KTALZ (ADCHRAE 2= —
= (ADCDPAS 22 -
s XTALL (ADC2PA2 22 :
(FOCLPAL ==
I AREF TAOCEPAR ——
ALCC o
AGND CSCKIPB? =
LMIS0MPES =
LICC CHOSIMPESD =
GND (SEIPB4 |-
CAIMLAIMT 22PES N
CHIMASTOCHIPEZ =
c3 (T1PBL |
— LTAAHCEIPER |——
]
a.1 CTOSCZ2PCF %
LTOSC1PCEe —=
27
PCE b——
26
PC4 =g
=5
PCE b——
=4
PCZ R
S0a»PCL oo
CSCLXPCE b—
COC2XP0F %
CICPXPOS 15
TOCiaxPOD ﬁ
TOCAEXPO4 ?
CIMTAXPOS 'Y
(INT®XPDZ [—ee E')L
cTHD>POL ? o
cRYDXPOE f——
ATMEGH
—
=l
gy
t K
PADZ

108

11.6 AVR circuit description

U 3 .
ALl 1
B4
) ATHMEGA
&
-
L o Yswitch

The 5 pin header (connector) is for programming the AVR from a PC.
The 0.1uF capacitor between 0V and VCC is to reduce any variations in power supply voltage.
The 10k is a pull-up resistor for the reset pin, a low (connection to ground) on this pin will halt the
microcontroller and when it is released(pulled high by the resistor) the program will run from the
beginning again.

e The 1N4148 is a protection diode that will stop high voltages possibly damaging the

microcontroller (it is only required on the reset pin because all the other microcontroller pins have
built in protection diodes).

e The 0.1uF capacitor and 100R resistor are the power supply for the ADC circuit

109

11.7 Output Circuit - LED

There is an LED with a 1k ‘current limit’ resistor. An LED needs only 2V to operate so if
connected without a resistor in series too much current would flow and destroy the LED. With 2V
across the LED, there will be 3V across the resistor, and the current will be limited to (V/R)
3/1000 = 3mA. This is enough current to make the LED clearly visible but not too much for the
micro to provide.

Microcontroller System DEVELOPING QUTPUT CIRCUITS

D_ Microcontroller Hardware —[K]
I Program memory: § E E |_I
00— Process Code

Input Output

Circuits Circuits

Variables {(Numbers) 2
D% ata Memo i‘z

11.8 AVR programming cable

A five wire cable is needed to connect the AVR circuit to a PC.
It connects the PC’s parallel port to the AVR circuit. One end has a DB25M connector on it (as in this
picture)

/

dbbdboeeooee

\'\f

i

EVERY PAIR OF WIRES IS CONNECTE

YT

20
‘.

The resistors can he any value from 100 to 470R

The other end has a 10 way IDC socket attached to it (as in this picture). These were used because
they are readily available even though only 5 conductors are required the 10 wires are connected to the
DB25 in 5 pairs. Put heatshrink over the resistor connections to stop them shorting together.

110

12 Getting started with Bascom & AVR

BASCOM-AVR is four programs in one package, it is known as an IDE (integrated development
environment); it includes the Program Editor, the Compiler, the Programmer and the Simulator all
together.

5 BASCOM-AVR IDE - [noname2]

%% File Edt Program Tools Options MWindow Help - 8 %
DleldEa|r] o |w[n]Es a v sv=e B #
Sub X Label X
— :
v
4 | ¥
1: 36 Modified Insert

After installing the program there are some set-up options that you might want to change.

If its not already setup from the menu select.

OPTIONS — PROGRAMMER and select Sample Electronics programmer. Choose the parallel tab
and select LPT-address of 378 for LPT1 (if you only have 1 parallel port on the computer choose this),
also select autoflash.

The following are not absolutely necessary but will help you get better printouts.

OPTIONS - PRINTER change the margins to 15.00 10.00 10.00 10.00

OPTIONS — ENVIRONMENT - EDITOR change the Comment Position to 040.

12.1 The compiler

The command to start the compiler is F7 or the black IC picture in the toolbar.

This will change your high-level BASIC program into low-level machine code.

If your program is in error then a compilation will not complete and an error box will appear. Double
click on the error to get to the line which has the problem.

12.2 The programmer

When you have successfully compiled a program pressing F4 or the green IC picture in the toolbar
starts the programmer. If no microcontroller is connected an error will pop up. If the IC s connected
then the BASCOM completes the programming process and automatically resets your microcontroller to
start execution of your program.

111

12.3 An introduction to flowcharts

Flowcharts are an incredibly important planning tool in use not just by software designers but by many
professionals who communicate sequences and actions for systems of all types.

Flowchart Symbols Daily Routine FlowChart

“l" wake
(Start) C Stop)

‘J? ¥,
have shower

!

Jy input breakfast

hoolday?

J? walk to gchool

This is a process step, where procedures
are carried out

True

This is an Input or Output process step

where 4
End D=
True i
27 Y,
False do jobs
Vi
eekirlg_.?_,,.- True

Falze '@. True
kY, W

Here we test to see if something is true or play basketbsll play P53
false.

112

12.4 Bascom output commands

1L

Input

Circuits

Microcontroller System OUTPUT CODE EXAMPLE

D_ Microcontroller Hardware
Program memory
| 524

Process Code

Output
Circuits

Variables (Numbers) A
ata Memo i’z

Type the code below

FlashlLEDv1.bas
into BASCOM, save it, then F7 to compile and then F4 to program

(T sen)
4

A

Loop

(T)

‘ Flash1LEDv1.bas

Compiler Setup (this tell Bascom things about our
micro)

Carmiller sl $regfile = "attiny46l.dat" ‘'bascom must know the
HadwamseQ& micro
~ | $crystal = 1000000 'bascom must know its speed
Vo e e e e
Do ' Hardware Setups
\ ' (these tell bascom how to setup our micro)
\ Config Porta = Output 'LEDs on port
LED O ' Declare Constants
' (these tell bascom names we will use for numbers
' in our program, this makes it easy
\wiait 150mS 'to change things quickly later)
Const Flashdelay = 150 ‘ preset how long a wait will be
Vo e
&Do ‘start of a loop
" Porta = &B10000000 ‘LED 7 on

Waitms Flashdelay ‘wait a preset time
Porta = &B00000000 ‘all LEDs off

Wait 150mS % Waitms Flashdelay ‘wait a preset time

Loop ‘return to do and start again
End

YOU NEED TO INDENT CODE BETWEEN
ALL CONTROL STRUCTURES SUCH AS
WITH THIS DO-LOORP, it really helps make
your code more readable and easier to debug!
Use the TAB key in Bascom to do it.

113

This is a typical first program to test your hardware
Every line of the code is important.

$regfile="attiny461.dat”, Bascom needs to know which micro is being used as each micro has different
features; this is the name of a file in the Bascom program folder with every detail about the ATTiny461.

$crystal=1000000, This line tells Bascom the speed at which our microcontroller is executing operations
1 million per second)so that Bascom can calculate delays such as waitms properly

Config porta=output, each 1/0O must be configured to be either an input or output; (it cannot be both at
once)

Const Flashdelay=150, ‘constants’ are used in a program, it is easier to remember names and it is
useful to keep them all together in one place in the program (this is a code of practice).

DO - LOOP statements enclose code which is to repeat forever; when programming it is important to
indent (tab) code within loops; this makes your code easier to follow (this is a code of practice).

Waitms flashdelay wait a bit, a microcontroller carries out operations sequentially, so if there is no pause
between turning an LED on and turning it off the led will not be seen flashing

Output Code

Porta = &B10000000 make porta.7 high (which will turn on the LED connected to that port) and
make all the other 7 output pins on that port low

Porta = 0 make all 8 pins on porta low (which will turn off any LEDs connected to that port)

12.5 Introducing ‘bugs’ to see what happens

Playing around will develop your understanding, carry out AT LEAST these to see what happens

e What happens if Const Flashdelay is changed to 1500, 15, 150007
What happens if you change Const Flashdelay to Const faslhdelay? (deliberate spelling error)
What happens if $crystal = 10000000 or 100000 instead of 1000000?
What happens if your change the $regdfile to "attin26.dat”? (deliberate spelling eror)
What happens if one of the waitms flashdelay statements is deleted (look closely at the LED)?
What happens when the two waitms flashdelay statements are deleted (look closely at the LED)?

114

In the code throughout this book different AVR microcontrollers are referred to in different

places.

So take special note of the $regfile and $crystal commands used and make sure they match the

micro you are using. Note that the ATTiny461 and ATMega48 both run by default at
1,000,000MHz while the ATMega8535 runs at 8,000,000 MHz.

You will also have to make changes to the ports used in the program: the ATTiny461 has ports A

& B, the ATMega48 has B, C & D, the Amega8535 ahd ports A, B, C & D.

Getting started code for the ATMega48

The code for the ATmega48 is similar to the ATTiny461; the code changes are underlined below

Start

4

Caompiler zetup
Hardware getup

YWait 150mS

¥
¥
(End

./

'Flashlled.bas for the ATMEGA48
'‘B.Collis June 1009

$regfile = "m48def.dat" ' bascom needs to know our micro
$crystal = 1000000 " bascom needs to know how fast it is
going
Config Portb = Output 'make these 8 micro pins outputs
Const Flashdelay = 100 ' preset how long a wait will be
Do

Portb = &B10000000 'LED portb.7 on

Waitms Flashdelay 'wait a preset time

Portb = 0 'LED off

Waitms Flashdelay 'wait a preset time
Loop 'return to do and start again
End

115

12.7 Getting started code for the ATMega8535

The code for the ATmega8535 is similar to the ATTiny461; the code changes are underlined below

Start

4

Caompiler zetup
Hardware getup

wait 150mS
¥
¥
End)

'Flashlled.bas for the ATMEGA8535-16PI
'B.Collis June 1009

$regfile = "m8535.dat" ' bascom needs to know our micro
$crystal = 8000000 " bascom needs to know how fast it is
going
Config Portd = Output 'make these 8 micro pins outputs
Const Flashdelay = 100 ' preset how long a wait will be
Do

Portd = &B10000000 'LED portd.7 on

Waitms Flashdelay 'wait a preset time

Portd = 0 'LED off

Waitms Flashdelay 'wait a preset time
Loop 'return to do and start again
End

Note the change to $regfile and $crystal
(If the timing of the flashing is wrong then try $crystal=1000000 (as AVRs often come setup at

1MHz not 8 MHz)

116

12.8 Microcontroller ports: write a Knightrider program using LED’s

Microcontroller System OUTPUT CODE EXAMPLE
D_ Microcontroller Hardware —[lq
Learn about controlling ports. I Program memo v

gp . 00— Process Code aﬁl

Ports are groups of 8 I/0 pins. Input Input bt Output output
Circuits Code =TT Code Circuits

[:] * Variables (Numbers) i};

Memory

Microcontrollers have their pins arranged in
groups of 8 pins called PORTS

PortA has all 8 pins

PortB has 8 pins available for us to use

these are

portb.0 A’

portb.1 PB.0 O PA0 —@7

orth.2

portb.3 \> PB.1 PA1 — @7

o PB.2 ATTIY PA2 — @7

portb.6 PB.3 PA3 — @7
rtb.7 t

po (reset) vee GND

hcnw:sver portb.7 has GND AVCC

two functions

itis also the reset pin. ~ PB.4 PA4 —@)5

We need it as the 2

reset pin for PB.S Pas — @’

programming so we PB.6 PAs — @7

cannot use it as an p

IO pin reset Pa7 — @7

If we have 8 LEDs connected to portA we could control them individually using Set and reset

HOWEVER...

NN) porta=&B10000000
;igﬂﬂﬂﬂﬂ porta=&B01000000
[][]’[] O[] perta=2B00100000
[][]Q’[][][][] porta=&B00010000
DD??’ ()] porta=&B00001000

we are better to use the commands to control the whole
port at once

1 1
AT AD

117

You already have 1 LED
connected to portA.7 now
connect another 7 LEDs to
your microcontroller from
ports A.6 through to A.0
(each needs an individual
1k current limit resistor,
see the picture below) .
Write a program to flash all 8
LEDs in a repeating
sequence e.g.

'ledl, 2, 3,4,5,6,7,8.7,6,
54,3,2,1,2,3..

Use the following code to get
started

Porta=&B10000000
Waitms flashdelay
Porta=&B01000000
Waitms flashdelay
Porta=&B00100000
Waitms flashdelay

Using the above command
to control the whole port at
once is quicker and easier
for some applications than
individually controlling each
pin. You need to choose the
best way when thinking
about readability and
understandability.

99
.F; oo T v
49998880000 um

AUR-ATTINY ¢Proagr:

el

Bl A
eoooo00000 @

010

0z ! 0l S I

r ~ B - L] ~ -] MW ON M ONON NN

I % M M ® N M N N N N oM MM NN NN NN NNNN
Ho o o o & W o W o M W M oW oW oMo N N
O M M XN N X XN N E N N N N N N N HE HE X N X NN b
B B © € NN NENNENXNNE

p

a @ O 0w

B

0000000

a @ U 0O w

As a second exercise rewrite the program so that three LEDs turn on at as in the Knightrider car.
Sequence = LEDO, LEDO1, LEDO12, LED123, LED234, LED345, LED456, LED567, LED67, LED7,

LEDG67, LED567...
(O[] porta=&B10000000
Success criteria to work on in your program
1. Use spaces to help layout your program so it looks

”QQ[][][][] porta=&B11000000 good
(]

2. Comment your program with short clear descriptions
3. Use constants with good names e.g. waitms

4. Keep a record of BOTH the schematic and layout

”DD) D]:] porta=&B11100000 flashdelay not waitms 150

changes in your notebook

() porta=&801110000
Remember that using a constant is meeting good
T

programming codes of practice; it means that when you
H]”’DDD porta=&B00111000 \ant to change the speed all you have to do is change it

in one place in the program. If you didn’t use Const then
t you would have to go through your whole program and
AT AD change every waitms line individually.

Print your program out for your workbook

'"KnightRiderVl1.bas

'Leds arranged

'l 2 3 4 5 6 7 8 9 10 11 12'A.7 A.6 A.5
A.4 A.3 A.2 A.1 A.0 B.6 B.5 B.4 B.3(achieved level comments)

'this program shows how to write code which controls the whole port at
'once using the commands portA=&B0000000, rather than individual set and
‘reset commands which are very wasteful of code space when multiple LEDs
‘have to 'be contolled (excellence comment)

' Compiler Setup (these tell Bascom things about our micro)

Sregfile = "attiny46l.dat" 'bascom needs to know the micro
Scrystal = 1000000 'bascom needs to know its speed

' Hardware Setups (these tell bascom how to setup our micro)

' setup direction of all ports

Config Porta = Output 'LEDs on portA

Config Portb = Input 'switches on portB

' Hardware Aliases (these tell bascom names we will use for I/0 devices
' attached to the Micro, names are easier to remember that ports)
Config Porta = Output

Config Portb = Output

' Declare Constants (these tell bascom names we will use for numbers in
' our program, this makes it easy to change things quickly later)

! times have been made shorter for testing purposes

Const Delaytime = 25

Do
Porta = &B10000000 '1 =A.7
Waitms Delaytime
Porta = &B01000000 '2 =A.6

119

Waitms Delaytime

Porta = &B00100000 '3 =A.5
Waitms Delaytime
Porta = &B00010000 '4 =A.4
Waitms Delaytime
Porta = &B00001000 '5 =A.3
Waitms Delaytime
Porta = &B00000100 '6 =A.2
Waitms Delaytime
Porta = &B00000010 '7 =A.1
Waitms Delaytime
Porta = &B00000001 '8 =A.0

Waitms Delaytime

'the hand over between ports requires 2 lines one to turn off the

' the LED one port and the other to turn on the LED on the other port
(example of a merit level comment)

Porta = &B0000000O '8 off
Portb = &B01000000 '9 =B.6
Waitms Delaytime

Portb = &B00100000 '10 =B.5
Waitms Delaytime

Portb = &B00010000 '11 =B.4
Waitms Delaytime

Portb = &B00001000 '12 =B.3
Waitms Delaytime

Portb = &B00010000 '11 =B.4
Waitms Delaytime

Portb = &B00100000 '10 =B.5
Waitms Delaytime

Portb = &B01000000 '9 =B.6

Waitms Delaytime
'the hand over between ports requires 2 lines one to turn off the
' the LED one port and the other to turn on the LED on the other port

Portb = &B0000000O0O '9 off
Porta = &B00000001 '8 =A.0
Waitms Delaytime
Porta = &B00000010 '7 =A.1
Waitms Delaytime
Porta = &B00000100 '6 =A.2
Waitms Delaytime
Porta = &B00001000 '5 =A.3
Waitms Delaytime
Porta = &B00010000 '4 =A.4
Waitms Delaytime
Porta = &B00100000 '3 =A.5
Waitms Delaytime
Porta = &B01000000 '2 =A.6
Waitms Delaytime

Loop

End

120

12.9 Commenting your programs

Commenting your program code is used to explain (not just describe) to others what your program is
doing or how your program is doing it.

Take note of the commenting in the code above.— it is showing the reader which LED is coming on
and explains the special case of hand over of the LED control from one port to the other.

In your studies we often distinquish between describe=Achieved, explain=Merit and
discuss=Excellence. Discuss would be where you explain and justify why you did it one way rather
than another. The code above is an excellence for commenting because it justifies why it works the
way it does!

If you can write good comments that explain thoroughly and where necessary discuss your
code you are an excellent programmer!

12.10 What is a piezo and how does it make sound?

A piezo is made from a nonsymmetrical crystal; these are
generally ceramic nowadays although the principal was
originally discovered in naturally occuring quartz (and other)
crystals. When a crystal has an electrical charge applied to it, it
moves in one direction. We make use of this property to
produce sound and also in ultrasonic cleaning and other things.
The opposite occurs too, if a crystal is moved or stressed a
voltage potential can be created. This property is put to work in
piezo lighters (such as in a bbq) and in ceramic microphones.
Modern ceramic type piezos are much more efficient than
natural quartz ones.

The piezo can be attached directly between a microcontrollers output pin and ground.

Microcontroller System DEVELOFPING OQUTPUT CIRCUITS
Microcontroller Hardware —[|<]
D_ IMemory
T Program memorny: § E E |_|
00— Process Code
Input Input T 1 T | Output Output

Circuits Code R P — Code Circuits
ata Memo $J

121

12.11 Sounding Off

Bascom’s sound command can Microcontroller System OUTPUT CODE EXAMPLE

be used to directly make a tone. | Microcontrolier Hardware [| :]
Piezo alias portA.3 I Program memory =524
Sound piezo, 500, 300 ‘that’s GO Process Code

all that’s required Input Input T 1 7 | Output Output

has three parameters (values)
attached ot it.

Circuits Code I A Code Circuits
Variables (Numl 4
The Bascom sound command |:| l a”ﬂmi‘il];"" ers) ; 2
Iy e—

e The port or pin of the
microcontroller used
e The duration of the sound (number of pulses)
e The time the pin is high and low for.
This command is not easy to use to get accurate tones from your AVR, but they do make useful
sounds. Experiment with the sound command and make a series of tones suitable for an alarm.

' Compiler Setup (these tell Bascom things about our micro)
Sregfile = "attiny46l.dat" 'bascom needs to know the micro
$crystal = 1000000 'bascom needs to know its speed
Vo o o e
' Hardware Setups (these tell bascom how to setup our micro)
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'switches on portB
' Hardware Aliases (these tell bascom names we will use for I/0O devices
' attached to the Micro, names are easier to remember that ports)
Leda4 Alias Porta.4
Piezo Alias Portb.3
' Declare Constants (these tell bascom names we will use for numbers in
' our program, this makes it easy to change things quickly later)
! times have been made shorter for testing purposes
Const Flashdelay = 150
'Program starts here
Do
Set Ledai4
Waitms Flashdelay
Reset Ledad
Waitms Flashdelay
Sound Piezo , 50 , 50
Loop

122

A computer is not much use to us if it only has outputs we must have some for the user or the world

13 Switch input circuits

to tell the computer what to do.

i6

i4
i3

V7
6
15
14
13
2
i
8

v
=
(m'4 -
SUITCH
]
i 3
5 il
B
7
o
44
12
13
14
17
-
19
—— =1
28 1

R2
1

13.1

Micracontroller System

Single push button switch
DEVELOPING INPUT CIRCUITS

O

i
Q00—

Input
Circuits

I

Microcontroller Hardware

Input
Code

mory

Program memaory

Process Code

|

Output

Y A

™ Variables (Numbers)
Nl 4t M€ MOTY —

Code
'8

—
=624

OQutput
Circuits

S?;

A ‘pullup’ resistor is essential in this circuit, as when the switch is not
pressed it connects the input pin to a known voltage, if the resistor was not
there then the input pin would be ‘floating’ and give unreliable readings.

Get a mulitimeter and check the voltage goes up and down when the switch

is pressed and released.

123

A lot of students get the switch wiring incorrect, here it has been broken down into two stages, first
put in the 10k resistor from the pin to 5V.

Q.
. I &e
141
‘ “'- ono .—‘
gogooe000e lllll
mI stage:h AUR-ATTINY
& | putinthe @&
il) putin th /0000000008
-

GEGER
L~ R

=
7
5
=
¥
3
2 ¥
-~ (&)
e
dl
(= ko)

Next put in the Switch

a
. I i
;‘t ond o

ﬂﬂ‘ﬂ'ﬂﬂ'ﬁ‘

AUR-ATTINY
) 9908000008
SUITC 0| ol
rm
- 0.
oo
- Stage 2
the switch
v goes from A
- the pin to & } ol 10% 1
‘6 r L R B B " EAEAEN L B
‘1 ground /' A & 2 2 " 2 L B0 B BN BN B BR B L B B B
:g HNE M X " " & » LN B B B B B B B L B B
u !'4 SRR R R R LN B BN B BN B B B L BN B
w o L BN B B s NN L B)
-
(=& k0)

124

Yo Ve

13.2 Pullup Resistors 1 i
o
P i
O GND Gh
GND
NS

In this circuit the switch is connected without a In this circuit the 10k When the switch
pull-up resistor. The input pin of the resistor pulls the is pressed the
microcontroller has no voltage source applied to it microcontroller input pin voltage goes low
and is said to be ‘floating’; the microcontroller high (to 5V) making the (0V).
input voltage will drift, sometimes be high (5V), input reliable when the

sometimes low (0V) and is sensitive to touch and switch is not pressed.
static leading to very unreliable results.

13.3 Switch in a breadboard circuit

In this circuit make sure the schematic is followed
very closely.

The switch goes from the port pin to ground, the
resistor from the port pin to 5V

125

Microcontroller System INPUT CODE EXAMPLE

13.4 Checking switches in your

[Microcontroller Hardware }
program O— : |'_'ﬂ<]
3 1 Program ¥
00— Process Code S
Input |CI'\P;R J—f—g— Output
. . Circuits ode : Code
There are two main methods of checking for _.|-V,,.',b,f,,,,'.,,,,,,,,,.._
switch activity, we can wait until a switch is D<— e
pressed before we continue or we can test the -

switch and if not pressed move on to do the rest
of our program

' check if switch pressed — main method

If Redsw =0 then "if not pressed move on
do_something
end if

' check if switch pressed — method 2
Do

Loop Until Redsw =0 "wait here till pressed

126

13.5 Program Logic — the ‘If-Then’ Switch Test

In this first program we would like the LED to change from off to on every time the switch is pressed.

“When the switch is pressed change the LED”

' Compiler Setup (these tell Bascom things about
our micro)

(} Start <> Sregfile = "attiny46l.dat" 'bascom needs to
& know the micro
Scrystal = 1000000 'bascom needs to
Compiler setup know its speed

Hardware setup .

' Hardware Setups (these tell bascom how to setup
our micro)

' setup direction of all ports

Config Porta = Output 'LEDs on portA
Config Portb.5 = Input 'switches on portB

' Hardware Aliases (these tell bascom names we
will use for I/0 devices

' attached to the Micro, names are easier to
remember that ports)

RedSw Alias Pinb.o6 ' hardware alias

' Program starts here

Do
If Redsw = 0 Then ‘'only do if switch pressed
Toggle LED
End If
Loop
End End

NOTE:
THIS WILL NOT WORK! The problem with this program is that the microcontroller can do things so

fast that when the switch is held down the LED flashes on and off so fast that it just appears to a
human eye like as a dim LED (because it is on for %2 the time and off for %2 the time)

127

We alter the program to wait a bit after the switch is pressed, which will give us time to release ithe

switch
“‘When the switch is pressed change the LED”

' Compiler Setup (these tell Bascom things about
our micro)

Start :) $regfile = "attiny46l.dat" 'bascom needs to

& know the micro
$crystal = 1000000 'bascom needs to

Compiler setup know its speed
Hardware setup e

i ' Hardware Setups (these tell bascom how to
setup our micro)
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb.5 = Input 'switches on portB
' Hardware Aliases (these tell bascom names we
will use for I/0 devices
' attached to the Micro, names are easier to
remember that ports)
RedSw Alias Pinb.6 ' hardware alias
' Program starts here
Do

If Redsw = 0Then ' wait until switch press
Toggle LED
Waitms waitdelay
End If

Loop

Loop End

End

NOTE:

Adding delays to a program is a poor way of fixing problems with it — its just not computer
science! We really need to learn how to detect when a switch is released

128

13.6 Switch contact bounce

We have another hidden problem as well and it is called
contact bounce.

When someone presses a push button switch the contacts
inside the switch move together very fast, and they actually
bounce several times together before staying closed. This
would be OK if the micro was as slow as we are, however a
switch bounce might last 2 or more millseconds, and our
microcontroller can detect things as fast as 1microsecond
so it might actually think the switch has been opened and
closed many times when we pressed it only once! Similarly
it might think the switch has been pressed several times
when we release it too!

B\ switch starts to close

pullup
resistor

Microcontroller
senses 4 closures

»{ ov

—

129

swtich fully closed

“If the switch is pressed, debounce the switch then toggle LED”

Start

)

Compiler setup
Hardware setup
Varnables setup

*

Do

short delay

Loop Until sw
released

short delay

!

toggle led

(End

)

Compiler Setup (these tell Bascom things
about our micro)

Sregfile = "attiny46l.dat" '"bascom
needs to know the micro
$crystal = 1000000 'bascom needs

to know its speed

Hardware Setups (these tell bascom how
to setup our micro)
' setup direction of all ports

Config Porta = Output 'LEDs on portA
Config Portb.5 = Input 'switches on
portB

Hardware Aliases (these tell bascom
names we will use for I/0O devices

' attached to the Micro, names are easier
to remember that ports)

RedSw Alias Pinb.o6 ' hardware
alias

Program starts here

Do
IfSw=0Then___________
Waitms debouncetime
1 Do
Loop until Sw=1
1 Waitms debouncetime |
Toggle Led
End If
Loop
End

We now have a debounce switch program. You don’t always need to deounce switches like

this but more often than not you do.

130

13.7

Reading multiple switches

=D
Y,

Compiler setup
Hardware setup

Often the microcontroller is required to read
multiple input switches and then control
something based upon the switch inputs. These
switches might be connected to an assembly line
to indicate the presence of an item, to indicate if a
window is open or to the landing gear of a jet
aircraft to indicate its position.

A common method of using switches within a
program is to poll the switch (check it regularly to
see if it has been pressed).

i

i

e
B

N
d:d

0000000000000000000

b

Do

If SwWO =0 Then
Waitms debouncetime
Do
Loop until Sw0 =1
Waitms debouncetime
Toggle LedO

End If

If Swl =0 Then
Waitms debouncetime
Do
Loop until Swl1 =1
Waitms debouncetime
Toggle Ledl

End If

If Sw4 =0 Then
Waitms debouncetime
Do
Loop until Sw4 =1
Waitms debouncetime
Toggle Led4

End If
Loop
End

131

13.8 Different types of switches you can use

Various types of switches can be connected to microcontrollers for various purposes:

Find another type of switch and use it in your program, write it up in your notebook. Use it for the next
programs.

Key switches Micro switches

B

v

So that only authorised people can operate | Used inside moving machinery ,on doors
a device and cupboards

Magnetic or Reed switch

. permanent

\\ magnet

N

~

SS.mm

ot
-
read switch

Reed switch is normally open
CA'.“:-OS when Dla(&j near l-'\ﬂg"\ef

Useful for parts or doors that open and close

Tilt or Mercury Switch

~ 5 \\
r
- -~

S ——
st

Useful to sense movement or something falling over

Rotary Switch Tact switch

Can be used to select one of several

different values Directly soldered to a circuit board, better
quality that the cheap push button switch

132

14 Yearll typical test questions so far

What have you learned about connecting power to a microcontroller?
What is a typical power supply voltage?

What range of voltages is acceptable?

Which pin(s) are positive and which are negative?

What are the names for these pins?

What batteries would you use?

What have you learned about programming a microcontroller?

What is the software called? Where does it come from?

What does IDE stand for?

What are the names for the 4 different parts of the software?

How many wires are there in the programming cable?

What happens if $redfile is wrong?

What happens if $crystal is wrong?

What does compiling mean?

What have you learned about interfacing LEDs to a microcontroller?
Draw the connection for an LED and resistor to a microcontroller. Draw this on a bread board
diagram as well. Are these series or parallel?

What is a typical value of resistor?

What would be a minimum value?

What would be a maximum value?

What is SET? RESET?

What does the toggle command do?

What value would you chose for the resistor for a 2.2V LED drawing 16mA connected to a micro?.
What have you learned about programming the pins of a microcontroller?
How many 1/O pins does an ATTiny461 have?

With an LED on A.5 and a switch on A.7 write the config statements for both
What are the different commands for driving a single output pin?

What command can you use to drive multiple output pins all at once?

What have you learned about program style?

We ‘tab’ or indent code for what reason?

Why do we comment programs? Write comments for a simple flashing LED program.
What is const used for? Write a few lines of program that uses const.

What is alias used for? Write a few lines of program that uses alias.

What have you learned about making sound?

How is a piezo connected?

What is the command used to make sound?

Write a line of code to show how it the command used?

What have you learned about interfacing switches?

What is the resistor in the circuit called?

Why is it necessary?

What value is typically used?

Draw the circuit for a switch connected to a microcontroller?

Explain the code used to test a switch to see if it pressed?

What is the problem with switch contact bounce for software?

What do you know about a transistor?

What are the two purposes for using transistors?

How is gain calculated for an NPN transistor?

Choose the transistor from the earlier table you would use to connect between a microcontroller and
20 high intensity LEDs in parallel each drawing 20mA.

Draw the circuit for this.

133

15 Variables — data disguised as binary numbers

15.1 Variables - numbers inside the AVR

Microcontroller System USING VARIABLES

Microcontroller Hardware

I Program memory: E E |_|

00— Process Code
Input Output

Circuits Circuits

[] Variables (Numbers) P
ata Memo iﬂ

Inside our brain memory is where we store and work on information, it is the same in a computer. We
often use the different terms information, RAM, data, address or variable without really
understanding their separate meanings; it is useful to clarfify a meaning for each one.

e RAM is the physical place (like our brain cells/synapses). In a computer it is arranged in
‘bytes’ -groups of 8 individual bits (8 bits = 1 byte)

e Data is what is stored in the RAM, data is numbers e.g. 5 or &B00000101 in binary.

e Address: this is the physical location of a byte of RAM in the microcontroller (e.g. 0 to 1023).
Addresses are sequential.

e Variable is the name we give to the place in RAM , it is a useful way to keep track of what we
stored there. E.g. height is a variable, it contains the number 6, width is a variable it contains
the number 3. These numbers may change a lot while a programis running.

e Information: data such as ‘13’ has little meaning to us, it has more meaning if we store it in a
variable called weight but it has information when we know that it is the weight of a particular
pen in grams.

Variable Data
RAM Address | (name for address) (actual number in the RAM)
1 Width 110
2 Height 63
3 X_position 19
4 Count 10
5 Speed 0
6 Y Position 64
7 Color 255
8 Mass 16

Programs use, alter and even create data while they are running. This data varies as the program
executes so we name it variables.

A variable is the unique nhame we give to a location in the microcontroller’'s RAM
to store data.

When data is stored in ram we say we are storing it in a variable.

134

15.2 Pedestrian crossing lights controller

Client, customer or end-user: ...

Description of the problem, issue, need or opportunity (diagrams may be required):
Vehicles travel at high speeds on this road and although there is a pedestrian crossing,

pedestrians are at considerable risk

Conceptual Statement:
Design and construct a set of traffic lights for a pedestrian crossing

Functional attributes:

When the button is pressed the lights change from green to orange,
there is a delay of 25 seconds

Then the lights go red

There is a delay for 1 minute

Then the lights go back to green,

Cross and DontCross lights work as expected.

System Block Diagram: (include all input and output devices)

135

15.3 Pedestrian Crossing Lights schematic

o
+
o
T &
&=
ty
-— =
[—
[]:
[=
[-—
S
5 Ic1
4 LS e
2 15]
- 5] Auce
0 (AOC1A/RESE T9PE7 ;
(RDCS/INTE/TEDPBE [. 4
(ROCS/XTALDPBS |5~
(ROC7/XTALLPBA [5-
. (OCAEYPED - —XELE
5] (SCK/SCL/OCTBPEZ
7] <M1S0/00/0C1APEL
¢MOSL/OLAS0A/OC1APED
CADCE AEINDPA? i%
(RDCS/AINGPAS [
(ADCHPAS [0
(HOCEPAY
‘.’-_-.Cl _':2 (AREFIPAS ig
— - (AOCZPAZ |2E
1go a.1 S Guo (ocLPaL L2
18] eup ocmppe |22 = o
=) ()
AUR-ATTINY s | =
5] =
Pt A
¥ (_)’/ —
[— — [— — O

o7
ZXZ
[[

136

GREEM

1k

Pedestrian Crossing Lights PCB Layout

154

Programming

Connectaor

A\

0l

0c

rw = ® X

HE = W o & W W ® & W W 8§ W ® W & =« W

S N ®H N N X N N N N N N N N N N N N N

d W W X

:

o
|
0l

o

o

Q

o

|
]
0z

C

o W m S

w w myd
M W wgOD

d M m M X

O M W N m

-0 O (N N

Y B E N

137

15.5 Algorithm planning example — pedestrian crossing lights
(define the operation of the system)
Name: Project: Date:
Define all the input and output devices
Inputs Outputs
Device Name Device Name Starting State
Description Description
Large buttons on
each po_Ie for CROSSBUTTON RED traffic lights REDLIGHT OFF
pedestrians to for cars on pole
press to cross
Orange raffic | o ANGELIGHT | OFF
lights for cars
Green traffic GREENLIGHT | ON
lights for cars
Buzzer to
indicate to BUZZER OFF
pedestrians to
Cross now
CROSS NOW
light on each CROSSNOW OFF
pole
DON’T CROSS
light on each DONTCROSS On
pole
The algorithm
Initially the
Redlight , orangelight, buzzer and cross are off,
Greenlight, dontcross are on
For each input describe what happens to any output devices
Use “if then ”or “do until ” statements

If the pedestrian presses the crossbutton then
The greenlight goes off, the orange light goes on

Then after 25 seconds
the orangelight goes off
the redlight goes on

the don’t cross goes off
the cross now goes on

Then after 1 minute
the red light goes off
the cross now goes off
the don’t cross comes on
the green light comes on

138

15.6

Flowchart planning example — pedestrian crossing lights

Note how the planning for this
program includes a graphic
detailing the colour of the lights,
(this helps visualise the flow and
is an excellent example of
choosing a planning tool that will
help your planning.

Start

g

Compiler setup
Hardware setup
Variables setup

arn on, yellow
off. red off,

dontcross on,

crossnow off

Do

Loop Until
button pressed

areen off
orange on

7

wait orangedelay

7

orange off
red on
dontcross off
Crossnow on

1

wait crossdelay

7

crossnow off
dontcross on

Dont Cross

Dort Cross

Dont Cross.

wait dontcrossdelay

7

red off
green oh

Loop

End

Dont Cross

Dont Cross

139

15.7 Program example - pedestrian crossing lights

' Title Block

' Author: B.Collis
' Date: 1 Aug 2008
' File Name: PedestrianCrossingLightsVer3.bas

' Program Description:
' reads switch to check if pedestrian wants to cross
' and changes the 1lights

' Compiler Setup (these tell Bascom things about our micro)
Sregfile = "attiny46l.dat" 'bascom needs to know the micro
Scrystal 1000000 'bascom needs to know its speed

' Hardware Setups (these tell bascom how to setup our micro)
' setup direction of all ports

Config Porta = Output 'LEDs on portA
Config Portb = Input 'switches on portB

' Hardware Aliases (these tell bascom names we will use for I/0O devices
' attached to the Micro, names are easier to remember that ports)
Greenlight Alias Porta.7

Orangelight Alias Porta.6

Redlight Alias Porta.b

Crossbutton Alias Pinb.©6

Crossnowlight Alias Porta.3
Dontcrosslight Alias Porta.4

' DIMENSION VARIABLES (a variable can be changed during the program, so
we might have different delays at different times of the day (maybe before
and after school we could change the orange and cross delay)

Dim Orangedelay As Byte
Dim Crossdelay As Byte
Dim Dontcrossdelay As Byte
Orangedelay = 7

Crossdelay = 20
Dontcrossdelay = 5

140

' Program starts here

' initial state of hardware

Set Greenlight
Reset Orangelight
Reset Redlight

Set Dontcrosslight
Reset Crossnowlight

' Main loop starts here

'off
'of £
'on
'off

Do
Do 'wait for ped cross button
Loop Until Crossbutton = 0
Reset Greenlight 'stop the traffic
Set Orangelight
Wait Orangedelay
Reset Orangelight
Set Redlight
Reset Dontcrosslight 'allow pedestrian to cross
Set Crossnowlight
Wait Crossdelay
Reset Crossnowlight 'warn pedestrians not to cross
Set Dontcrosslight
Wait Dontcrossdelay
Reset Redlight '"let traffic continue
Set Greenlight
Loop
End
15.8 Modification exercise for the pedestrian crossing
1. Generally the dontcross light is off until the pedestrian presses the button
2. After the redlight comes on there be a short delay before the crossnow
3. Put a 5 second delay into the system after the pedestrian pushes the button and before the
light goes red.
4. Implement a short beep into the system when the cross now light comes on
Achieved Merit Excellence

Implements 1 above into the
algorithm AND the program
AND adds useful describing

comments in the program

Also impliments 2 above in both
the algorithm AND the program
AND uses comments to explain
the program

Implements 3 above in both the
algorithm AND program AND
with good explanatory
comments in the program.

Can you see that achievement criteria are actually algorithms?
SO MAKE SURE YOU UNDERSTAND THEM!

141

15.9 Changing a variable — simple stepping/counting

Have you noticed that at a pedestrian crossing that after the Crossnow light goes off the Dontcross
light actually flashes before staying on.

In this program we want the dontcross light to flash 10 times while the pedestrian is
crossing.

Dim Num flashes As Byte
Dim Orangedelay As Byte
Dim Crossdelay As Byte
Dim Flashdelay As Byte

Orangedelay = 10
Crossdelay = 20
Flashdelay 500

‘Here is the wrong way to do it

Do
Do 'wait for ped cross button
Loop Until Crossbutton = 0

Reset Greenlight 'stop the traffic
Set Orangelight
Wait Orangedelay

Reset Orangelight

Set Redlight

Reset Dontcrosslight 'allow pedestrian to cross
Set Crossnowlight

Wait Crossdelay

Reset Crossnowlight

'flash the don't cross light 10 times to tell pedestrians to stop crossing
Set Dontcrosslight 'flashl

Waitms Flashdelay

Reset Dontcrosslight

Waitms Flashdelay

Set Dontcrosslight 'flash?2
Waitms Flashdelay

Reset Dontcrosslight

Waitms Flashdelay

Set Dontcrosslight 'flash3
Waitms Flashdelay

Reset Dontcrosslight

Waitms Flashdelay

Set Dontcrosslight 'flashi4
Waitms Flashdelay

Reset Dontcrosslight

Waitms Flashdelay

Reset Redlight 'let traffic continue
Set Greenlight

Loop

End

The above code wastes a lot of our program memory.
142

‘Here is the right way to do it

Set Greenlight 'on
Reset Orangelight 'off
Reset Redlight 'off
Set Dontcrosslight 'on
Reset Crossnowlight 'off
Do
Do 'wait for ped cross button

Loop Until Crossbutton = 0

Reset Greenlight 'stop the traffic
Set Orangelight
Wait Orangedelay

Reset Orangelight

Set Redlight

Reset Dontcrosslight 'allow pedestrian to cross
Set Crossnowlight

Wait Crossdelay

Reset Crossnowlight

'flash the don't cross light 10 times -
For Num flashes = 1 To 10

Set Dontcrosslight

Waitms Flashdelay

Reset Dontcrosslight

Waitms Flashdelay
Next

Reset Redlight 'let traffic continue
Set Greenlight
Loop

This is the for-next loop in programming — every programming language has it (in some form or

another) and we use it when we want something to repeat or step a fixed number of times. The
variable num_flashes starts at 1 and each time through the loop it increases by 1 until it has
completed the loop 10 times.

143

15.10 For-next tricks with flashing LEDs

We could create a program that flashes an LED 3 times waits a bit then flashes it again.

(T sen)

Compiler setup
Hardware setup Scrystal = 1000000
“Yariablez zetup _

$regfile = "attiny4él.dat"|

Config Porta = Ontput
Config Porth COntput

Far humflazhes

=7 tg 3 Led7 Alia=s Porta.’

Dim Hum flashe=z Az Byte

LED on

zhart delaw Conzt Ondelay = 50
hLEHDdDTf Const Qffdelay = 200
snon delay Const Longdelay = 1000

Do
For Hum flashezs = 1 To 3
Set Led7
Waitm= Cndelay
Beset Led7
Waitm= Offdelay
Hext
Waitm= Longdelay
Loop

X

Indenting (tabbing code in, is an extremely important aspect of writing
programs, it adds to their readability and your ease of debugging.

| often fix students code simply by setting up the indenting and find things like this

HARD TO SPOT THE ERROR

EASY TO SPOT THE ERROR

Do

For Num flashes = 1 To 10
Set Dontcrosslight
Waitms Flashdelay

Reset Dontcrosslight
Waitms Flashdelay

Loop

Next

Do
For Num flashes = 1 To 10
Set Dontcrosslight
Waitms Flashdelay
Reset Dontcrosslight
Waitms Flashdelay
Loop
Next

Can you create a program that flashes one LED three times then another LED 5 times, and then

repeats.

What about flashing one LED 6 times then anpther LED 3 times then another LED once.

Or flashes three LEDS three times then only the middle of the LEDs three times.

144

15.11 For-Next

Repetition is what computers do best here is another example of repetition using a for-next.
Example: when you join a gym they give you a workout card which has the exercises and the number
of repetitions on it to do.

Benth Max Mox Bar Wit They don’t give you a list:
100 40 Bench Max
3 sats of B Bench MaX
Incline Max EE‘ “3"’"0""“ Bench Max
3 sets of B BenCh MaX
Lat Pull Max Max Bar Wt gench Max
a0 40 ench Max
3 sets of 8 Inline Max
Max Bar Wt Inline Max
Leg Exten Max 130 a5 Inline Max
pdisinsia b Inline Max
Leg Flex Max 1”;"0 “;a""“ Inline Max
4 sika ol @ Inline Max
Max Bar Wt
Squat Max 150 40

3 sets.of B

The same with computer programming, when you see something that looks like it is repeating you
replace it with a loop of some form (there are several choices).

E.g. at a very busy gym everyone has to be split into one of two groups, those that exercise on the
machines and those that work on the mats. Every 60 seconds everyone changes from the mat to the
machines. There are two big lights, one red and one green. When the red light is flashing the red
group is on the machines, when the green light is flashing the green group is on the machines.

Each light flashes 20 times per minute(on for % second off for 2% seconds). We could write a
program the goes:
Red on

Wait ¥2 sec

Red off

Wait 2% sec

Red on

Wait ¥z sec

Red off

Wait 22 sec

Red on

Wait ¥2 sec

Red off

Wait 2% sec

Red on

Wait ¥2 sec

Red off

Wait 2% sec

but this is not really computer programming
We need a simple way of controlling how many times the lights flash and we can use a variable to

count the flashes and a loop that repeats depending upon what number is stored in the variable.
145

Start

4

Compiler zetup
Hardware zetup
Yariablez setup

4

Dk COLINT &5 BYTE

Do

For count=1 ta 20

v

RED on
zhort delay
RED off
zhort delay

v

For count=1 to 20

v

GREEM on
ghort delay
GREEM off
zhort delay

’

[et

Loop

' Compiler Setup
Sregfile = "attiny46l.dat"
Scrystal = 1000000 'bascom needs to know its speed

' Hardware Setups

' setup direction of all ports

Config Porta = Output 'LEDs on portA
Config Portb = Input 'switches on portB
' Hardware Aliases

Green Alias Porta.l

Red Alias Porta.O

' Declare Constants
Const Orangedelay = 7
Const Crossdelay = 20
Const Dontcrossdelay = 5

' Program starts here
'Declare Constants

Const Lightontime = 500
Const Lightofftime = 2500

'Declare Variables
Dim Count As Byte

Program starts here
Do
For Count = 1 to 20
Set Red
Waitms Lightontime
Reset Red
Waitms Lightofftime
Incr Count
Next
For Count = 1 to 20
Set Green
Waitms Lightontime
Reset Green
Waitms Lightofftime
Incr Count
Next
Loop
End

146

15.12 Using variables for data

In a calculator with several memory locations each is given a name such as A,B,C,D,E,F,X,Y.M. etc.
The name of the memory location has nothing to do with what you are using it for and it is up to you

to remember what was stored in each location. In a microcontroller each memory location is given a
name by the programmer. This means it is much easier for you to remember what is in the memory

location and easier to use within your program.

Here are some examples of using variables
Dim Width as Byte DIM is short for dimension and means set aside a part of RAM for our program

to use. From now on in the program it will be called Width. It is easier for us to have names for
memory locations such as ‘width’ than using the physical address of the RAM, address 1.

Dim Height as Byte
Dim V_Position as Byte
Dim Speed as Byte
Dim X_position as Byte
Dim Color as Byte

Dim Mass as Byte

Here are some common things you will see in programs
Height = 10 (put 10 into the memory location we dimensioned called height)

Incr X_position (increase the value in X_position by 1)

Color = Width / Height (divide the number in Width with Height and put the answer into Color - the
values of Width and Height do not change)

Speed = Speed + 12 (get the number from memory location called Speed and increase it by 12 and
put it back into the same memory location)

A variable of type Byte can store numbers from 0 to 255 (&B11111111) so it has limited use so often
we group bytes together to store bigger numbers — more about this later.

15.13 Types of memory

The microcontroller actually has two places to store variables SRAM and EEPROM. RAM is
temporary storage, when the power is lost so is the data stored in RAM, this is called volatile memory.
EEPROM is permanent storage (non-volatile) it remains the data stays when the power is removed
from the microcontroller.

If you wanted to measure the difference between two temperatures you would store them in RAM and
use a simple formula to subtract one from the other (e.g. tempdiff=templ-temp2)

If you wanted to record temperature measurements over a long period of time and use that data then
you would collect it and store it in the EEPROM so that it would not be lost if the power was removed.

147

15.14 Binary and Hexadecimal numbers

Data is not stored in decimal form e.g. 134 it is stored in binary form.
We have seen this already when controlling the 8 LEDs on a port using code such as
porta=&B11001100, you have been using binary numbers to do it, Here are some examples

J If all port pins are high then the LED’s will be on e.g.

(@]

0O O O O

portc=&B11111111 (using Binary)

portc = &HFF (using Hexadecimal)

portc=255 (using Decimal)

portc.7=1, portc.6=1...(using bits)

set portc.7, set portc.6, (not using numbers)

. If all port pins are low then the LED’s will be off e.g.

o

@)
©)
@)
©)

portc=&B00000000 (using Binary)

portc = &HO (using Hexadecimal)

portc=0 (using Decimal)

portc.7=0, portc.6=0, portc.5=0... (using bits)

reset portc.7, reset portc.6, (not using numbers)

. If we want a specific combination of LED’s on and off e.g.

o

o O O O

portc=&B11000101 (using Binary)

portc = &HC6 (using Hexadecimal)

portc=197 (using Decimal)

portc.7=1, portc.6=1, portc.5=0, ... (using bits)
Set portc.7, set portc.6, reset port ¢c.5

148

B =255
:8 =&HFF
=0

Decimal 197
Hexadecimal &Hq
7
Y

sinary & B[11000101

—

HOROOOO KK

15.15

Computers use binary to count and hexadecimal is a shortened way of counting in binary

Learning to count in binary

Note the first 16 hex numbers 0 to F
&B000 00000 = &HO =0
&B000 00001 = &HO01 =1
&B000 00010 = &H02 = 2
&B000 00011 = &HO3 =3
&B000 00100 = &H04 =4
&B000 00101 = &HO5 =5
&B000 00110 = &HO6 =6
&B000 00111 = &HO7 =7
&B000 01000 = &HO8 = 8
&B000 01001 = &H09 =9
&B000 01010 = &HOA =10
&B000 01011 = &HOB =11
&B000 01100 = &HOC =12
&B000 01101 = &HOD =13
&B000 01110 = &HOE =14
&B000 01111 = &HOF =15

The next 16 hex numbers 10 to 1F
&B0000 0000 = &H10 =16
&B0000 0001 = &H11 =17
&B0000 0010 = &H12 =18
&B0000 0011 = &H13 =19
&B0000 0100 = &H14 =20
&B0000 0101 = &H15=21
&B0000 0110 = &H16 =22
&B0000 0111 = &H17 = 23
&B0000 1000 = &H18 =24
&B0000 1001 = &H19 =25
&B0000 1010 = &H1A =26
&B0000 1011 = &H1B =27
&B0000 1100 = &H1C =28
&B0000 1101 = &H1D =29
&B0000 1110 = &H1E =30
&B0000 1111 = &H1F =31

Note that we often write binary numbers separated with a space after every 4 bits

*** a bit is one binary digit

Open windows XP calculator and set it to scientific mode and then do a few conversions

1Change view to scientific

2 select the number system

4select a new number system

3enter a number

to do the conversion

Calculator

Edit |MWiew | belp

./ /

Ch

Cline ClHyp l_ ’_

i
%) Hex IDDE:: 3 0t {:}Binl @ Qword 3 Dword Oiward (D

Backzpace | |

Sta | [| 1 kC i 3
(3] kA 4) G | " /| Or war
7
%y log (] 1 2 3 | - | Lzh || Mot
%3 ril b+ 1] +-) /r + = Ik
r
2 || 14 s || B | D | E |l F

(In Windows 7 put the calculator in Programmer mode)

Convert &B0101 0101 to hexadecimal

Convert &B1010 1010 to hexadecimal

and to decimal

and to decimal

Convert &B1000 1001 1010 1010 to hexadecimal

and to decimal

149

15.16 Learning some Hexadecimal (HEX)

Binary is a hard system to work in, so we abbreviate binary using hexadecimal. In deimal we count in
tens in an ordered way; just the same Hexadecimal is an ordered way of counting, we use 16’s. To do
this we need some more digits and we use A to F to help us. Here is a table of the first 2 digits of
Hexadecimal &H 0 to &H FF.

o 1 2 3 4 5 6 7 8 9 A B C D E F
o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
16 17 18 19 20 21 22 23 24 35 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

45 49 50 51 52 53 54 3 5 537 58 59 60 61 B62 b3
b6 67 B8 @9 o 71 72 73 M 75 F- R Y - B

g
&

80 81 82 &3 B4 B> 8o 87 88 B&D 50 51 52 93 94 95
%6 97 98 9% 100 101 102 103 104 105 106 107 108 109 110 111
112 113 114 115 116 117 118 1195 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 1383 184 185 186 137 183 189 1% 1391
192 1% 134 135 1% 157 198 1399 200 201 202 203 204 205 206 207
208 209 210 211 E! 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

T m O a0 P 00Ol WU s WRNEO

To read the table get the column then the row
So &H D4 =212

57 decimal = &H 39
105 decimal = &H

150

(s D

\/
Compiler setup
Hardware setup
Variables setup

\/

\/

\ -
End B

\/

\/

\V -
End B<

This program counts different vehicle types everytime a different
switch is pressed, if we run it inthe simulator we can see the
numbers in decimal, binary and hexadecimal

" SimulatorV1.bas
'test our ability to count vehicles, this siluates someone standing at
an intersection monitoring traffic flows

$sim
$crystal = 1000000
$regfile = "attiny26.dat"

Config Porta = Output
Config Portb = Input

Red_sw Alias Pinb.0
Yel _sw Alias Pinb.1
Grn_sw Alias Pinb.2
Blu_sw Alias Pinb.3
Wht_sw Alias Pinb.4

‘dimension variables before they are used or you will get a compiler
error!

Dim Cars As Byte

Dim Trucks As Byte

Dim Bikes As Byte

Dim Pedestrians As Byte

Const Debouncedelay = 25

Do

‘check and debounce red/cars switch
If Red_sw =0 Then

Waitms Debouncedelay

Do

Loop Until Red_sw=1

Waitms Debouncedelay

Incr Cars ‘incr means increment
End If
‘check and debounce yel.trucks switch
If Yel sw=0 Then

Waitms Debouncedelay

Do

Loop Until Yel_ sw=1

Waitms Debouncedelay

Incr Trucks
End If

Loop
End

151

E ~ R Simulator
Sz (=M,

Sirn Tirmers

B o
&’ watch

de
&]

les | Locals

e,

uP || Interrupts
|Hex |Ein | ”~
oooo0iio
00000011
Q00000000
Qooo0ooo

TRUCES
BIKES

5]
1] 0
PEDESTRIANS 0

UARTO | UARTL

L&,
|]

3

4 S=im P
5 fcrvstal 1000000 R
6 Sregfile "attinvZe . dat”
7
a
9

LIl
&8
& &
&=
& &~
B @
L e
Ll

Forta

Config =
Forth =

Config

11 Red_=w
12 Yel_=w
13 Grn_sw
14 Blu_sw Alias=
15 Wht_=w Alias
16 Alng (000

0.00

Alias
Alias
Alia=

FEEE

8 =)l

EEELE
Cle=)

18 'dimension wariables

19 Dim Cars A= Byte

20 Dim Trucks As Byte

21 Dim Bikes A= Bvte

22 Dim Pede=strian=s A= Byte

Al
lrevert

24 Con=st Debouncedelay = 25

26 Do
If Fed_=w = 0 Then
Waitms Debouncedelawy
29 Do
Loop Until Red_=w = 1

Maitme Tiehmnineredelawr

[u]
(5]
o

Step D:

1.Type in the program
COMPLETE THE
MISSING PARTS, save it,
Compile (F7) and
Simulate it (F2).

In the simulator window
Step A:

Choose the menu button
with LCD, to open
Hardware Simulation

Step B:

Select the switch inputs
PinB.0 through PinB.4 as
high (this simulates pullup
resistors)

Step C:

Select the upper most
blank yellow box in the
variable area. Then double
click it to get a drop down
box. Then choose cars

Do this for the 3 other
variables

Run the simulator, the arrow that points to which part of the code is running should be moving quickly between the four different IF statements, but

not entering any of them.
Step E:

Press one of the green buttons at B, it changes colour (simulates going low) and press it again (simulate it going high) to get the variable to

increase, press the buttons in turn to count different vehicles, when you press button 4 all the values should reset to 0.

152

We have added another switch in our program to clear the numbers back to 0 when the white
switched pressed.

If Wht_sw =0 Then
Waitms Debouncedelay
Do
Loop Until Yel_ sw=1
Waitms Debouncedelay
Cars =0
Trucks =0
Bikes =0
Pedestrians = 0
End If

15.17 Rules about variables

Variabes must start with a letter not a digit
e.g. Dim Red_cars As Byte not Dim 1cars As Byte
Variabes must not be Bascom reserved(special) words
e.g. Dim band As Byte not Dim And As Byte
Variables must contain no spaces
e.g. Dim Red_cars As Byte not Dim Red cars As Byte
Variable names should relate to what the variable is used for
e.g. Dim Red_cars As Byte, not Dim hgashg As Byte
Variable names cannot be used for other things such as constants or subroutines
e.g. Dim Red_cars As Byte, means yu cannot have Const Red_cars = 12 as well

15.18 afew examples of variables in use

15.18.1 A points table for a competition

Dim Blues As Byte
Dim Hurricanes As Byte
Dim Waratahs As Byte

as the season progresses the points are added.
Incr Hurricanes (adds one to their score)
Blues = Blues + 1 (adds one to their score)

Waratahs =Waratahs + 3

15.18.2 Conversions between units

Dim Celcius As Integer
Dim Fahrenheit As Integer

Fahrenheit = 100

Celcius = 32 - Fahrenheit
Celcius = Celcius * 5
Celcius = Celcius / 9

153

15.19 Random Numbers

Microcontroller System USING VARIABLES

Microcontroller Hardware

l Program memorny E E I_I

00— Process Code
Input Output

Circuits Circuits
[] Wariables (Numbers) A
ata Memo i‘z

This program generates a random number from 1 to 6 and stores it into a variable in memory
‘ DiceV1.bas

$sim The line Dim dicethrow As Byte means allocate to
$crystal = 1000000 the program 1 byte of ram to use and refer to it as
$regfile = "attiny26.dat" dicethrow.

Config Porta = Output

Config Portb = Input Every variable must be dimensioned before it

can be used.

Dim dicethrow As Byte
With variables you can do maths

Do E.g. add 1 to throw. dicethrow=dicethrow+1
‘generate a random number from 0 to 5 literally means get the contents of dicethrow add
dicethrow = Rnd(6) 1 to it, and then put the answer back into
‘change the range to 1 to 6 dicethrow.
dicethrow = dicethrow + 1

Loop

End

Compile the program and then open the simulator (F2), select the variable dicethrow from the
variables list and use F8 (don’t press run) to step through the program to see the numbers generated
by the program.

154

15.20 The Bascom-AVR simulator

AVR Simulator
Double click | i » 1 ®m|S2(=P % R|0OjM] it it B
in the yellow | Variables Locals | 6" watch | 8 uP | Interrupts | |Reqgisters o x|
area under | Yariable |'v'alue IHex IBin | ~ Reg l”ﬂ ol
the word | DICETHROW 6 6 00000110 | [Ro [oo
VARIABLE to R1 |00
select the | e ——— R2_|oo
variables you R3 |00
want to - : i ¥ R4 |00
watch. | UARTO | aRT1 A5 |00
‘ RE |00
R7 |00
Press F8 to A8 |00
step through F3 00
the program %13 gg
and see what ; T
17 ~
happens at 18 Phswitch Alias Pinb.3 ~ Bialoo
each step. 19 T o
20 Dim Dicethrow A= Byte
21 R15|00
22 Do R16|00
23 'generate a random number from 0 to & —
o |24 Dicethrow = Rnd(6) R17|00
25 ‘'change the range from 1 to 6 R1gl00
o 26 Dicethrow = Dicethrow + 1 EE-UO
o 27 Loop el
28 R20{00
© |29 End R21|00
a0 —
21 R22|00
32 R23|00
33 o
24 R24|00
35 R25|00
36 V loaelnn]) v
¢ ; ¥ | Registers |10 | Memary |
PE =) Cycles =0 Stopped -

155

The simulator is an ideal tool for testing small parts of a program to see if you achieved what you

wanted to. We will use it to explore the numerical range of different types of variables
Here is some code to show off a few BASIC commands. Copy this program into BASCOM and
compile it and see if you can understand what is happening and why.

' ShowComandsV1.bas
$sim

$crystal = 1000000
$regfile = "attiny26.dat"

Config Porta = Output
Config Portb = Output
Config Pinb.6 = Input

‘dimension variables
Dim Bytel As Byte
Dim Byte2 As Byte
Dim Word1 As Word
Dim Intl As Integer
Dim Singlel As Single
Dim Single2 As Single

Allocating some parts of the RAM, and giving those parts
names so that we can refer to it more easily
(dimensioning).

Bytel =12

Bytel = Bytel + 3
Incr Bytel

Byte2 = bytel

What is the value of the variable bytel after this?
12+3+1

Byte2 = Bytel / 10

Division - a byte can only represent whole numbers from O
to 255 so division truncates (IT DOES NOT ROUND)
16/10 = 1 (whole numbers only!)

Byte2 = Bytel Mod 10

MOD gives you the remainder of a division (16 mod 10 = 6)

Byte2 = Bytel * 150

This gives the wrong answer because a byte can only hold
a number as big as 255

Wordl = Bytel * 150

This gives the right answer!

Bytel=1

Rotate Bytel , Left
Rotate Bytel , Left
Rotate Bytel , Right

Rotate is like multiplying and dividing by 2

Intl = 200

Intl = Intl — 100
Intl = Intl — 100
Intl = Intl — 100
Intl = Intl — 100

need negative numbers then use integer or long

For Singlel =0 To 90 Step 5
Single2 = SQR(singlel)

Next

need DECIMALS use single or double

End

Make sure you put an END to your program or it will
continue on and potentially cause crashes (if you micro
was controlling a car then it might be a car crash- ouch!!)

156

15.21 Variables research assignment

Using the Bascom-AVR help file research the following information on the different types of
variable you can use.

Variable | Minimum Value Maximum Value Number of bytes used to

type (before underflow) (before overflow) store it

Bit 0 1 lbyte for 1 bit however if you
dimension 8 bits they will all be
stored in the same byte

Byte 0 255 1

Word

Integer

Long

Single

Double

Every microcontroller has different amount of RAM available for storing variables
Carry out research on these different AVR microcontrollers

RAM size (bytes) FLASH - program EEPROM size (bytes)
size(bytes)

ATTiny13

ATTIny45

ATTIny461

ATMega48

ATMegal6

ATMega32

ATMega644

ATMegal284

There is no point in memorizing this data; its just a matter of knowing about so that you can find it
when you need it.

It is also important to know why we have so many different types of variable. This is because
microcontrollers have limited RAM, so to make the best use of it, we use the smallest variable
type we can possibly use. If we dimension a variable as a word and only every use numbers up to
255 then we are wasting a precious resource, our RAM.

157

15.22 Byte variable limitations

RAM (the memory inside a computer) is capable of storing 1 byte (or 8 bits) of binary data. This is
a finite range of positive, whole numbers from 0 to 255. No negative numbers can be stored,
no decimal fractions, and no number greater than 255.

Binary Number Decimal equivalent
00000000 0

00000001 1

00000010 2

11111101 243

11111110 254

11111111 255

This can also be described by comparing it with the decimal system. In the decimal system the
numbers we are used to go from —infinity to +infinity, so the numberline goes on forever.

Byte arithmetic because it has a finite set of numbers is like having a number line that goes
around on itself.

09 -8 -7 6-5-4-3-21 012 3 456 78 810
1 i 1 ' v 1 1 ¢ ¥ & ¥ 1 f 1 11§ 1111

infinite numberline
3+5=2 5-8=-3

255 0 1

953 294 2 q

finite number line
for byte arithmetic

3-6=253
252+8=4
255+1=0
0-1 =255

The difficulty arises when we do arithmetic that exceeds the limits of our range.

e.g. what does 250 + 9 = ? What does 4-7 = ?

When we add 9 to 250 we get 3. It has overflowed 255.

The opposite to OVERFLOW is UNDERFLOW and is seen by using the number line above.

158

15.23 Electronic dice project

15.24 Programming using variables — dice
A dice can be made using 7 LEDs (why do we need 7? — look at the pattern)

o Jo Toole deve

X
g

P []
OB=poriA.0
— % Dl=portA.l
2 5.6:DD}"TH.6

4~ »;%Z A ¥

>

|

¥

¥

=X,
L1
F=J

X T T

-+ -+ -+ -+

In the above circuit the LEDs have been labelled to match the pin of porta they are connected to.
Note there is a switch connected to Pinb.6

Fill in the table below which shows which LED are on and whichare off to make a particular
pattern, remember that even though only 7 LEDs are used we need to control the whole port so
need to specify all 8 bits.

A7 A.6 A5 A4 A3 A.2 Al A.0

NO LED6 |LEDS |LED4 |LED3 |LED2 |LED1 |LEDO
LED

off on off on off on off on portA=&B01010101

OO WIN|F

159

15.25 Dice layout stage 1

In the diagram the 7 LEDs have been physically arranged to match the dots on the face of a dice,
but to do that the middle LED has had its legs bent so that it lines up with the middle LED but does
not share any breadboard connections with it

! >
b
-

S4+TENT
|
=\
=

3T

8.1 Hﬁ

010

N
f + \
° ° ° ° ' I\ . : : ”I
S

AUR-ATTINY k L«'wmr amming

@ ﬂ“ “ ﬂﬁﬂt R
.‘- > ,'I (7 2 "‘l

— @

w Y I —-— "

< 0 0O QoW

160

Dice layout stage 2

In this second stage the resistors have been added and the wiring has been started for the LEDs,

15.26

W

o
== L5
o—O0 =
2 E U
=)]
T ~
5 E
.C«C
= a
. Y e
« - @
o = ©
-
-
o T &
o«» 7 €&
oo O
TRIRCEE - B -
i+ &» _°
@ o P

N i
8 v

:
|

g

HE B B OB B0 Bjwo

-

v B B B B/B M|

oL

6

/ |

Sl

@

E N M M M ¥ M N H N N E

m O
El L
L L
| L
= L |
~ " =
| " n
| N u
- " =
| LR |
| X x
El " u
| L I |
|
=

\

n

-

-

ey

e——————
| I n
| I =
| |
-_n./-
@ m m

ol

161

15.27 Dice Layout final

Before the rest of the wiring for the LEDs has been added the switch has been connected, agin
note that it is switch wiring that confuses students the most.

Programming
Connectaor

U+@© o
GND

A

0 I ok S 10k I
r k- L B | - N N
| HE N N N N [o |
H M OW W oW W M [|]
9 M N M W N N [| E X 9
E| H N M N N N H W x m 4
3 [O O O O 3
a [O O O O O O O a
3J H H o E o ® o ® W O E W N N
= M WM M M M M N M N NN
v HowW W W oW W oW W N N

ol g L

X X

162

15.28 First Dice Program flowchart

(Start

)

4

Hardware =

Caompiler zetup

Yariablesz zetup

etup

%

— Do

0

generate

randam number

=}

LEDs

dizplay on the

ghort delay

If zwitch
prezzed

True

generate
randarm number

dizplay on LED=

!

long delay

(End

163

' DiceVl-random.bas
' 7 leds arranged in a pattern on a breadboard
Scrystal = 1000000

$regfile = "attiny46l.dat"
Config Porta = Output
Config Pinb.6 = Input

Blu sw Alias Pinb.6

Dim Dicethrow As Byte 'a variable to hold the value

Const Dicedisplay = 80

Const Displaytime = 3 'waiting time in seconds
Do
Dicethrow = Rnd(6) 'get a random num from 0 to 5
Incr Dicethrow 'make it from 1 to 6
If Dicethrow = 1 Then Porta = &BO....... 'turns on 1 led
If Dicethrow = 2 Then Porta = &BO....... 'turns on 2 leds
If Dicethrow = 3 Then Porta = &BO....... '"turns on 3 leds
If Dicethrow = 4 Then Porta = &B01010101 'turns on 4 leds
If Dicethrow = 5 Then Porta = &BO....... 'turns on 5 leds
If Dicethrow = 6 Then Porta = &BO....... 'turns on 6 leds
Waitms chedlsplay 'wait a little
If Blu sw = 0 Then 'if switch is pressed
Dicethrow = Rnd(6) 'get a random num from 0 to 5
Incr Dicethrow 'make it from 1 to 6
If Dicethrow = 1 Then Porta = &BO....... 'turns on 1 led
If Dicethrow = 2 Then Porta = &BO....... 'turns on 2 leds
If Dicethrow = 3 Then Porta = &BO....... 'turns on 3 leds
If Dicethrow = 4 Then Porta = &B01010101 "turns on 4 leds
If Dicethrow = 5 Then Porta = &BO....... 'turns on 5 leds
If Dicethrow = 6 Then Porta = &BO....... 'turns on 6 leds
Wait Dlsplaytlme
End If
Loop
End

In this case we don’t need any debounce timing because there is a long delay after the switch is
pressed.

15.29 A note about the Bascom Rnd command

It is actually quite difficult to generate random numbers; microcontrollers use a maths equation to
do it. The problem with this is that the sequence is always the same, you can check this out using
the simulator or by modifying your dice program later to see that the sequence is always the
same. To get around this problems we use a little trick; we always have the program generating
random numbers even when the button isn’t pressed, that way the position in the sequence when
we press the button cannot be guessed.

164

15.30 Modified dice

In this dice the number stays on the screen and when the switch is pressed it displays 30 random
numbers before stopping on the 30"

(T s)
4

Compiler setup
Hardware zetup
YWariahlez zetup

%

— Do

o

get a random
humber

switch prezsed? True

For count=1 to 30

7

get a random
humber

Dizplay the
nurmber

zhort delay

1

Loop

(End)

165

' DiceV2-random.bas

' 7 leds arranged in a pattern on a breadboard
$crystal = 1000000

Sregfile = "attiny46l.dat"

Config Porta =
Config Pinb.6 =

Output
Input

Set Portb.6

Blu sw Alias Pinb.6
Dim Dicethrow As Byte 'a variable to hold the value
Dim I As Byte

Const Dicedisplay = 100
Dicethrow = 1 'initial display is 1
If Dicethrow = 1 Then Porta = &BO 'turns on 1 led
If Dicethrow = 2 Then Porta = &BO '"turns on 2 leds
If Dicethrow = 3 Then Porta = &BO 'turns on 3 leds
If Dicethrow = 4 Then Porta = &B01010101 'turns on 4 leds
If Dicethrow = 5 Then Porta = &BO "turns on 5 leds
If Dicethrow = 6 Then Porta = &BO 'turns on 6 leds
Do
Dicethrow = Rnd(6) 'get a random num from 0 to 5
If Blu sw = 0 Then 'if switch is pressed
For I = 1 To 30 'do 30 random numbers
Dicethrow = Rnd(6) 'get a random num from 0 to 5
Incr Dicethrow 'make it from 1 to 6
If Dicethrow = 1 Then Porta = &BO '"turns on 1 led
If Dicethrow = 2 Then Porta = &BO 'turns on 2 leds
If Dicethrow = 3 Then Porta = &BO 'turns on 3 leds
If Dicethrow = 4 Then Porta = &B01010101 'turns on 4 leds
If Dicethrow = 5 Then Porta = &BO 'turns on 5 leds
If Dicethrow = 6 Then Porta = &BO 'turns on 6 leds
Waitms Dicedisplay 'wait here a while
Next
End If
Loop
End

Exercises for the dice program
1. Do a trial of at least 200 presses and draw a tally of the results, how ‘fair’ is our dice?
2. Merge the two progams above so that random numbers are displayed until the button is
pressed, then 10 random numbers are generated and it stops for 5 seconds
3. Make the electronic dice display 2 random numbers to simulate 2 dice
4. Make your own dice that is different to this described so far with some interesting sound
feature

Achieved Merit Excellence

Do number 1 and 2 above with

comments in the program

Also implements 3 above and
uses lots of comments to
explain the program

Implements 4 above with good
explanatory comments in the
program.

166

15.31 Multiple LEDs - 7 segment displays

Microcontroller System QUTPUT CODE EXAMPLE
It is important to understand a new device so that it O— Microcontroller Hardware —K
can be used with confidence. The 7 segment display | orooam e =624
is simply a number of LEDs put together inside a input Input o e ouput || | outpue
package with pins sticking down so that they can be Circuits | || Code | ~—F=T=T———| Code Circuits
soldered into a PCB. They are still very common []% ikt | ¥ 3?;
today in many electronic products.

They are available in many different styles and sizes.

a
b The first thing to know is how the LEDs are connected within the package.
i Each LED is a segment of the display and they are labelled a, b, c, d,e,f,g
€| +5W
f
9] Ve T
b
1
o+
To create the number 2 you turn on 1 ._|:|i aumy
segments a, b, d, e, g e a e
f
o—___+—
Al
R | e A
1ke |
A B c D E F G d.p The LEDs have separate Anodes but

COMMON Cathodes so our display is
called ‘common cathode’. All the

b 4 cathodes (negative ends) are connected
togther and will be connected to the
negative (OV or ground) of the circuit.

CC - Common Cathodes

This particular display was made by OasisTek.
Note that it has 2 decimal points (LDP and RDP)

1 16
A A
F Bt
CC| + + |B
E| + D + |G This view is from the front of the display; the + indicates the
+ - + |C pins in the two rows underneath.
Pin 1 is segment A
LDP 6+ 1 Pin 2 is segment F
+ [D Pin 3 is the common cathode
O & —B-—3 of)|RDP Pin4...
Note that although pins 7,8 &15 don'’t exist they are still

TOS-8102AE 7Segment Display counted!!
pin connections

Connect the 7segment display to the breadboard, so that the common cathode is connected to the
OV/GND line. Through a current limit resistor (e.g. 390R) and a test wire check the segment works .

If T
| LTI R YYYYYYY) A
09§0080 HH{H' \
e Tﬂﬂ
— - -
—

Each segment should glow like segment a does in the next picture.
168

In the photo below note the side of the display has been written on to help identify where the pins are

After testing the segment connect it to the correct pin of the microcontroller.
Then connect and test each segment in turn until all 7 are connected.

169

Outcome development in Technology education include not just making the product (outcome) but
includes the development of it. Things such as tables to help manage your programming will help you
achieve really good results in Technology. Complete the table below and use things like tables yourself
to logically lay out things .

porta.0 a
porta.l—b
porta.2 C
porta3—d
porta.4d e
portas5—f
porta6—9
porta.7—dpl
porth.3—dpr

ul 1=34S

I

-

dpl

dpr

To display the number five, the
segments a,c,d,f &g must be on. and the
code &B01101101 must be written out
the port. Work out the other values
required to show all the digits on the
display and determine their
corresponding values in Hex and
Decimal and put them in the table below

Display Segments ON Segments PORT
OFF Binary
0
1
2
3 Complete this table
4 for your workbook
5 a,c,df.g b,e &B01101101
6
7
8
9
A
b
C
d
E
F

170

Bl

¢ ” = ” G G
o A Complete this diagram
i with the rest of the
= connections to the 7
Z'E,H[]g Segment di_splgy, then
Sl make the circuit on
o el breadboard. On the
- E 5 next page you will find
.l E T EEEE a layout partially
- f — 1Bl ¢socLo/RESETRES . started.
= (ADCS/INTG/TOPBES [
(ADCE/XTAL2IPES [5-
AOE7/XTALLRES (3 Draw a flowchart and
2 1B PED ite a program to
5| ¢SCK/SCL/OCIBOPEZ wri prog
7] ¢MIS0/D0/0C1FOPEL display the numbers 0
¢MOSL/01-S0A/OCLAYPER t0 9.
(ADCE/AINLIPAZ %_ ,
CEOCS A AINA P AS & Design as many letters
(FOCHPAG [of the alphabet as you
A T can and write your
(AREFPAZ = :
reOcpes LB name. Print your
C1 cz (e & 15
=] I 2| GNO (POCDPAL [name program for
]
1 a0 @1 @1 GHO CADOCAXPAE your workbook.
TINYZ&R
g .
g8 =
DI -
[y ¥
— =)
DC - = | =) L]
| = | =) =]) L
T
ol of uf 7 o - g
—
i
L .
f — |—
L]]]
= s L]]]
| T O L =
=l =
GMO
. o . .

%
GND

Complete this diagram with the connections for all of the seven segments

e

TOS-281682—

CAN YOU MAKE THIS 7 SEGMENT DISPLAY INTO A DICE?

172

(Start
g

Compiler setup
Hardware setup
Variables setup

L

*Bi

SetLED

Tor c:-rclecu:uunFﬁ

to max

v

very show delay

v

set piezo

v

very show delay

ey

v

reset piezo

(¥,
Mext

¥
reset LED

Y
Loop

W

15.32 Programming using variables - sound
In this program we will use a

Microcontroller System USING VARIABLES

variable to control the duration O Wicrocontroller Hardware —K]
(length) of a tone. = oo e =624
Input Input Output Output
Circuits Code Code Circuits
Variables (Numbers) i;
First lets review what a tone is. []‘ Itis
a repeated turning on and off of our

piezo. The frequency of the tone is 1/period. The duration of the tone is the
number of complete cycles.

A piezo will not make a sound when you turn it on; it only makes a sound
when you turn it on and off rapidly. So to make a tone we must turn the piezo
on then wait a bit, then turn it off and we repeat this for the duration of the
tone. In this program the tone period will be 1mS so the piezo must be on for
500uS (1/2 mS) and off for the same. Bascom has a waitus command (it is
not particularly accurate but its good enough for this exercise). We want the
tone to last long enough to hear it so we need to repeat it 150 times. 150
times 1mS will give us a tone duration of 150mS (0.15S).

To count the number of cycles we will dimension a variable called cyclecount,
and we will increase it inside a do-loop. It will count upto the max number of
cycles and then we will have a 2 second break. Then it will repeat.

Remember to reset cycle count to O or it will overflow.

This program works similalrly to the Bascom SOUND command.

(End)
1 cycle = 2 half periods
first second tone duraltmn =
halfperiod halfperiod maxcyclecount
Micro ﬂjﬁﬂ repetltmnsx
il
port
port
led on led off

150mS duration

173

' Title Block

' Author: B.Collis

' Date: 22 Feb 08

' File Name: SirenVl.bas

' Program Description:

' This program makes a simple tone using a piezo

' Program Features:

' makes use of Bascom waitus (microseconds) command

' introduces first use of a variable

' the variable cyclecount increases from 0 until it reaches the preset
(constant)

' wvalue maxcyclecount at which point there is a quiet time

' the led is on when the the tone is occuring

' Hardware Features
' a pezo can be directly connected to the micro port

' the led has a 1k resistor in series to limit the current
\}

' Compiler Directives (these tell Bascom things about our hardware)
$regfile = "attiny26.dat" 'the micro we are using
Scrystal = 1000000 'rate of executing code

' Hardware Setups

Config Portb = Output

' Hardware Aliases

Piezo Alias Portb.3 'use useful name PIEZO not PORTDb.3
Blueled Alias Portb.4 'use useful name BLUELED not PORTB.4
'Declare Constants

Const Halfperioddelay = 500 ' delay for 1/2 period
Const Maxcyclecount = 150 'number of cycles to do

' Declare Variables

Dim Cyclecount As Byte

' Program starts here

Do
Set Blueled 'turn led on
For Cyclecount = 0 to Maxcyclecountl
Waitus Halfperioddelayl
Set Piezo
Waitus Halfperioddelayl
Reset Piezo
Next
Reset Blueled 'turn led off
Waitms 2000 'quiet time
Loop
End 'end program

174

15 33 Make a SI m p I e SI ren Microcontroller System USING VARIABLES

. . i i D_ Microcontroller Hardware —[K]

A simple siren sound can be made using two repeating tones e P — S5
H 00— Process Code

A tone of 1 frequency and 1 duration followed by a tone of a ot Input output output

different frequency and duration. We will use our knowledge Cireuits | f| Code Evmbés .N....%,.m] Code || | Creute

of variable to make our own tones. []<— 3?

first tone secohd tone

iti 150 repetitions
o 350 repetitions —___ / p \

500usS 200us

350mS duration 240mS duration

' Title Block

' Author: B.Collis

' Date: 22 Feb 08

File Name: SirenV2.bas

Program Description:

This program makes a simple siren on a piezo

Program Features:
makes use of bascom waitus (microseconds) command

Hardware Features:

Compiler Directives (these tell Bascom things about our hardware)
$crystal = 1000000 'the crystal we are using
$regfile = "attiny26.dat" 'the micro we are using
|l

|l

Hardware Setups

setup direction of all ports

Config Portb = Output

' Hardware Aliases

Piezo Alias Portb.3 'use useful name PIEZO not PORTDb.3
Blueled Alias Portb.4 'use useful name BLUELED not PORTR.4

1

'Declare Constants

Const Halfperioddelayl = 500 ' first tone 1/2 period
Const Halfperioddelay2?2 = 800 ' second tone 1/2 period
Const Maxcyclecountl = 350 ' longer than 255!!!

Const Maxcyclecount2 = 150

' Declare Variables

Dim Cyclecount As Word 'keep count of number of cycls (periods)
Dim Sirens As Byte

175

' Program starts here

Do
Set Blueled
For Sirens = 1 To 3 'just make 3 for testing purposes
For Cyclecount = 0 to Maxcyclecountl
Waitus Halfperioddelayl
Set Piezo
Waitus Halfperioddelayl
Reset Piezo
Next
For Cyclecount = 0 to Maxcyclecount?
Waitus Halfperioddelay?
Set Piezo
Waitus Halfperioddelay?2
Reset Piezo
Next
Next
Reset Blueled
Wait 10 'have a bit of quiet!!!
Loop
End 'end program

Point to take note of:

e A single sirensound has been put into a subroutine, this subroutine will last approx 350mS
+ 240mS = 590mS. Subroutines are a great way of decomplicating your programs.

e How code is indented/tabbed over to aid readabilaity

e If you are using a do-loop — remember to reset your counter

e Use constants rather than putting numbers into your code (waitus halpperioddelay?2). It
makes it so much easier to read

e Use decent names for variables, constants aand aliases; ‘waitus a’isn’t much use when
trying to debug a program

e Use pictures/diagrams to help you plan things

Try modifying the delays and count values in this to find a siren you like the most.
If you want to make your piezo louder then try putting it across 2 different pins of the VAR and

alternatively driving the pins, e.g. set sidea and reset sideb, then after your delay set sideb and
reset sidea. Why does this make it louder.

176

Microcontroller System DEVELOPING A FULL SOLUTION

15.34 Quiz Game Controller ..ﬁh&' o

Here is an example of a device that uses all of what has been learned so far

7

15.35 Quiz game controller system context diagram

ceptual Statement:
Develop a quizz game controller far 4 players

Physzical Attibutes:
different coloured buttons, 4 matching LEDs=, a reset button
release the game

177

15.36 Quiz game controller block diagram

\ 4

\ J

\ /

\ 4

\

15.37 Quiz game controller Algorithm
Note the addition to the variables table, we will need to store data in the program, the winner of the round.

If a player presses their switch their LED goes on
And a beep sounds
And all the other players are locked out
Unitl the reset button is pressed

15.38 Quiz game schematic

ol
LY. | -
s m
LI+ YELSI +
1
ke
—| =
GRMNSI Cf
Vi
— =
Lt —
RESETSH
X-
SU1
5 Ic1
iy s 5 uCe
-] 191 auce
2z 16 FreeTOES
7 ¢AOCLE RESET PRS- 3
¢ADCS/INTR/TEOPBS o
(MDCS/XTALDPES |2 ORMNSL
AOC7 /XTALDPES [
5 (OCABPES .4
5] ¢SCoK/SCL/OCIBPER REDSL
7] <MIS0/00/0CiePBL
¢MOSL-OL/ 508/ OCLAPED
11 GRMNLED
CHOCESATNLIPEZ TI: —
(ADCS/AINDIPAS [=2 —1 K
(AOC4PAS TI:I—
(HOC P A TI:I— YELLED
(AREFPAZ [C 3480 et
- (AOCDPAZ 2 “a
7e| CGhD (AOCLPAL 2
GMO (pOCEPRE 5 FJEDII_ED
TINYZ 6P "k
ORMLED
=
—X i
PIEZD
M0
LY.
"
=H0

The circuit for the device has been drawn in eagle. The decisions about where to connect the
LEDs and switches are not really important, but do take note that three of the switches are
connected to the pins used for programming. This means that while the programming cable is
connected it may interfere with the correct operation of the program.

180

15.39 Quiz game board veroboard layout

It was decided to use veroboard for the circuit rather than design a PCB. Veroboard or strip board
is a highly useful pcb for prototyping one off circuits. As per the picture(below left) it is a predrilled
board with tracks at 0.1 inch spacing so DIP IC packages and sockets fit exactly. The copper
tracks will occasionally need to be cut in certain places. The board (below right) shows where cuts
have been made using a drill bit. Don’t use an electric drill just turn the bit by hand so that you cut
through the copper track and not the board. | have a 4.5mm drill bit with some tape around it so

that | don’t cut my fingers while using it.

181

To plan the layout software called PEBBLE was used, this software has been modified slightly to
include the ATTiny26 micrcontroller. If you don’t have a modified version just use the latest
version you can find (currently 3.04) and use a 20pin dip.

s
e &

8
Y

Bl BN BN BN -

L L
| B L
® @

i

SAYIME
g ayl o] of sadm asay]

.
|le
!...!

I N

i
i
i
i
o 0 0 o ofo 1
i
i
i
i
i

HIEJL 1N

182

Pebble allows you to record your designs in a text file, here is the design for the above board

IC||324|338|1||U?|||ATTiny26]|IC||ATTiny26_1
Wire||172|606|11||11[#000000]11|11||10]
Terminal||161|516|1||TS?||5|4||[terminal_451
Wire||279|443|11|11[#3253FF|2|11||10]
Wire||252|470|11||11|#3253FF|4]|11]|10|
Wire||225[498|11|11[#3253FF|6|11||10]
Wire||145|552|11||11|#FF0000|11|11||10]
Diode|0|576]466|3|Diode|CR?||2]|1|IC||diode_123
Resistor|10000|577]493|1|Resistor|R?||2||IC||
Wire||441|525|11||11[#FF0000|8|11||10]
Wire||467|579|11||11|#000000|8|11||10|
Wire||198|446|13||31[#A233C3|14|11||10|
LED|0|683|161|1|LED|LED?|1|||IC]||led_11
LED|0|683|79|1|LED|LED?|1|||IC||led_11
LED|0|683|242|1|LED|LED?|3|||IC]|led_31
LED|0|683|324|1|LED|LED?|2]|||IC]|led_21
Miscell|[366|142|1||XX?]||1|6|Piezo||misc_6
Note||707|110|1]|||1]|cut track|]|NOTEPAD_11
Note||711]|193|1||||1||cut track||[NOTEPAD_11
Note||708|272|1]|||1]|cut track|]|NOTEPAD_11
Resistor|390|604|302|1|Resistor|R?||3||IC||
Wire||575|308|11||12]#999999|2|13||10|
Resistor|390|604|220|1|Resistor|R?||3]||IC||
Resistor|390|604|139|1|Resistor|R?||3||IC||
Resistor|390|604|57|1|Resistor|R?||3||IC||
Wire||548|226|11||12]#999999|3|13||10|
Wire||521]145|11||12]#999999|4|13||10|
Wire||494|63|11||12|#999999|5|13||10|
Wire||331|635|21||11|#A233C3|3|11||10]
Wire||358]635|21||11|#00A060|3|11||10|
Wire||385|635|21||11|#FFFF00|3|11||10]
Wire||412|635|21]|11[#FF0000|3|11||10]
Wire||439|635|21||11|#FF9900|3|11||10|
Note||181|350|2||||2|[remember to cut the 10 tracks under IC||[NOTEPAD_22
Switch||377]|1011]4||SW?|1||1|Switch||switch_114
Switch||323]|1011[4||SW?|1]||1|Switch||switch_114
Switch||431|1011]4||SW?|1||1|Orange||switch_114
Switch||188]1011|4||SW?|4||1|Reset||switch_144
Switch||269]|1011]4||SW?|1||1|Switch||switch_114
Note||117|59|2||||2||this view is of the top of the board the tracks are actually
underneath||NOTEPAD_22
Note||180|662|2||||2||These wires go to the 5 switches||[NOTEPAD_22
BREADBOARDSTYLE=BB48
SHOWTHETOPAREA=false

Copy and paste the above using the Load/Save feature of pebble.

(if you don’t have my modified version of pebble just delete the first line in the above list and add
the dip20 IC package in your drawing)

183

Quiz game Veroboard

-
-
B
.
-
-~

P eI
22>
)2
323
34D
» 2
)2
33
L]

) 2

BAAAAAAA
INAAAAAAAAARARA

184

Points of note when using veroboard

When | start laying
out veroboard for a
project | first plan it
using either
software or | place
as many of the
components as
possible onto the
board first before |
start cutting any
tracks so | can
move them around

r®>3

,,,)’
'__{4,‘.,
ogmgms D BB

I 29D
> 23D

The board
power supply
lines have
been coloured
in red and
black to make
\design easier

Remember to cut all of
the 10 tracks under the

before commiting to

IC so that the pins don’t
my design.

short out!

« A

)| ')-)')'3')"30')‘)’)'3‘)"
g,")‘),”""))a’)"

' |
-

A loop of wire
soldered onto the
board acts as
stress relief for
the wires going
off board to
components such
as the battery, =~
switches and
piezo

!

APNSSRA RS

1
»

=D D P > D 'PFDD DDDDD » P)
2032333033322 20 3D
229230179 2 329 DDP®ID»IOD o B)

W5 2223023222293 3
»P3IIDIRBIIIPIIIIIZRIDBDDI)

:;u'i?._)jjyvja)vvlalgv)

-
-~

PP IDIIRDDEDDIDPPIDIDDIRD
3232332223 BIPISIIPI) I®)

=~
)
=
)
€
B
3
€
E!'
d
-
~
P

3333 DD
2353 20)

J
<) »
- \))

)

-) |
>)
|
l’ ', ',

3
<.

2D BDIID

Remember to cut the
tracks between the
LEDs so they don’t

4

22 »)
292"
) » 3

short cirucuit

a

185

15.40 Quiz Controller flowchart
Start
4? Red Sw True
Compiler setup
Hardware setup
Variables setup
red led on
make a beep
Dﬂ gy
Do
g sw? True ‘5{?
Loop Until reset
Letal edlod of

Do

v

Loop Until reset

arn led off

yvel led on
make a beep

Do

i

y

Loop Until reset

yvel led off

End <]

k-

Or Led on
make a beep

Do

e

Loop Until ...

or led off

186

15.41 'Quiz Controller program code

'compiler setup
$crystal = 1000000
Sregfile = "attiny26.dat"

'microcontroller setup
Config Porta = Output
Config Portb = Input

'hardware aliases
Grnled Alias Porta.
Yelled Alias Porta.
Redled Alias Porta.
Ornled Alias Porta.
Piezo Alias Porta.3
Resetsw Alias Pinb.0

Grnsw Alias Pinb.1 'use pin for input

Yelsw Alias Pinb.2

Redsw Alias Pinb.3

Ornsw Alias Pinb.4

Set Portb.O0 'activate pullup resistors
Set Portb. 'for the 5 switches

Set Portb.
Set Portb.
Set Portb.

'use port for output

DO oY

DS N

'a simple test pattern on powerup on the leds to show they work
Set Grnled

Waitms 100

Set Yelled

Waitms 100

Set Redled

Waitms 100

Set Ornled

Waitms 100

Sound Piezo , 90 , 200
Waitms 100

Sound Piezo , 90 , 200
Waitms 1000

' Declare Variables
Dim Winner As Byte

187

'program
Do
Winner
Do
If

Els

Els

Els

starts here
=0

Grnsw = 0 Then

Set Grnled

Sound Piezo , 90 ,
Do

Loop Until Resetsw
Reset Grnled

eif Yelsw = 0 Then
Set Yelled

Sound Piezo , 90 ,
Do

Loop Until Resetsw
Reset Yelled

eif Redsw = 0 Then
Set Redled

Sound Piezo , 90 ,
Do

Loop Until Resetsw
Reset Redled

eif Ornsw = 0 Then
Set Ornled

Sound Piezo , 90 ,
Do

Loop Until Resetsw
Reset Ornled

End If

Loop
End

'reset the winner flag

200 'make a beep
'stay here until reset pressed
=0

'its important to use an elseif
'rather than separate if statements
200 'make a beep
'stay here until reset pressed

=0
200 'make a beep

'stay here until reset pressed
=0
200 'make a beep

'stay here until reset pressed
=0

'note you could add other features to the device such as:

' having a different number of beeps for each player
' have some indication that the device is on as normally there are no

LEDs lit,

' add a timing fucntion that gives players a fixed number of seconds to

answer

' a counter that tracks how often each person has won

|

188

16 Programming codes of practice

16.1

wn e

Three steps to help you write good programs

Name each program with a meaningful name and save it into its own directory
Use a template to setup your program from the start
Add lots and lots and lots of comments as you go

You must layout programs properly and comment them well to gain

16.2

achievement

Saving Programs

When saving programs you need a good quality directory / folder structure, so use a different

folder for each program:

it is less confusing
it is good practice

it keeps the files that BASCOM generates for your program in one place
this helps you find programs quickly when you want to

Save your program at the beginning when you start it, this helps guard against teachers

that like to turn the computers off unexpectedly.

16.3

As with structuring and organising your
folders you also need to structure and
organise your program code.

Messy code is hard to understand and
it is surprising how fast you forget what
you did; and then when you want to
refer to it in the future you find that you
cannot understand what you have
written!

The use of a template or pattern to
follow will help discipline your code
writing. Break the code up into the
following sections,

Organisation is everything

title block

program description
compiler directives
hardware setups
hardware aliases
initialise hardware
declare variables
initialise variables
initialise constants
main program code
subroutines.
Interrupt routines

189

16.4 Programming template

' Title Block
" Author:

' Date:

' File Name:

" Compiler Directives (these tell Bascom things about our hardware)
$regfile = "attiny26.dat" 'the micro we are using
$crystal = 1000000 'the speed of the micro

" Hardware Setups

' setup direction of all ports

Config Porta = Output '‘LEDs on portA
Config Portb =Input 'switches on portB

" Hardware Aliases

LedO alias portb.0

" Initialise ports so hardware starts correctly
Porta = &B11111111 'turns off LEDs

' Declare Variables

" Initialise Variables

' Declare Constants

" Program starts here
Do

Loop
End ‘end program

' Subroutines

190

17 Subroutines

Once a program gets large we need to learn how to manage it properly.
Subroutines have already been seen but here is a list of what they can do for you:

Refine you code by Reducing, Reusing & Recycling

e Reduce the complexity of your program code
L Start
e Reuse - reuse the program code within the ()
same program ‘\ll,
e Recycle — you can use the same program Compiler setup
code easily in other programs Hardware setup
Variables setup
o
Here is an example of calling some subroutines \
GOSUB...
Do
Gosub test_sensor il
If sensor_output = 0 then gosub got it False True
Else
gosub tell_the user_again
End if v v
Loop GOSUB... GOSUE...
End

And another example

DO
Gosub test_sensor
If sensor_output =10 then gosub do_a
If sensor_output =11 then gosub do_b
If sensor_output =12 then gosub do_c
If sensor_output =13 then gosub do_d
If sensor_output =14 then gosub do_e

Loop

End

You can see that they really can de-complicate code (make it easy to read and understand) by
removing a lot of /0O code

Subroutines are used to make code easier to read, understand and maintain, however they can
be used well or used poorly. The clue to using subroutines well is to keep the logic for the
program in the main loop and the input and output detail in the subroutines. As in above and the
next example.

191

Microcontroller System QUTPUT CODE EXAMPLE
171 SUbrOUtlneS - MOFSG COde eXGFCISG D_ Microcontroller Hardware —[H
5 Freees o =62
Morse code is a form of communication used in the early days of telegraph and radio Jnput | f] tnput 1 } Output ||| Output
communication when voice could not be sent just short messages using codes. It was also used Varisbies uumbers §Z
between ships using lights. E]%

Draw a flowchart and write a program to send your name using Morse code.

A | @ = H (YYY) O | =] 0 = 1 ® = 6 -_— 0000

B |——o0oo0e I 1) P | @==w—1o Vv 000 — 2 00 m— s 7 _—— 00

C | lmmeo=—0e J O Q |m=——0 = W | & == 3 000 == = 8 —_——— 0
D | =006 K | = = R [e=—0e X —00 = 4 0000 = 9 —— e — @
E | e L o=——090e S 'Yy Y — == 5 (XY XX 0 | —————
F | oo =09 M | — T — Z —_—— 00

G |m==me N |=—we

To make sense timing is important so we will follow these rules

A dash is equal to three dots

The space between the parts of the same letter is equal to one dot
The space between letters is equal to three dots

The space between two words is equal to seven dots

If you wanted to send a short sentence like “ whats up.” It is crucial that you get the gaps between letters , parts of letters and parts of words correct
or the message willl not be understandable by the person receiving it.

Using the program excel we can draw up a chart that shows the correct timing for the sequence for ‘whats up’.
I I . = . B I H = . E I I . .

wW H A T 5 U P

Check the width of 1 dot itis 1 cell in excel, the width of 1 dash is 3 cells, the gap between parts of a letter is 1 cell, the gap between letters is 3 cells
and the gap between words is 7 cells.

A program like this though could be very very long so we will break it up into sections called subroutines by putting the I/O code into subroutines

192

The use of subroutines as well as comments, aliases and constants will make your code easier to
understand and maintain .
Uncommentedandpoorlysetoutcodeislikereadingasentencewithoutpunctuationorspacestheme
aningisstilltherebutitisalittlehardtofollowandunderstand.

' Title Block

' Author: B. Collis
' Date: May 2008
' File Name: MorseMeV2.bas

' Program Description:

send morse code using an LED

' show off good use of subroutines and repitition

' Compiler Directives (these tell Bascom things about our hardware)
$regfile = "attiny26.dat ' bascom needs to know our micro
$crystal = 1000000 ' bascom needs to know how fast it is going

' Hardware Setups

Config Porta = Output ' make these micro pins outputs
' Hardware Aliases
Start Morseled Alias Porta.7 ' the name morseled is easy to remember
1 S
Compiler setup ' Declare Variables
Ha@mmn&smmp Dim Count As Byte 'temporary variable to count repitions
Variables setup ' Initialise Variables
¥, ' Declare Constants
“ Const Dotdelay = 250 ' length of a dot
Const Dashdelay = 750 ' length of a dash
¥, Const Partofletterdelay = 250 ' gap between parts of letters
Send 'C Const Endofletterdelay = 750 ' gap between letters
Const Endofworddelay = 1750 ' gap between words
¢ i b o e e e e e e e e e e e e e e e o o — — — —— — —— — —— — — — — — o — o — o — o — o — o — o o — o o o
Shﬂiyan ' Program starts here
Do 'start of a loop
. Gosub Send c
Send 'L Gosub Send 1
Gosub Send s
hostwait Waitms Endofworddelay
shortwal 'send more letters here
v Wait 5
Send 'S' Loop 'return to do and start again
= End
ﬁ) Vo
'D”?Tm“ ' Subroutines
¥, Send c:
Loop '"letter ¢ - the sequence is a dash and dot repeated.
For Count = 1 To 2
y Gosub Dash
Gosub Dot
(End) Next

Waitms Endofletterdelay
NOTE: the different | rReturn
shape off a gosub
Send 1:

'"letter 1 - the sequence is dot, dash and 2 dots

Gosub Dot

Gosub Dash

For Count = 1 To 2

Gosub Dot
Next
Waitms Endofletterdelay

193

Return

Send_ s:
'letter s
For Count =

Gosub Dot
Next
Waitms Endofletterdelay

- the sequence 1is
1 To 3

3 dots

Return

Dot:

Set Morseled ' on
Waitms Dotdelay !
Reset Morseled

wait 1 dot time
'off

Waitms Partofletterdelay

Return

Dash:

Set Morseled ' on

Waitms Dashdelay !
Reset Morseled

wait 1 dash time
'off

Waitms Partofletterdelay

Return

C

Send_C:)

For count=110 2

!

send Dash

wait endofletter

!

Return

C

Not only do things like subroutines, comments,
indenting code, the use of alias and const make your

code easier for you to read and debug, imagine going

to a job interview and being asked to bring in some
code you had written to show your prospective boss —

Send Dash

which would you show him?

*

Forcount=11o0 2

Using const, alias, subroutines and comments
properly in programs is an essential code of
practice and worth credits to students.

!

send Dot

wait endofletter

!

(

Return

)

194

17.2

Learning to develop useful planning tools to help

solve problems such as drawings, block

diagrams, tables & flowcharts.

Learning about the Bascom commands SET,

RESET and ALIAS

1. Understand the situation by drawing a planning

diagram that explains the road layout

Traffic lights sequencing exercise

Microcontroller System

OUTPUT CODE EXAMPLE

O-

- .
00—

Input
Circuits

[

Microcontroller Hardware

Input
Code

Program memory:

Process Code
LI S %
* Variables (Numbers)
Memory

Output
Code

—q
=[==[]

Output
Circuits

S?;

®

Q. .&

Cc

2. The traffic light sequence process is actually very confusing and a planning tool such as a
sequence diagram will help you plan the program. Complete this sequence which shows which

lights come on in the sequence
Lights A

>(A_TN)

fwait GRN_delay

(A OR)

— Lights B

-

195

Z Lights C
=

W
[

How long should the delays between LED changes be for real traffic lights?
In our model we only need to test that the sequence is correct so we will choose shorted delays

Real lights Our Model for testing purposes will be
Green is on for 1 minute Grn_delay = 8
Orange 30 seconds? Or delay =3

Delay after one road goes | Red_delay =1
red before the green for
the next road goes on

3. Draw a system block diagram — which shows important connections within the system, but is
not a full circuit diagram (complete the schematic below with the pin connections for Set B and Set
C.

Label the rst of this diagram with the pins on the micro you will use for the other 2 sets of lights.
Take special note that you will have to use at least one of the output pins on portb. | chose
portB.4.

Set B

Se;f

v

o o
A0 J_’_D_ =P
A1 < <
A2 41_)_[>_ B

Micro

¥ .

Set C

196

4. Do the physical wiring of the 3 sets of LEDs to the microcontroller.
e Layout the physical LEDs to follow the real physical layout
e Use appropriate coloured LEDs
e Keep it tidy, use short wires.

v I v
0 : foo : 0
25 35
Mo M M oM NN N | n | A
MoM oM M M M M | i _| | X B
MW W W W W W | L} | m C
SRR BN |‘: IO: IO: » WD
L B B B B B B G GE B B B GE G | X E
Mo M M oM MO M N M N N N N N X F
Mo M M M M M M N N M M N M H G
Il‘:t.ﬂr‘ﬂlllllll W H
n = n n N m ® ™ m m W |
L | L L LR B B B G G |)
25 30 35
. v
0 1 !:!FI_IJ I 0
Here are some photos of the process
Wiring stage one: all the LEDs and resistors are mounted
Resistors are in the negative line flat side of the LED is negative and connects to the resistor

Resistors are in the negative line

197

remember the power must go through both the - S Did you get all your LEDs around the right way?
LED and the resistor, take care to connect the wire

: b B V5 Are the two legs of the LED in separate columns of the
from the microcontroller to the positive of the LED L = breadboard?

I’ll’.l&'i

RIS

an:t&qg:
SRR LSRN
R
sy EE RN e

.hii?*li‘l!'

e W oE NN U e e

bq,n—i{t!\(&&u
.~i£jﬁanu

Wiring stage two the A set of Ilghts are W|red up
A.0 goesto A_red

A.1 goesto A or
A.2 goes toA_grn

-— nlccv--.-io

s ‘i—

h—-...

PEEESESEREN BN
R s R R AR R R

TR
pcna%u ssceentn S

Wiring stage 3: B set of LEDs are wired to three ports of the microcontroller, here | have chosen

portA.3, portA.4,portA.5.

Note thatportsA.3, A.4 and A.5 are

. used

Also note that the G(ground) and
V(positive voltage) pins are not
connec ted to I/O devices but to the
power supply!

Can you complete the last stage of the
LED wiring? You will have to put one
of the LEDs on portB. | chose portB.4

If you need more help search the rest
of the book for the last picture.

5. Complete this flowchart in
your workbook with the rest of
the sequence. There are 9 LEDs
so there will need to be 9 stages
inside the loop.

CAN you see thepattern
emerging

Having the flowchart will help
you debug (correct errors in your
program) later on

(start)

\

all reds on
all others off

%‘

A red off
A _grnon
grn_delay
Y
A_grn off
A _oron
or_delay

Y
A_or off

A redon
red_delay

Y
A_red off

B_grnon
grn_delay

A

B_grn off
B_oron
or_delay

v

Y

3

-

-

OCeOUe OLe O8O0 @O

O O] SOOI00 200 200 _
o0 108 100 200 209 _

200

6. Write your
program, things to
work on in your
program:

e Describe the
hardware at the
top of the file
and use aliases
for the port pins
that describe
what is
connected to
each one

e Use spaces to
help layout your
program so it
looks good

e Comment your
program with
short clear
descriptions

e Use constants
with good
names e.g.
waitms
red_delay

'"TrafficLightsVerl.bas
'B.Collis

LER SR Sb b b b b b I d dh db \Ib Sb Ib b b b b db 4 db db Ib Sb 4

$crystal = 1000000

$regfile = "attiny26.dat"
Config Porta = Output
Config Portb = Output

LI e A A AR db I I b b b 2 2 db dh db I b b b b b i i g 4

'"LED connections

'use aliases so that the program is
understand

A red Alias Porta.O

A or Alias Porta.l

A grn Alias Porta.2

easier to write and

B red Alias Porta.3
B or Alias Porta.4
B grn Alias Porta.>b

C red Alias Porta.o6
C or Alias Porta.’

C grn Alias Portb.4
'use constants to make the program easier to read and to
modify

Const Grn delay = 8
Const Or delay = 3

Const Red delay =1

'green on time
'orange on time
'safety delay

'initially set the red lights on and all others off
'introducing the new commands SET and RESET to
individually control port pins

Set A red 'on
Set B red 'on
Set C red 'on
Reset A or 'off
Reset A grn 'off
Reset B or 'off
Reset B grn 'off
Reset C or 'off
Reset C grn 'off
Do

'A lights

Reset A red 'off

Set A grn 'on

Wait Grn delay

Reset A grn 'off

Set A or 'on

Wait Or delay

Reset A or
Set A red

Wait Red delay 'delay for red light runners!

201

'B lights
Reset B red
Set B grn
Wait Grn delay

Reset B grn
Set B or
Wait Or delay

Reset B or

Set B red

Wait Red delay
runners!

'C lights

Loop
End

'grn on

'grn off

'delay for red light

you write the rest of the code

202

18 The Do-Loop

The do-loop is very similar to the for-next however in the do-loop we have to remember to write
the code to clear the variable everytime we start the loop (count=0) and increment the variable

(incr count).

Siren: Siren:
For count = 0 to Maxcountl count=0
Waitus Halfperioddelayl Do
Set Piezo Waitus Halfperioddelayl
Waitus Halfperioddelayl Set Piezo
Reset Piezo Waitus Halfperioddelayl
Next Reset Piezo
Incr count
For count = 0 to Maxcount?2 Loop until count = Maxcountl
Waitus Halfperioddelay? count=0
Set Piezo Do
Waitus Halfperioddelay?2 Waitus Halfperioddelay?2
Reset Piezo Set Piezo
Next Waitus Halfperioddelay?
Return Reset Piezo
Incr count
Loop until count = Maxcount?2
Return

The real difference between a do-loop and a for-next is that with a do-loop we are repeating
something a number fo times that is unknown at the time we write the program. Take the example
of hammering a nail

E.g. in real life we don’t say hammer the nail 5 times, we say
hammer the nail UNTIL IT IS IN
Do
Gosub hammer_nail
Loop until nail_height = flat_in_wall

Sometimes in a program we want to repeat something, but we don’t know how many times it has
to be repeated, we just wait or do something until it is true.
e.g. Do
Loop Until blu_sw=0
In this case the length of time we are waiting is unknow as we are waiting for a user.

But in a program we may have to wait for some calculation to complete
e.g. Do

gosub wash_clothes

gosub rinse_clothes

gosub measure_water_mirkiness

Loop Until water_mirkiness < 10

What is the point of washing clothes 100 times, when they might only need 50 or they might
actually need 200 so we wash the number of times it takes for the clothes to be clean.
We will use do-loop like this in the next solutions.

203

18.1 Don’t delay

Delays such as wait and waitms can become real headaches in longer or complex programs, it is
vital to start to learn how not to use them! We will use our new knowledge of do-loop-until to help.

In this program two switches are used to change the rate at which an LED flashes.

Start

4

Compiler setup
Hardware setup
Variables setup

Do
Do

v

waitms Waitms delaytime
delaytime

If swa=0 then decr delaytime

If swa=0 then decr delaytime

Toggle led

Loop

There is a significant problem with this program however; when the microcontroller is
waiting (wait delaytime) it cannot read a switch press, so users input might get ignored

As the delay increases in length this becomes a bigger problem, as we are ignoring the switch for
longer.

For this reason we do not use lengthy waitms statements in programs we find alternative solutions
to our problems

204

To begin to solve the issue you should understand that a delay routine in a program is simply a
loop that repeats a large number of times e.g.in this loop

(T s)
4

Compiler setup If this loop takes approximately 2 uSec (microseconds) to complete and
Hardware setup does it 1000 times then it will give a delay of 2 mSec

Variables setup
% How many times would the loop have to repeat to delay:
delay = 1000

1mS ?
" 10mS ?
n 1 Second ?
i 1 Minute ?

count=delay

In some programs it is acceptable to put in a very small delay, in other

programs it is not. You must start to think through the consequences of
Do putting a delay within your specific program.
% At this stage we are working on simple programs so we can see the
decr count consequences of a small delay.
W

count=0
W/
togale LED

(e D

205

(T sen)
g

Compiler setup
Hardware setup
Variables setup

delay = 1000

Do
y

count=delay

delay

-

True

decr count
wait Tmillisec

v

Loop Until

count=0

\T/

toagle LED

W
Loop

i
End

Dim count as word
Dim delay as word

Delay = 1000
do
count=delay
do

If swa=0 then decr delay
if swb=0 then incr delay
waitms 1
decr count
loop until count =0
toggle led
loop

Note that we need to keep 2 variables,
one is DELAY which we increase and
decrease using the switches. The other
Is a temporary copy of it COUNT which
is decremented within the loops.

Although the main problem is fixed
there are some other problems to fix:

1. When you keep incrementing
delaycount eventually it will get
to 65535, and another
increment will cause it to roll
over or overflow back to 0 (an
If-then may help you)/

2. Also when delaycount gets
down to O, another decrement
will cause it to underflow to
65535!

3. The resolution (degree of
change) of our delay program
is not very good if we increase
or decrease each time by one.
Perhaps a bigger
increment/decrement value
might be more useful.

206

18.2 Modified Knightrider
A neat feature for the Knightrider program would be if the speed of the sequence could be varied.

So for the same reasons as before the switches need checking often; so after each led in the
sequence of LEDs, read the switches, wait a preset amount of time, if one button is pressed
increase the delay time, if the other button is pressed decrease the delay time.

The switches should be checked at least every 1mS so that they can detect user input.

To do this we implement a loop within the program that initially begins at the value of flashdelay
and counts down to 0, a second variable checkdelay is needed as a copy of flashdelay

Dim Flashdelay As Word
Dim Led As Byte

Dim Checkdelay As word

flashdelay=1000 dim direction as bit
= Flashdelay = 1000
— Do
checkdelay=flashdelay
T —| Checkdelay = Flashdelay
check switches Do
incr/decr flashdelay Gosub Checkswitches
¥ Decr Checkdelay
decrease checkdelay Loop Until Checkdelay = 0
If Direction = 0 Then
Gosub Nextright
Else
Gosub Nextleft
End If
next led in sequence Loop
| End

'Subroutines

The check switches subroutine using debounce commands
Checkswitches:

Debounce Swl , 0 , Decrflashdelay, Sub

Debounce Sw2 , 0 , Incrflashdelay, Sub
Return

Decrflashdelay:
Decr Flashdelay

Return

Incrflashdelay:
Incr Flashdelay

Return

Nextright:

Return

Nextleft:

return

207

19 Alarm system development

When learning to program students find it straight forward to write programs which contain one
simple process and which require a few lines of code; however you must move on to the next level
and this requires learning about another way of thinking called algorithmic thinking. This is seeing
a problem as an ordered and organised process of steps. Because of their growing knowledge of
computer syntax students generally begin programming at the keyboard rather than with thinking
through a problem and using a pen and paper to organise their program. Programs become
confused very quickly in this situation.

Note that with technological practice (at all levels) students are required to plan, trial and test
ideas. So when writing software students must not write software without spending time planning
it first AND keep a record of their work.

In these next examples instead of presenting a final prototype the process of development is
produced from the very simple to the more complex (as complex as we will go with flowcharts).
The process of development of a program should be incremental — don’t try and do everything in
one program all at once. All that does is produce loads of errors and even if you fix the errors the
software probably wont work!

19.1 Simple alarm system — stage 1
Microcontrolier System USING LOGIC
D_ Microcontroller Hardware —[m Start
S 23 Frog an oty .
Ll Process Code EEL{ $
I'npu(Input . OQutput O_utput
Circuits Code i T Code Circuits Compiler setup
1 Variables iMumbers 5 »
: » Moty i gz* Hardware setup
Variables setup

Here is a very simple alarm. When the trigger switch is
pressed the LED flashes and it makes a siren (using our
siren subroutine from the previous programs)

In this first alarm the alarm only sounds while the switch is
pressed

flash led

,__l_, Alarm Unit
T T Q Alarm_LED '@N

Trigger_Sw

ks

Y

208

19.2 Alarm System Schematic

——X 80
Z\ D1
=N
N B

Note that the connections.
Piezo on portA.5

PBS H B& LED on port_A.3

B5 |2 X BS Switch on pina.0

: X_ B4 10K NOTE THE NAMES

—X B PORT for outputs

PIN for inputs

A7 H\/ > The next thing to do is to record the configurations for the 1/0 devices.

16 == KFAS

ASEr—X At Piezi Config Porta = Output

e X\): il Config Pina.0 = Input

a2 | 3 AA} A7

o 119 il 2 Trigger sw Alias Pina.O0

. A)\‘/ ' » Alarm led Alias Porta.3
7 Piezo Alias Porta.o6
Switch 18
209

Here is one
INCORRECT attempt
at wiring up the circuit

There are several
problems with the
wiring; how many can
you spot?

EEEEEEREE,

1. forgotten the red
and black power
wires to the
breadboard.

2. the LED and
resistor dont link on
the breadboard.

3. the switch wring
IS quite incorrect.

4. there is a resistor
in series with the
piezo.

)
~

[} - -
:r":ﬁ switch wiring corrected,

S,

ir"\,s resistor put from I/Q pin to 5V,
I switch from 1O pin to ground

power wires from PCB \
to breadboard added :
resistor removed,

piezo negative wire
changed to ground

LED put into
correct line of
breadboard

.1

sppeEEREEES

'B Collis 2009
'file: ALARM 1.BAS
Sregfile =
$crystal
Config Porta =
Config Pina.0 =

1000000
Output
Input

Trigger sw Alias Pina.0
Alarm led Alias Porta.3
Piezo Alias Porta.®6

Const Flashdelay = 50

"attiny26.dat"

'keep count

'rate of executing code

'white switch

'use useful name PIEZO not PORTDb.3

' first tone 1/2 period
' second tone 1/2 period
'"length of first tone
'"length of second tone

of number of cycls (periods)

= 0 to Maxcyclecountl

0 to Maxcyclecount?2

Const Halfperioddelayl = 200
Const Halfperioddelay2 = 500
Const Maxcyclecountl = 350
Const Maxcyclecount2 = 150
Dim Cyclecount As Word
Dim Sirens As Byte
Do
If Trigger sw = 0 Then
'siren
For Cyclecount
Waitus Halfperioddelayl
Set Piezo
Waitus Halfperioddelayl
Reset Piezo
Next
For Cyclecount =
Waitus Halfperioddelay?
Set Piezo
Waitus Halfperioddelay?
Reset Piezo
Next
'"flash the led rapidly
Set Alarm led
Waitms 20
Reset Alarm led
Waitms 200
End if
Loop
End

213

19.3 A simple alarm system — stage 2
In this second alarm the IF-THEN has been replaced by a DO-LOOP-UNTIL

It is a much tidier piece of code, replacing the If trigger_sw=0 with a do loop until separates the
two concepts of waiting for the switch and what happens after it is pressed. This reduces the
complexity of the main loop by a layer,

'B Collis 2009
'file: ALARM 2.BAS
(_ Start :) Sregfile = "attiny26.dat"

%_ $crystal = 1000000 'rate of
executing code
Compiler setup Config Porta = Output

Hardware setup Config Pina.0 = Input
ariables setup

ﬁ Trigger sw Alias Pina.0 'white switch
Alarm led Alias Porta.3

[g Piezo Alias Porta.6
Loop Until Const Flashdelay = 50
trigger_Sw Const Halfperioddelayl = 200 ' first tone 1/2 period
Const Halfperioddelay2 = 500 second tone 1/2 period
Const Maxcyclecountl = 350 '"length of first tone
Do Const Maxcyclecount2 = 150 'length of second tone
% Dim Cyclecount As Word 'keep count of number of cycles
Siren Dim Sirens As Byte
'wait for trigger switch to be pressed
$ Do
Flazh Led LOOp Until Trigger_sw =0
Do
% 'siren
| Loop For Cyclecount = 0 to Maxcyclecountl

Waitus Halfperioddelayl

\T/‘ Set Piezo

End Waitus Halfperioddelayl
Reset Piezo

Next

For Cyclecount = 0 to Maxcyclecount?2
Waitus Halfperioddelay?
Set Piezo
Waitus Halfperioddelay?
Reset Piezo

Next

'flash the led rapidly

The problem with this
bit of code is that the
siren keeps going
until the power to the
circuit is turned off.

This is not very Set Alarm led
satisfactory. Waitms 20
Reset Alarm led
Waitms 200
Loop
End

214

194 A simple alarm system — stage 3

In this version we the
siren only goes 10
times and then the
LED stays flashing.

Start

g

Compiler setup
Hardware setup
Yanables setup

Do

v

Loop Until
trigger_Sw

Flash Led

g

e Loop

“HH__%__fH”
(D

The problem with this
is that there is no
way to reset the
system without
removing the power
from it. All the code
realy needs to be
inside the main do-
loop.

'B Collis 2009

'file: ALARM 3.BAS

S$regfile = "attiny26.dat"

Scrystal = 1000000 'rate of executing code

Config Porta = Output
Config Pina.0 = Input

Trigger sw Alias Pina.0 'white switch
Alarm led Alias Porta.3

Piezo Alias Porta.6

Const Flashdelay = 50

Const Halfperioddelayl = 200 ' first tone 1/2 period
Const Halfperioddelay2 = 500 ' second tone 1/2 period
Const Maxcyclecountl = 350 'length of first tone
Const Maxcyclecount2 = 150 'length of second tone

Dim Cyclecount As Word 'keep count of number of cycles
Dim Count As Byte

'wait for trigger switch to be pressed
Do
Loop Until Trigger sw = 0

For Count = 1 to 10

'siren

For Cyclecount = 0 to Maxcyclecountl
Waitus Halfperioddelayl
Set Piezo
Waitus Halfperioddelayl
Reset Piezo

Next

For Cyclecount = 0 to Maxcyclecount?2
Waitus Halfperioddelay?
Set Piezo
Waitus Halfperioddelay?
Reset Piezo

Next

'flash the led rapidly

Set Alarm led

Waitms 20
Reset Alarm led
Waitms 200

Next

Do

'flash the led continuously
Set Alarm led

Waitms 20
Reset Alarm led
Waitms 200

Loop

End

215

19.5 A simple alarm system — stage 4

In the 4™ version we
add a second switch to
reset the alarm.

Start

&

Compiler setup
Hardware setup
Wariahles setup

Flash LED

The problem with this
stage of the alarm
project is that the
alarm is always on,
there is no way to turn
it on or off, apart from
the power supply.

'B Collis 2009
'file: ALARM_4.BAS
Sregfile = "attiny26.dat"

S$crystal = 1000000

Config Porta = Output
Config Pina.0 = Input
Config Pina.l = Input

Trigger sw Alias Pina.0 'my white switch
Reset sw Alias Pina.l 'my green switch
Alarm led Alias Porta.3

Piezo Alias Porta.6

Const Flashdelay = 50
Const Halfperioddelayl
Const Halfperioddelay?
Const Maxcyclecountl = 350 'length of first tone
Const Maxcyclecount2 = 150 '"length of second tone

200 ' first tone 1/2 period

Dim Cyclecount As Word 'keep count of cycles
Dim Count As Byte
Do
'wait for trigger switch to be pressed
Do
Loop Until Trigger sw = 0

For Count = 1 to 10
'siren
For Cyclecount = 0 to Maxcyclecountl
Waitus Halfperioddelayl
Set Piezo
Waitus Halfperioddelayl
Reset Piezo
Next
For Cyclecount = 0 to Maxcyclecount?2
Waitus Halfperioddelay?
Set Piezo
Waitus Halfperioddelay?
Reset Piezo
Next
'flash the led rapidly
Set Alarm led
Waitms 20
Reset Alarm led
Waitms 200
Next
Do
'flash the led until the reset button is pressed
Set Alarm led
Waitms 20
Reset Alarm led
Waitms 200
Loop Until Reset sw = 0
Loop 'return to the start

216

500 ' second tone 1/2 period

19.6

Microcontrolier System

More complex alarm system

USING LOGIC

D_ Microcontroller Hardware —{H
Frog ety N

00— Process Code BeY

Input Input Output Output

Circuits Code 1 Code Circuits

T Variables Mumbers) §5 E

s §Z

[

Program for a more sophisticated alarm unit, with 2
switches and 2 LEDs. In this alarm the reset switch
has been replaced by a set switch which is used to
activate and deactivate the alarm.

L
T Y

Trigger_Sw >

Alarm Unit

Alarm_LED Q
Set_Sw ‘ Set_LEDQ

Alarm 5 system block diagram:

19.7 Alarm unit algorithm 5:
Initially the two LEDs are off

When SetSw is pressed
the program begins to monitor Trigger_Sw
and Set_ LED comes on

If TriggerSw is detected Alarm_LED flashes
If SetSw is pressed Alarm_LED stops

PROBLEMS WITH THIS VERSION
When thinking through this after planning it it a
problem was identified.

When the alarm is turned on it waits at point A for the
SET switch to be pressed. When it is pressed the
program continues on to point B where it checks the
trigger switch, it is not triggered so it takes the path to
the loop until unset at point C where it immediately
exits the loop. This is caused by the program being
carried out so fast. We need to add a debounce to
the reset switch to fix this.

So this program is not developed any further but it is
kept on file for an important reason. In technology
education a record of trialling is essential to
developing clear problem solving and leads to good
grades.

217

(T sen)
!

Compiler setup
Hardware setup
Variables setup

i

W
ALARMLED
OFF

SET LED OFF

Loop Until SET

-‘.|*

SET LED ON
—rr_mi_j

Triggered?

True

ALARM LED

&L}

For COUNT=1 to 10

Siren
Flashing LED

Mext

Do

y

Flash LED

Loop Until
UNSET

(T sen]
% 19.8 Alarm 6 algorithm:

i e Initially the two LEDs are off
Variables setup When Set_Sw is pressed and released A
the program begins to monitor Trigger_Sw

e andthe Set_LED comes on
e If Trigger_Sw is detected Alarm_LED flashes
AL”‘E'"F"'FLED e If Trigger_Sw is reset Alarm_LED keeps flashing
; e |If Set_Sw is pressed and released (D) the
= o= Alarm_LED stops

NOTE: at point B there is no debounce, this is because
we want the program to continue to sense the switch is
pressed at point C and then wait for it to be released.

W
I-
! Now this is a complex piece of code and really we have
A gone too far with flowcharts. Later in the book there is
another concept called statecharts which is a much

v easier!

DEBOUNCE

SET LED ON 'file: ALARM 6.BAS

'compiler setups
$regfile = "attiny26.dat"
$crystal 1000000

'Hardware setups
Config Porta = Output
Config Pina.0 = Input
ZLARMLED Config Pina.l = Input
QN e e s
'Hardware Aliases
For COUNT=1to 10 Trigger sw Alias Pina.0
% 'my white switch
Siren Set sw Alias Pina.l
Flashiga LED 'my green switch
Alarm led Alias Porta.3
Set led Alias Porta.4
Piezo Alias Porta.o6
'use useful name PIEZO not PORTDb.3

'Variables
Flash LED Dim Count As Byte
Dim Cyclecount As Word
'keep count of number of cycles

Loop Until
UMNSET B

k.

'Constants

Const Flashdelay = 50

Const Debouncedelay = 30

Const Halfperioddelayl = 200 !
first tone 1/2 period

DEBOUNCE D Const Halfperioddelay2 = 500 '
W second tone 1/2 period
Loop Const Maxcyclecountl = 350

'"length of first tone
Const Maxcyclecount?2 = 150
'length of second tone

218

W
End

'program starts here
Do
'turn off both LEDs
Reset Alarm led
Reset Set led
'wait for set switch to be pressed and released
Do
Loop Until Set sw = 0
Waitms Debouncedelay
Do
Loop Until Set sw =1
Waitms Debouncedelay
Set Set led
'wait for set switch to be unset and check for alarm at same time
Do
If Trigger sw = 0 Then 'sound alarm
For Count = 1 To 10
'Siren
For Cyclecount = 1 To Maxcyclecountl
Incr Cyclecount
Waitus Halfperioddelayl
Set Piezo
Waitus Halfperioddelayl
Reset Piezo
Next
For Cyclecount = 1 To Maxcyclecount?
Incr Cyclecount
Waitus Halfperioddelay?
Set Piezo
Waitus Halfperioddelay?
Reset Piezo
Next
'"flash the led rapidly
Set Alarm led
Waitms 20
Reset Alarm led
Waitms 200
Incr Count
Next
'flash the led until alarm is unset
Do
Set Alarm led
Waitms 20
Reset Alarm led
Waitms 200
Loop Until Set sw = 0
End If
Loop Until Set sw = 0 'debounce set switch
Waitms Debouncedelay
Do
Loop Until Set sw =1
Waitms Debouncedelay
Loop
End

219

19.9

Algorithm example - multiplication

Process

Notes

Issue: Multiply two numbers together
using only addition e.g. AxB=Answer

Not all microcontrollers can do multiplication within their
internal hardware

Algorithm:
Add A to the answer B times
e.g. 5 x4 =5+5+5+5

Finding the right words to describe the algorithm can be
difficult at times, you need to concise, accurate and
clear. This can be a step students struggle with.

Variables:

(memory locations to store data in)
numA — byte size

numB — byte size

Answer — word size

Choose useful names and think about the size of the
variable (a byte stores 0-255, a word 0-65535, an integer
stores -32768 to 32767, a long stores -2147483648 to
2147483647)

Flowchart:

W
total=total+num1

!

decr numz

Note the shapes of the elements:

Start and end
Inputs and outputs
Processes
Decisions

Learn the process of keeping track of how many times
something is done. A variable is used to count the
number of times a loop is carried out. In this case the
variable is decreased each time through the loop until it
is 0. An alternative is to increase a variable until it
reaches a specific value.

Within a microcontroller though it is often faster to test a
variable against 0 than some other number.

Test the flowchart with an example
Answer Num2
6
12
18
24
30
36
42
48
54

OIRrINW|I~OIO)||00

Does it work?
Note how the columns in the test follow the same order
as the processes in the loop.

This stage can be a little confusing and often we can be
out by 1 either way (if it is then our answer might not be
54 but 48 or 60)

If you get wrong answers after a loop check that you are
decreasing or increasing them the right number of times.

Identify the control statements to be
used.

In BASCOM there are several control mechanisms to
manage loops.

220

' SimpleMultiplicationV1.bas
$crystal = 1000000

$regfile = "attiny26.dat"
Config Porta = Output
Config Portb = Output
Config Pina.3 = Input

Dim | As Byte

Dim Num1 As Byte
Dim Num2 As Byte
Dim Answer As Word

Vkkkkkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkk

Numl =6
Num2 =9
Answer =0
Do

Answer = Answer + Num1
Decr Num2
Loop Until Num2 =0

Thkkkkkhkkhkkkkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkkkkkx

Numl =6
Num2 =9
Answer =0

For1=0 To Num2
Answer = Answer + Num1
Next

Thkkkkkhkkhkkkkkhkhkhkkhkkhkkhkkhkkhkkhkkkkkkk

Numl =6
Num2 =9
Answer =0

For1=Num2 To O Step -1
Answer = Answer + Num1l
Next

Thkkkkkkkhkhkkkkhkhhkkkhkhkkkkhkkhkhkkkkkrkkk

Numl =6
Num2 =9
Answer =0

While Num2 >0
Answer = Answer + Num1l
Decr Num2

Wend

End

If you copy this code into BASCOM-AVR, then save it
and compile it you can try it out using the simulator (F2).

Do-Loop Until...

For-Next...
this requires another variable to act as the loop counter,
and can either count up or count down.

While — Wend

When you run this program you will find that two of
them work correctly and two do not! You need to
understand which and fix them; so watch carefully
the values of the variables in the simulator and fix
the two that need fixing.

221

19.10 Algorithms for multiplication of very large numbers
The previous code is OK for small to medium size problems however there are much more

efficient algorithms; here are 2 alternatives.

‘Peasant’ Multiplication 75 x 41
75 41
37 82
18 164

N B~ O

Write down the Algorithm:

Divide the first number by 2 (ignore
remainder) and multiply the second
number by 2. If the second number is odd
add it to the total. Keep doing this process
until after the first number is 1.

What variables will be needed:
Num1, Num2, Total

Program:

' PeasantMultiplicationV1.bas

$crystal = 1000000
$regfile = "attiny26.dat"

Config Porta = Output
Config Portb = Output

Dim Temp As Word
Dim Num1 As Word
Dim Num2 As Word
Dim Answer As Word

Numl =16
Num?2 = 39
Answer =0

‘note again the use of do-loop as we don’t know
how many times the loop needs to be repeated
Do
(see this way of finding if a number is odd or
even)
Temp = Numl Mod 2
If Temp = 1 Then Answer = Answer + Num2
Numl =Numl/?2
Num2 = Num2 * 2
Loop Until Num1 =0

End

222

Long Multiplication 41,231 x 3,1231

41,321

x 3,131
41,321
1,239,630
4,132,100
123,963,000
129,376,051

Write down the Algorithm:

What variables will be needed:

Flowchart:

223

19.11 Algorithm and flowchart exercises

1. In this game the first person picks a number between 1 and 10 and the other person must guess
this number in 4 or less guesses. If you play this game a few times with someone you will get a feel
for the algorithm (the process for solving the problem) . Can you write the process down?

2. This is a game played with any number of players who take turns saying a number. The first player
says "1" and each player in turn increases the number by 1, 2, or 3, but may not exceed 21, the
player forced to say "21" loses. There is a winning strategy for this game you will need to research it
or figure it out to be able to write a program that can beat a human opponent.

. & 3. A factory fills drink bottles; it has a machine that puts the drink
ﬁ e 57 Dottles into cartons and full cartons onto pallets. 3 " A
| 3A. Design an algorithm and flowchart that counts 24 bottles m__ into
J 1 each carton and keeps track of the number of cartons. o
3B. Extend this in a second algorithm and flowchart that tracks
‘ the number of bottles and the number of cartons, when
number of cartons is over 48 then increase the number of pallets.

4. A program marks test scores and gives grades of N, A, M, or E based upon the following scores
0% to 33% = N, 34% to 55% = A, 56% to 83% = M 83% to 100% = E
Write the algorithm and draw the flowchart for this process.

5. Design an algorithm and flowchart for a program that gets a player to guess a random number from
1 to 1000.

If correct, then display the number of guesses and start again
If incorrect then give as too high’ or ‘too low’

When the number of guesses goes over 8 the player loses

6A. a golf course watering system monitors the time and
moisture level of the ground and waters the grass in the early
evening if it is needed.

6B. the watering system comes on for 30 minutes then waits
minutes to measure the moisture level and comes on for a
second watering if it is below a fixed level.

7.Design an algorithm and flowchart for a program that calculates powers eg. 2° = 32 (use only
addition and loops)

224

20 Project Planning

The development of a technology project requires much more than the making of a working prototype, it requires students to undertake a full
development process of planning, design, client and stakeholder liaison along with much modification to develop the prototype that meets a clients’
needs.

A great number of tools are available for use when planning and executing the development of a project, such as:
e action plans
e Gantt or PERT charts

timelines

goal/target setting

keeping a journal

publishing a website

stakeholder surveys and questionnaires

emails

spreadsheets

mind maps

presentation software

drawing software

surveymonkey

CAD and PCB design software

Block Diagrams

Schematics and Layout

Many planning tools can be found at
www.mind-tools.com or www.visual-literacy.org

As you go thorugh the various stages of developing a project, your effective selection, review and use of these tools will count towards your
grades.

225

http://www.mind-tools.com/
http://www.visual-literacy.org/

21 System Designer

Clreate tr}e different drawings

Each drawing is in its own tab

F 4 \

System Designer software was developed to help students both design and manage their project; it contains various different types of drawings that
will be used during development of a prototype

Open/Close Designs

KXProject Mindmap§

Project Timelinedy System Context DiagraE> System Block Diagram Joard Layouff Algorithm '\ State Machine Flowchart Subroutine Special Hardware
achi MM_1 | sc_1 | BD_1 | BL_1 | Alg_t1 | Bikelight| Truck | DailyRputi[sM_5 Dsm_1{sm_2 Dsm €] Fc 1D

-

7 MM_1
§ sc 1
BD_1

A (SRR

bout

BL_1

LY Alg_1

L3 Bikelight

3 Truck

3| DailyRputine
3 SM_5

3 SM_1 /
&3l SM_2
3 SM_3
FC_1

&> Example Pyoj i o "~ Create Timyline from mindmap s il &
s . v J \ - \

Each drawing has its own unique toolbar

Right Click drawings to delete/rename

Each drawing has common toolbar items as well

226

21.1 Creating a new project.
It is essential that each project is saved into its own folder, as a unique file for each diagram within System Designer is created.

Use the toolbar along the top to create various diagrams.

The process you go through may vary but here is a guide to follow initially:
1. First create a Mind map for the project
a. This diagram will help you to think about the different stages required when developing your project.
b. Initially there may not be much in the diagram as the planning cannot really be undertaken fully until after the system is designed
2. Then develop a System Context Diagram
a. This diagram shows your system from the outside, all of the internal workings of it are hidden. This will take several iterations (cycles
of development)
b. Keep different diagrams for the different stages and changes you go through
3. Next create a Timeline — go back and modify the mind map diagram (and use the auto create timeline function)
a. In this diagram you can begin to plan the processes and resources required to develop the prototype.
4. Next create a System Block Diagram
a. In this diagram you can visualize the internal subsystems within the device.-This will also be an iterative process so keep different
drawings for different options
5. A Board Layout can be created next
a. A board layout can be used to plan the layout of components onto breadboard, Veroboard and selected development boards.
b. Note that a board layout will not be required if a PCB was designed specifically for the project
6. Add an Algorithm
a. An Algorithm is a written explanation or set of instructions that describe the functions the microcontroller program will carry out.
7. Flowcharts/Subroutine diagrams
a. Smaller systems can be designed using a Flowchart and as many subroutines as required.
8. State machines
a. Larger systems will need a State Machine Diagram and possibly some subroutines
b. A state machine is a very common diagram used in designing software for embedded systems

227

21.2 Toolbars

The toolbars in each diagram contain tools to add specific components to each diagram.
Some components are the same in each diagram though

mm eI ?

e EaF S

¥ \ N
exporl as png \ launch help file
Image Zoom to fit
export as pdf zoom out

copy the diagram zoom in
to the clipboard

21.3 Context Menus
Many features of diagrams are accessed through right clicking on the components, links and backgrounds of each diagram

I M T e TR e e e LT

Orientation

Edit Micro Detail
Hide/Show Micro Detail
Cut selection to clipboard
Copy selection to clipboard

Copy selection as image to clipboard

Delete sushsystem

228

21.4 Selecting items to copy them

Press the ctrl key and click and drag over portions of the diagram to select it. Then right click on the selection to decide whether to copy them to the
clipboard, so they can be pasted into another diagram, or copy as an image to the clipboard so they can be copied into another program.

Ctril

21.5 Pan diagrams
Press the alt button and use the mouse wheel to select the diagram to move it around

Alt

229

22 Project mind map

This diagram is a simple brainstorm of the milestones (major stages) required to develop a project from an issue right through to a working
prototype Students can develop thelr own diagram or use the example project milestones (and modify them)

hbriaee Research and Block
. Diagram (2)

Fmal Soihnare Algcmihm and N

olours and other details can be changed by right clicking on the milestone or background.

230

22.1 Milestone duration

At each milestone if the number of weeks is added in brackets it can be copied thru to the timeline
Values include part weeks e.g. (0.3).

Switches and LEDs,
Hardware and Subroutine

22.2 Automatic timeline creation

Once the milestone stages have been decided upon a timeline can be automatically created using the milestone colours and weeks values from the
mind map.

File Name: |TL_2
Creators Name: |B>Colls - first created on Wed Jul 13 2011

Start\Week: | Monday , January 31,2011

EndWeek: | Friday . October 28,2011

Weoks= B

OK

The form that opens will automatically start from the beginning of the current year.

231

23 Project timeline

Monday, February 07, 2011 Monday, February 14, 2011 Monday, February 21, 2011 Monday, February 28, 2011 Mond
s m|t|w|lrt]Fels|s|im|r|{w|r]r|s|s|m|[r|[w|[r]F|s|s|m|T|{w|[T]F]|s|s]|[m]
System Context
Milestone Investigation of the issue/problemiopportunity Diagram, User Interface Sis g;sﬁ:;ﬁh s
& Brief Development g
Stakeholder Mrs other ACC, statistics || Mrs Tehr Mrs Tehr Mrs
Consultation Smith parents newspaper Smth Smith Smth
Required
Cl'iti_CEﬂ Can | make what Mrs Smith Do | have access to the
HEVIFW wants within the time avaialble? expertise necessary to do this
CQuestions
Haolidavs et
Investigation of the issue/problem/opportunity System Context Diagram, User Interface & Brief Development
research issue with client to find her key concerns, Actions identify the essential product features and determine clear
Actions identify other stakeholders o find their opoinions. specifications for them
rezearch accident stats on burns catalogues
Resources approx 2 weeks to carry out interviews and write up Resources Internet - suppliers
findings Internet - Forum to see if someone has already done it
- Dizscuss with teacher to see if the project will be . Teacher
e achieveable =es friends
_ Internet _ |Equipmer1t |
Equipment St_‘?'kEh':'lder questions |Resear{:h |ﬁr|d water level sensor, water temperatre sensaor, large light
e-journal to record progress and results | | -
N Accident stats Budget may nee:d extra mnr.'l'_.r to buy expensive sensors
find 3-4 suitable other stakehaolders These things went right...
Budget INl CRITICAL |These things | had o change so that | would be able to continue...
These things went right... REVIEW
POINT Before | started work an this stage | should have...
These things | had to change so that | would be able to
CRITICAL continue... Adjustments made to future plans so | will be able to complete. ..
REVIEW
POINT Before | started work on this stage | should have...
Adjustmentz made to future plans so | will be able to
complete.

In the timeline diagram milestones can be drawn (if not already created automatically from the mind map). Double clicking on a milestone allows it
to be edited.

232

23.1 Milestone Planning

A milestone is made up of several planning steps as well a review of progress ad reflection at the end of it.

The following information is required by the planning standard: actions, resources, expertise, equipment, research, and budget.
Take time to complete these as thoroughly as possible.

The tables can be resized and moved around the diagram to create a better layout for exporting.

23.2 Stakeholder Consultations

It is important to identify the points in your project where different stakeholders will have to be consulted.
As well as the information required from them.

23.3 Critical review points

Each milestone in the project will have critical points associated with it that will need to be overcome so that they don’t stop you from reaching the
next stage and subsequently the final goal of finishing your project. You need to identify these and comment on them.

23.4 Copying Timelines to put them into your journal

To export a timeline to another document such as Word etc, first resize and move the tables around the diagram and also change the zoom level to
obtain the view wanted.
The visible portion of the diagram can be copied to the clipboard for pasting into a word or other document, using the button on the toolbar.

BD_1| BD_2 | SM_1] SM_2| MM_1| SM_3| Alg_1 TL1 |
T £g = | % Cr meE |
> Edit Rows S 5\ E r

‘B

Copy VISIBELE area to clipboard

g: =
vl=—|

\

. o';

°

= Y
ill: ~ - ‘-—l +
= Edit Rows B %

Copy FULL diagram to clipboard

233

24 System context diagram

Although you are developing a prototype (product/outcome), you need to see it as both a system and a subsystem (smaller component of a larger

system) with all the associated inputs and outputs.

The system context diagram is to recognize that your prototype is a subsystem within its larger context/environment.

A context diagram shows how your prototype interacts with users (called ‘actors’ in the programming industry) and its immediate environment.
No detail about the inner workings of the prototype is required. Think of the prototype as a 'black box’; all we know about it are its inputs, outputs
and attributes (physical characteristics, functions, qualities and features)

A system context diagram is also an essential tool in writing an initial brief as it helps to document stakeholder requirements

As well as this, the system context diagram will provide evidence for the following standards: modeling, systems, brief writing, planning, and

prototyping.

24.1

\

Create main (or secondary) system device

T e e—— — T —~— — e —
| B A9 Mcccoresier Lecwen Decgret - Bgitiatews Sohews (CO0IL VILOIT ? ' T

7| Menkon! Sullin 1| Bt 2! BadSya 2 30 3| MockDuageen 07 | AT eet LB Mt XS
. - IEOwm«A-"OQ & I I (== =7

Mazs Sxaters Dyrien

B e T T = el L T e I e —

First step is to create a main system device

BEOOwmeAR+"0

—

-

»

[S

234

24.2 Add attributes to the device
— -~ - | -‘—_k |'
HEOO®meA-"O &

\ Add physical shapes to the device
(right click to change their shape)

Use the rectangle and circular buttons on the toolbar to add physical attributes to the device (right click on an attribute to change its shape)
Give the device and all its attributes useful names.

Proyect Pro;ectMmdmap Pro_qectTimelme _ystem Context Dlagram Systemﬁlockblagfam Algorithm State Machine Flowchart Subroutine Special Hardware About
E MM_1 | Timeline| BathSys_ s_2| BathSys_3| SC_4 | BlockDiagram | BD_2 | Mg 1] sm1 | sM_2| Fc.1 SC5 |sc.6 |

Ei@*méaﬂorgaﬁmm“”

By SNy B S

POWER SUPPLY
12V mains adapter

235

External sensors and actuators

a-oﬁgam#sa

Add input and output components
that are external to the device
Add any external environmental sensors or actuator outputs, (these are things not contained within the device itself, note that the devices are not

hardware specific names like ‘LM35’ but ‘water temperature sensor’. These are useful for stakeholder consultations and identify the information the
sensor gives.

236

24.4 User interactions with the system (social environment)

EOO®m<A-"9 &

users and their interactions
need to tbe added to the diagram

Add a normal user - how will this user interact with the prototype (input things into it and be alerted by it).

Some systems have different categories or levels of users (normal and special e.g. cellphone have normal users and technicians which have
access to extra features).

POWER SUPPLY
12V mains adapter

237

24.5 Physical Environment

Each product exists within with a physical world that forces certain things upon it, e.g. cellphones are kept in the pockets of clothes, what influence
does this have on their design; also the cellphone must not have a negative effect on the clothing it is kept in. In the bathtub controller the device
will be inside but near water.

POWER SUPPLY
12% mains adapter

24.6 Clients and stakeholders

BEOmMSA-"S 5

stakeholders have \
importance to any design

Add stakeholders to the diagram, at this stage you can discuss the diagram with the client and other stakeholders to make sure that their needs
have been fully documented.

POWER SUPPLY

12V mains adapter

If you change the design after speaking with the stakeholders keep a record of the old design or even start a new system context diagram within
your project.
The reason for keeping ongoing changes will be to show you iterative (ongoing) planning and proof of stakeholder consultation.

239

24.7 Conceptual statement and physical attributes
B e L I) - —_
EDOwm<eA-"9 &

A system design needs a description of its
purpose (conceptual statement) and its physical attributes
1. Write a conceptual statement, 3 sentences is usually enough
a. Why is the device to be created?
b. Whatis it?
c. Whydo it?
2. Describe the physical attributes (characteristics and features) of the system, the function of the system (functional attributes) need not be
described here as they will be thoroughly covered in later drawings.

Conceptual statement:

The client has described her concerns about running a bath and being distracted away from it leaving a hazard for her small children.
This project will be a bath water temperature and water level controller that will allow the automatic monitoring and control of the bath.
This will provide the user with a safer environment for her family.

Physical attirbutes:

There is a power led to show the device is on

The user sets the amount of time the bath fills for, the water level to automatically shut off at and the water temperature alarm
The LCD displays: water termperature, water level, time left to fill

A red led and piezo alert the user of either overfill or over temperature

The warning LED flahes quickly at over temperature,

The piezo emits two different ypes of tones one for over temperature the other for over full

A =olenoid controlled water valve turns off the water on over full

The base unit sends the temperature and fill status to @ remate unit in the kitchen,

240

24.8 Secondary system devices

 CLLLEE Ll 9

Create main (or secondary) system device

If the system includes external devices you have to develop as well then add another system device.

Take note that the communication between these two devices in this system is in one direction only. In some systems it will be bidirectional.

241

24.9 External system connections

EOO®mm<A-"® &
Some systems interconnect
with other systems

Some systems interact with external systems such as if the bath tub controller was to send a signal to the home alarm system.

POWER SUPPLY
12V mains adapter

242

In this system context diagram a fish tank controller is linked to the internet.

HEOOwem<eA+"® &

Some systems interconnect
with other systems

243

24.10 Export diagram to written documentation

L 3

EOOw%sMm« A"V &
Export to written document

Once the diagram is completed it can be checked with stakeholders for its accuracy, and then a written version of it can be produced by clicking on
the ‘Written brief’ button in the toolbar.
This text document can then be expanded to include more detalil

244

25 Block Diagram

In this diagram you need to develop the design of your product as a system itself.
A block dlagram allows you to plan where interfaces will be connected before you do the connection, allowing changes to be made.

A system block diagram reveals the inner secrets of your prototype, using blocks to represent subsystems within the device.
Note that some specific detalil is hidden and will be found in a schematic (circuit diagram).

Start by adding the microcontroller you are using and right click on it to edit part numbers etc.
245

Then add things that it might have, an LCD, buttons, piezo, LEDs.
Use the rectangle and circular buttons and other shapes to add to the device.
Make sure that links between the micro and inputs/outputs are made in the right direction either coming in to the micro or out of it.

Blocks are used to represent parts of the circuit, so an LED subsystem is created by just adding a circle and calling it red led.
You do not show the current limit resistor, detail for that will be in the schematic.

Sometimes it may be a good idea to have two separate block diagrams, one for 1/0O (input and output) devices and a second for the power supply (it
just makes it easier to separate the two parts of your design).

On the right hand side of the diagram are tables that list the outputs, inputs and variables that are created. These will be modified in later diagrams.
The detail about port connections is useful in developing the setup program code for your program. By clicking on the Basic Code button in the
toolbar the program code to form the setup area in your program will be automatically generated.

rnf ShowCodeForm ! -Aﬁ 'E)

Clicking here will select all code and copy it to the clipboard

ject Name: TimeTrackerx

Collis - st created on Tue 2ug 23 2011

"Compiler Setup
$crystal = 1000000
Sregfile = "attiny4é&l._dat"

T e e e e o o o e o
'Hardware Configs

Config PORTA = Output

Config PORTE = Output

Config PINA.& = Input 'grn_btn

'Character LCD config
Config Lcdpin=pin , Db4 = PORTB.3 , DbS = PORTB.4 , Dbé = PORTB.5 , Db7 = PORTB.&é , E =
Config ILCD = 20 * 2

Ve e b Vo e e e e e e Vo e e e e e e e e e e e e e e e e e e e

'"Hardware aliases
'inputs

grn_btn Alias PINA.&
'outputs

Piezo Alias PORTA.O

..

246

26 Board Layouts
If you will be using breadboard or an existing development board then completing a board layout drawing will be a useful planning tool.
(also If a schematic and PCB have been developed using a program such as Eagle then a board layout may be useful as you can create your own

background using your layout from eagle and add I/O devices to it yourself)
Planning your layout before you start soldering is a really good use of time; it'’s a lot easier to change the diagram than your physical board!!

- — =
.@ AVR Microcontoller System Designer - RightSideup Software (C)2011 V[1.0.18] . —— W A -

Flowchart Subroutine Special Hardware About

Project Project Mindmap Project Timeline System Context Diagram System Block Diagram Boeard Layout Algorithm State Machine
bookStateMachi MM_1| SC_1 | BD_1 BL_1 | Alg_1 | Bikelight| Truck | DailyRputin | SM_5 | SM_1] sm_2| sm_3| Fc_1]

o Ll MM_1 % - es
g8l 5C_1 '{' S { ? D E Background ~ -@Capacitor v ;[i Diode ~ nHardware A 'IC v .LED v . Microcontroller ~ III ,Resistor v -Transistor - x
L5 - 4 r g !

247

Start by selectlng the background |mage for the drawmg

26.1 Backgrounds

ATMegal 28x64vl
ATmegaV4
ATTiny26v6b
ATTiny4613b
KiwiPatch
LargeBreadboard-2
LargeBreadboard
SmallBreadboard
SmallBreadboardx2

SmallVeroboard

W=

SureBP008

Veroboard

248

26.2 Add Components
Components can be added by clicking on them in the toolbar, then right clicking on them will allow you to change features.

5 10 15 20
K N N N m & N N N N N N N N N N -
Rotate »
B N N N O N N N M N N N N N N N N EditText :
N N N N W N N N N N N NN N N N N Change Font ;
M M M N N N N M N M M N N N N N N £l A28 S L :
Show / Hide Text
E N N |
Cut selection to clipboard
Copy selection to clipboard
Copy selection as image to clipboard
I . Add Image
E N N N N N N N N M N N N N N N N N Remove Image
H E O E N N N N N N N N N N N N Delete device
H EH ® N ® N E N E E N E ®E ®E N ®E ®mE =m |
H E E N N N N N N N N N N N N " Eu J

249

]
=)
S
©
(<b)
e
+—
@)
+—
0
o
S
)
]
L
o
c
S
o
-
=)
o
>
©
©
<

26.3

Here a servo has been added to the layout and the 3 pin header for it to connect to

XN N F
NG
. mH

| — Y e—

5

250

26.4 Create your own backgrounds and components

The software is flexible enough for you to add your own backgrounds automatically.
Open the installation folder and find the folder named layout images
Layoutimages
Marme
|¥ | Background_ATMegal 28:64v1. gif
|¥| Background_ATmegaV4.gif
|¥ | Background_ATTiny26vih.gif
|¥| Background_ATTiny4613b.gif
|¥ | Background_icon.gif

¥| Background KiwiPatch.gif 1. The images can only be of type .gif

¥| Background_LargeBreadboard.gif 2. There can be no spaces in the file names

¥ Background_LargeBreadboard-2.gif 3. Each category must have its own icon e.g. Background_icon.gif

¥ Background_SmallEreadboard.gif a. The naming must be with an underscore between the category name and the word icon
|¥| Background_5mallBreadboardx2.gif 4. Each image must start with the same category hame e.g. Background_SmallVeroboard.gif
¥ | Backgreund_SmallVeroboard.gif a. The name must be capitalized the same background is NOT the same as Background
|¥| Background_5ureBP008.gif b. Again no spaces and the underscore separates the category from the image name

|¥| Background_Veroboard.gif 5. If a component is to have a text value it can be added to the component name with another
|¥ | Capacitor_Electrolytic_10uF.qgif underscore

|¥| Capacitor_Electrolytic_2200uF.gif a. Capacitor_Electrolytic_10uF.gif

|¥| Capacitor_Electrolytic_4700uF.gif 6. If you create a component type but forget to create the icon then it will not appear

¥ | Capacitor_icon.gif 7. If a component doesn’t appear then check your spelling!

|¥| Capacitor_MonPaol_0.22uF.gif 8. Have fun

|¥ | Capacitor_MonPol_100nF.qgif
|¥| Capacitor_Tantalurm_10uF.gif
|¥ | Diode_diodel .qgif

|¥| Diode_dioded.gif

|¥ | Diode_diode3.gif

|¥ | Diode_dioded.gif

|¥ | Diode_icon.gif

|¥ | Hardware_Headerl.gif

|¥| Hardware_Header2.gif

|¥ | Hardware_Header3.qgif

|¥| Hardware_Headerd.gif 251

27 Algorithm design

Algorithms are well defined instructions for getting the microcontroller to do something.
Pseudo-code is when an algorithm is written down using 'sort-of* program code commands.
Algorithms can also be designed using diagrams such as flowcharts or state machines as well as several others.

Why write an algorithm (either using pseudo-code or flowcharts)?
Because it helps you solve the problem and you need to do this before you start programming;
If you can solve the problem on pen and paper with an algorithm then you can write a program that will solve the problem.

Stage 1: determine the initial states of each output device.(right click on the row you want to moidify in the outputs table)

. e.g. will LEDS be on or off when the power is turned on
. what will a display show
. will a pump, motor or relay be on or off

Stage?2: Data storage (cariables) — you need to specify these at this stage, before you start programming

. As well as reading inputs and controlling outputs your programs use, create and change data.

. What data will your program be processing?

. The data is stored inside the microcontrollers RAM (memory).

. A variable is the name given to a location in RAM.

. e.g. dim X_position as byte.

. This means dimension (allocate or set aside) 1 byte of ram and in the program and from now on the location can be called X_position

To make the use of ram as efficient as possible different variable types exist.

BIT (uses 1 bit of memory - values are either 1 or 0)

BYTE (uses 1 byte of memory - values can be any whole number from 0 to 255)

WORD (uses 2 bytes of memory - values can be any whole number from 0 to 65535)

INTEGER (uses 2 bytes of memory - values can be any whole number from -32,768 to +32,767)

LONG (uses 4 bytes of memory - values can be any whole number from -2,147,483,648 to +2,147,483,647)

SINGLE (uses 4 bytes of memory - values can be positive and negative fractions as small as 1.5x10"-48 up to 3.4x10"38
DOUBLE (uses 8 bytes of memory - values can be positive and negative fractions as small as 5.0x10"-324 up to 1.7x107308)

STRING (uses ascii code to represent letters and digits, 1 character takes up one byte of ram)

e.g. dim my_name as string * 10 can store up to 10 characters only!
the largest string you can have is 254 characters

252

When choosing a variable to store data think about the right type to use (so as not to waste memory). But make sure you choose one that gives you
what you need. Does your variable need to store both positive and negative numbers? Whole or fractional numbers? Big or small?
Variable names cannot have spaces, must start with a letter, can contain digits but not symbols.
. Examples
Temperature range is from 3 to 40 degrees - Dim outside_temperature as byte (is within the range 0 to 255)
Temperature range is from -30 to 12 — Dim freezer_tempr as integer (needs to store negative numbers)
Angle to move is from 0 to 360 — Dim move_angle as word (positive whole number from 0 t 65,535)
Calculate the difference in milliseconds between 2 dates — Dim millsecs_diff as long
Dividing numbers requires decimals, Dim percent_of _day as single

Stage3: Decomposition

. Break up your problem into small solvable chunks

. The conceptual chunks should separate between: reading sensors, storing data, retrieving data, doing calculations, repeating actions and
driving outputs, such as:

O

O O O O O OO OO0 O0oOO0

O

Read the temperature (input)

Close the door (output)

Keep the last 2 temperature readings (data storage)
Read the humidity (input)

Move the arm up (output)

Keep the last 2 humidity readings (data storage)
Read the distance from the infrared sensor (input)
Find out if we need to open or close the vent

If the second temperature readings minus than the first is > 2 then open the vent (calculation)
Find out how long to turn the fan on for (calculation)
Open the window (output)

Display the time (output)

Tilt the deck (output)

. In each calculation add some maths or logic about what your program will do using the IF, DO, WHILE, AND, OR, NOT

@)
(@)

IF the blue switch is pressed AND NOT the red switch THEN make the led flash (logic)
IF the blue switch is pressed AND the end is NOT reached THEN X_position = X_position + 4 (calculation and logic)

. Repetition

(@)
O

DO increase X_position UNTIL end is reached (uses calculation)
WHILE the temperature > 5 flash the led (uses calculation)

253

28 Flowcharts

ﬁ AVRMlcrocontoIler Systen ',:.,.a.;e.. 'Ri tSideup Software (€)201 f VIL ” 0.12]

Compiler setup
Hardware setup
Variabl_es setup |

System Designer software includes a flowcharting feature which can be used to graphically explore programming concepts.
254

28.1 Drag and drop flowchart blocks

\E] AVR Microcontoller System Deﬁigner 2 R;g‘l;tSldeup Software (C)2011 V[1.0.17] — e g - z
Project Project Mindmap Project Timeline System Context Diagram System Block Diagram Algorithm State Machine Flowchart Subrot

ﬂPmJectsdp BD1|BDZ|SM1|SM2|MM1|SM3|AI9_1|TL1|SC1 FC_1 |

..... BD 1

gl D 2 * — lﬂP“VOlltput Process Do-Loop-Untll If-Then-Else For-Next While-Wend ' Si
SM_1 Su
... SM_2
Ll MM_1
SM_3
7‘7‘ Alg_1

2 L Click and drag the different

= > blocks onto the **

FC1 Compiler setup
Export as BASIC

Hardware setup
Variables setup

program code

255

28.2 Beginning template

A new flowchart file starts with a template that is the minimum needed for a microcontroller program to function.

A
Compiler setup
Hardware setup
Variables setup

$crystal 1000000

$regfile

The first block sets up the Bascom Compiler to recognise your specific micro e.g.
$crystal =

$regfile =

As well as your specific hardware e.g.

Config Port...

And then variables your program will use to store data e.g.

Dim car_count as byte

A blank program can be generated by system designer, it looks like this:
' Project Name: Dice
' created by:
' block diagram name: BD 1
' Date:9/16/2011 10:51:15 AM
' Code autogenerated by System Designer from www.techideas.co.nz

Thkkkkkx

'Compiler Setup

"attiny46l.dat"

LR I I kb bk b b b b S b b b b b b b b b Sk b i

'Hardware Configs

Config PORTA = Output
Config PORTB = Output
Config PINB.6 = Input

'red sw

AR I kb bk b b b b b b b b b b b kb kb b b b b b b i

'Hardware aliases
'inputs

red sw Alias PINB.6
'outputs

LED1 Alias PORTA.
LED2 Alias PORTA.
LED3 Alias PORTA.
LED4 Alias PORTA.
LED7 Alias PORTA.
LEDS5 Alias PORTA.
LED6 Alias PORTA.5

S oyw N e O

LI I kb bk kb b b h b b b 3h b i

Pl Program starts here —--------

256

29 Example system design - hot glue gun timer

29.1 System context diagram

Conceptual Statement:

Develop a hot glue gun timer that turns the glue gun off
automatically after 60 minutes.

Physical Attibutes:
buttons to manually turn it on and off, 60 minute timer, Large
LEDs to show whether i is on or not

Previously the gluegun was locked
away as itwas a nuisance for the
teacher when itwas left on, this
was frustrating for the students.
Parents and school want a safe
environment where students are
more in contral of their own
learning.

students can use it
when they want to
without having to ask
first.

) Hot Glue GHn

257

29.2 Hot glue gun timer block diagram

This reveals detail about the inner physical attributes or characteristics of your product, note it is not a full circuit or schematic diagram, but is still in
some conceptual form. Make sure links between I/O devices and the microcontroller go inthe right direction.

29.3 Hot glue gun timer algorithm

Here the functional attributes (characteristics and features) of the product are revealed.
1. Start by identifying the initial states of any outputs — on or off in this situation
2. Describe the algorithm — how the device responds to user input and computations it must carry out.
3. At the same time begin to identify any data the program will need and give these variables useful names.

Ifthe user presses the on_switch then thered_led goes off
and thegrn_led comes onand the glue gun tums on

These stay on for 60minutes, then the red_led comes on,
and the glue gun goes off and the grn_led goes off

AT anystage if the user presses the Off_Swiich the glue gun
turns off, green_led goes offand the red_led comes on.

Atany stage ifthe user presses the on_switch the timer
restarts again

29.4 Hot glue gun timer flowchart
A flowchart is a visual algorithm for a simple system

(T s)

‘:J:? Intepreting the algorithm:
Compiler setup
Hardware setup
Variables setup

Initially:
OFF_LED =on
ON_LED = off

OFF_LED on
OM_LED off
GLUE_GUN off

GLUE_GUN = off

Do

v

Loop Until START_BTN
pressed

Wait until START_BTN is pressed

OFF_LED = off
ON_LED =on
GLUE_GUN =on

OFF_LED off
OM_LED on

(Y O

" Zero the counter
millisec=10
e
;5, Wait 10 ms
wait 10 ms Increase counter by 10

increase count by 10

Check the switches

-If start pressed reset count to O to restart the timing for
another hour

millizec=10

Eﬁﬂsﬁ“ True -If stop pressed set count to max so looping stops

LY
millizec=3,600,000
(max out counter)

3

. L Repeat until the time has reached 1 hour
oop Until millisec

=3500 099

260

29.5 Hot glue gun timer program

' GlueGunTimerVerl.bas

' B.Collis 1 Aug 2008

"1 hour glue gun timer program

" the timer restarts if the start button is pressed again

" the timer can be stopped before timing out with the stop button
‘compiler setup

$crystal = 1000000

$regfile = "attiny26.dat"

'‘hardware setup

Config Porta = Output

Config Portb = Output

Config Pina.2 = Input

Config Pina.3 = Input

‘Alias names for the hardware

Gluegun Alias Porta.5 'names easy to read and follow
Offled Alias Porta.6

Onled Alias Porta.7

Startbutton Alias Pina.2

Stopbutton Alias Pina.3

'‘Dimension variables

Dim Mscount As LONG 'need a variable that can hold a really big number
Const Max_mscount = 3600000

'‘program starts here

Do
Set Offled
Reset Onled
Reset Gluegun 'initially off
Do 'wait for start button press

Loop Until Startbutton = 0

Reset Offled

Set Onled
Set Gluegun 'glue gun on
Mscount = 0 'start counting from zero

'note the use of a do-loop rather than a for-next to count the repititions
'we do this because it is unknown when the user will push a button and reset/restart the count
Do

Mscount = Mscount + 10 ‘add 10 to milliseconds
Waitms 10
If Startbutton = 0 Then 'Check Switch
Mscount =0 'reset time to zero, so restart timer
End If
If Stopbutton =0 Then 'Check Switch
Mscount = Max_mscount 'set time to max, so cancel timing
End If
Loop Until Mscount > Max_mscount 'loop 3,600,000 times unless user changes mscount
Loop
Notes:

1. We wait 10mS — we could wait 1IMS however 10mS is not so long that we would miss the switch press
2. Tthere is no debouncing of the switches, this is not really needed in this program because repeat switch
presses don’t cause any problems for us.

261

30 Complex interfaces and their programming

Having completed some introductory learning about interfacing and programming microcontrollers
it is time to learn more detail about interfacing.

‘@ Q2
e o

Analogue to digital conversion using

Switches

LDRS)
and Thermistors

Boosting the power output

and drive small
inductive loads

to make
sound

Parallel interfaces to

Liquid

crystal displays and multiple seven segment displays

Lol

~~~~~~

Serial interfaces to
Real Time Clocks

262



30.1 Parallel data communications

Both internal and external communications with microcontrollers are carried out via buses, these
are groups of wires. A bus is often 8 bits/wires (byte sized) however in systems with larger and
more complex microcontrollers and microprocessors these buses are often 16, 32 or 64 bits wide.

Parallel Communications

Data?
Datag
Datas
Datad
Data3
uC Dpata2
Datat
Datal

8ddr?
Addre
Addrs
Addrd
8ddr3
Addr2
Addrd
Addr0

IC1 IC2

Communication is carried out using 8 or more bits at a time. This is efficient as an 8 bit bus can
carry numbers/codes form 0 to 255, a 16 bit bus can carry numbers/codes from 0 to 65,535 and 32
bits can carry numbers/codes from 0 to 4,294,967,295. So data can move fairly fast on a parallel
bus.

Parallel communication is often used by computers to communicate with printers, because of this
speed. Only one printer can be connected to the parallel port on a computer, however within the
computer itself all the devices on the bus are connected all the time to the data bus. They all
share access to the data, however only the device that is activated by the address bus wakes up
to receive/send data.

263



31 LCDs (liquid crystal displays)
There are a great many different types of LCD available, we describe them by there various attributes.
Colour/Monochrome, alphanumeric/graphic. Some LCDs which are made for specific purposes with fixed

Characters such as these two.
/—4 -

—{WMA TP QD (tov) (DIR)y——

—(wp3)—(ar (1) PTY)—(REG)—(1D3 )~

T
@ B

gl Y (OREL [

’
4

rar, Yewr, wrar,
L b -

-~
-
|

-~
-
@w ol
-

dam TN (

LI
NLLTRT

AL LIRS

4 line alpahanumeric mono LCD with backlight

Monochrome alphanumeric LCD wirh no

backlipht

ABCDEFGHI JKLMHOPGRST
=PAOTANFT TNV CVIFUT

UUWRYZL¥ ]~ _abodef ah
SRR INEINEREAERITS

Colour graphic LCD 320x128pixel.

264



One of the best things about electronic equipment
nowadays are the alphanumeric LCD displays these

are simple single, double or 4 line displays for text KO
and numbers. These displays are becoming vl
cheaper and cheaper in cost, we buy them in bulk Input

from China using www.alibaba.com. The LCD is a
great output device and with Bascom so very easy to
use. They fit the need for student learning in

31.1 Alphanumeric LCDs

Microcontroller System

DEVELOPING QUTPUT CIRCUITS

Microcontroller Hardware

Togram memory

Circuits

Input
Code

Process Code
T

Output

L b

" Variables {Numbers) -

Code

Memon,

IS

—
=54

Output
Circuits

S?;

technology education very nicely.

Some common commands are

Connecting an LCD to the microcontroller is not
difficult.
There are 14 or 16 pins on the LCD

cls - clear the screen
LCD "Hello" - will display hello on the display

locate y,x - line and position on the line of the cursor (where text will appear)

Cursor OFF — hide the cursor (still there but invisible)

LCD temperature — will display the value in the variable temperature on the display

ov

+5V

Contrast

RS - register select
R/W - read/not write
E - Enable

DO

D1

. D2

10.D3

11.D4

12.D5

13.D6

14.D7

15.Backlight + (optional)
16.Backlight OV (optional)

©CoNoO~wNE

40 chardet
with

Most LCDs are set up so that they can communicate in

parallel with either 4 bits or 8 bits at a time. The faster
LCD Bit Mode system is 8 bits as all the data or commands sent to
the LCD happen at the same time, with 4 bit operation
ok the data/command is split into 2 parts and each is sent
8 Data Lines separately. Hence it takes twice as long.
3 Control Lines
Apart from the 4 data lines another couple of lines are
necessary, these are control lines, RS , R/W, E. When
using Bascom the R/W line is connected
LCD 4 Bit Mode permanently to griund, and the other two lines need
uC to be connected to the micro. The advantage of 4 bit
) operation is that the LCD uses only 6 1/O lines in total
ggi‘:tr';'l"fﬁ‘es on the micro. At the current time the contrast line can
be connected to ground as well.

265




ATTINY26 Development PCB with LCD

Although a breadboard was useful earlier for some introductory learning about connecting a
microcontroller and interfacing simple components such as LEDs and switche;, trying to use a
breadboard to connect an LCD is not easy, you just end up with too many wires that fall out of the
breadboard if the LCD gets moved. It is more useful to have a circuit board of some description.
Here is a development PCB that was designed to be useful for students when building their
circuits. It makes use of a standard 2 line 20 character alphanumeric LCD. It has a 16 way
connector (although the LCD used has no backlight so only 14 connections are used)

In the schematic we have connected the power to the LCD but not actually connected the control
lines. These are left unconnected so that students become familiar with the connections, it also
made the PCB much easier for students to solder not having so many thin tracks.

@
)S/EJ . LCD Connector
U+ 3=
= LElm =lE
VN N —f= -~
—LlE il oLl
e N P E
a -
I iy
I iy
D D
UL
5 Ic1
-l ) ure
3 191 auce
Z 18l aOcie/RESETOPEY
1 CAOCS/INTE TESPES | ¢
GOCE/XTALZPES |2 B
GOC7 /XTALLPES |2 ErrK
et =
3 (srkssCL/OCIEPES P04
2 MISD/00/0C4AAPEL
U ¢Mos1sorson/OCIRREE
BOCEATNDPE? Rl v
- (ADCE/ATNEDPAG g By
At (AOCHPAG [ Dnt§
- (ADC TP P
AL o ol (AREFIPAE i; p,{%
- - (AOCZPAZ 2o
loe @1 & Guo (BOCPEL R pan
151 Gup (AOCEPEE |28 pan
TINYZaP PADL2
EHO
hu
GO

266



The physical pcb is designed around the physical dimensions of the LCD, so that the LCD and
board can be bolted together.

- 110+0.5 -
2.75 105.5
10 o 945
14,75 85
P 9
E i &5
: B

PITCH
st
boooooo

21.0 16PL

N

4
20
28.9
37+0.5

(@]

{.

e3.5 4PL~

134

Top or Component view

=
[
[}

O

O

GWD

=
=
I
S

]y

O

Take care when wiring the header pins (connector) for the LCD as he polarity for the power must
be correct, there is a an area for prototyping other circuits on the board

PCB tracks view from Eagle

oo nNeER
t2rgqenb

L] Tur

=

ay
@ Ecoltre

SRTH

267




Here are the details for the specific Sure Electronics LCD we are using. Highlighted are the 6 data

31.2

Completing the wiring for the LCD

and control connections we need to make (note that pins 1,2,3,5 are already connected via PCB

tracks). The two control lines are RS(register select) and Enable. The 4 data lines are DB4 to DB?.

Pin NO. Symbol Level Description
1 VSS oV Ground
2 VDD 5.0V Supply voltage for logic
3 VO —- Input voltage for LCD
| 4 RS | H/L H : Data signal, L: Instruction signal
5 RW H/L H : Read mode, L : Write mode
[ 6 E | HH-L Enable signal for KS0076
7 DBO H/L Data bit 0
8 DB1 H/L Data bit 1
9 DB2 H/L Data bhit 2
10 DB3 H/L Data bit 3
11 DB4 H/L Data bit 4
12 DB5 H/L Data bit 5
13 DB6 H/L Data bit 6
14 DB7 H/L Data bit 7
15 NC -- No connection
16 NC -- No connection

Looking at the development board it can be seen that there are already pads for the LCD,
The 6 connections have been added on the diagram below.

The order the 6
lines are
connected from

S @

oeT, = = the LCD to the g

pa;'— @ L (W) micro does not 8

o9 o | - ® ®» @ matter as long as <
*o ’——JJ ”.- & 1. They are on
-4 e P = the same port

@ 2 o o and 2. the order
il #» @m used matches
O &) @W the configuration

command in
Bascom.
To program the LCD using Bascom we need to add two lines of configuration program code, and
then use specific commands to make the display show something

Config Lcdpin =Pin , Db4 =Portb.3, Db5 =Portb.6 ,
Db6 =Portb.4, Db7 =Portb.3 , E =Portb.1, Rs =Portb.0
Config Lcd =20*2 ‘'configure lcd screen

268



31.3 LCD Contrast Control

In addition to the 4 data lines and the 3 control lines, there are two more pins on
the LCD for power (5V-VDD and 0V-VSS) and one for adjusting the contrast or
viewing angle (VO or VEE). Check the displays’ datasheet to find out what is
required for VO however for almost all modern alphanumeric type LCDs the voltage
Is often very close to OV so can be connected to OV directly. You can connect via a
potentiometer or trimpot so that it is adjustable as in this circuit.

HThe voltage divider here is made up of both fixed and a variable resistance.

If the trim pot was 10k and the resistor was 47 k then the voltage for the contast would be

T

Oy fn fo 0k —

XX XXKKHKKKK KXKKKKXK KX

1 0.0, 0.0.0.4.0.4
y
A

269



31.4 Learning to use the LCD

The first thing to learn about is how to put simple text on the LCD. In this program a number of
different variable types are used including strings.

'Title Block

'Author: B.Collis

'Date: Aug 2009

'File Name: LCD Ver2.bas

'Program Description:

'use an LCD to display strings

'Hardware Features:

'LCD on portb - note the use of 4 bit mode and only 2 control lines
'Program Features:

'Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of operations inside the micro
Sregfile = "attiny461l.dat" 'the micro we are using
'Hardware Setups

Config Porta = Output

Config Portb = Output

Config Lcdpin = Pin , Db4 = Portb.3 , Db5 = Portb.4 , Db6 = Portb.5 , Db7 = Portb.6 , E = Portb.2

, Rs = Portb.1

Config Led = 20 * 2 'conifgure lcd screen
'Hardware Aliases

'Initialise hardware

Cls 'clears LCD display
Cursor Off 'cursor not displayed
'Declare Constants

Const Waitabout = 6

Const Flashdelay = 250

'Declare Variables

Dim Messagel As String * 20

Dim Message2 As String * 20

Dim Xposition As Byte

Dim Count As Byte

'Initialise Variable

Messagel = "hello"
Message2 = "there"
Xposition = 5

'Program starts here
Do
For Count = 1 To 3

Locate 1 , Xposition
Lcd Messagel 'display message stored in the variable
Waitms Flashdelay
Locate 1 , 1
Led " " 'delete anything on this line of the lcd
Waitms Flashdelay
Locate 2 , Xposition
Lcd Message? 'display message stored in the variable
Waitms Flashdelay
Locate 2 , 1

Led " " 'delete anything on this line of the lcd
Waitms Flashdelay

Next

Wait Waitabout 'seconds

Loop

270



31.5 Adding more interfaces to the ATTiny26 Development board
Using this board we can add other components such as LEDs, switches and a PIEZO.

First stage: add an LED
An LED requires a current limit resistor of about 1k
in series with the LED (it could also be another
common value such as 390, 470,560, 820 —
changing the value will make the brightness change).

Here is a board with two switches, two
LEDs and a piezo added to it. Now we
will look at how to add these components
one at a time.

Note that when this board was made an
area around the outside of the board was
left with holes for stress reliefing wires
that go off the board.

The process for adding these
components is:

1. Decide what you want to add
and find out the correct wiring
connections for it

2. Find the most convenient place
for them to connect to on the board,

3. Wire them up and add your
changes to the schematic.

port...

|

Micro «— Series
connection

A

Y

The schematic above shows the series connections of the LED, note that the LED and resistor
canbe reversed in order but that the polarity of the LED must be the same.

We have not chosen a specific I/O pin at this stage.

271



Stage two find the best I/O pin to use
An LED can be connected to any available 1/0 pin so in this case it was easier to choose the
pin based upon where the LED was to be mounted and then select a close I/O pin.

Here PortA.0 and PortA.1 were chosen.
i ""‘f’-v"c‘l’. -.r -

Qoo

S ——

<

v

Ie3

o °

The negative(cathode) of the LED (blue wire) is connected to a resistor, the other side of witch
connects to ground, the positive anode) of the LED (white wire) is connected to the pin of the
microcontroller.

10k
port... — ¢
Micro
[
switch
L ]
L L

Adding 2 switches — each switch requires its own pullup resistor

This is a circuit that students initially get wrong very often, they
connect the switch and resistor in series from the pin to gound,
when they are in series between VCC and ground.

So be very careful and make sure that the resistor goes from
the pin to VCC and the switch goes from the pin to ground

In the diagram only one switch and pullup resistor are shown
however 2 switches and their 2 pullup resistors are shown in the
picture.

What is the voltage on the micro when the switch is open?
What is the voltage on the micro when the switch is closed?

272



31.6 Ohms law in action — a multicoloured LED

Here is the datasheet for a multicoloured LED.Look carefully at the physica llayout, there are 4
legs

Flat

RED Blue

Comm;/ < a

Cathode Green
Product Number LE-DS161
Product Name 5Smm RGB LED 4000mcd
Emitted Color Red/ Green/Blue
Size (mm) 5mm
Lens Color Water Clear
Forward Current 20mA
Life Rating 100,000 Hours
RED: Typical: 2’V Max. 2.4V
Ferward Voltage (V) GREEN: Typical, 3.4 V Max: 3.8V
BLUE: Typical: 3.4 V Max 3.8V
Viewing Angle 25%~35°
Luminous Intensity (mcd) 4000(Typical}~5000(Max)
Net Weight 100g/3.60z

Note the wiring inside the LED how all the cathodes are connected together.

R
Common
Cathode G
B

273



To wire this to a microscontroller we will need to use three 1/0O pins of the microand three
resistors. We do not use a single resistor on the cathode to ground.

Why?Imagine we turned on the red LED and i ws going, then we turned on the green LED the
current in the resistor would change changing the current in the red LED as well.

vCC/5V

ground/ovV

To work out the values of the 3 resistors we need toloo at the datasheet, there we find that the
LEDs have different volage requirements, (yet another good reason for not using 1 resistor)

RED Green Blue

Needs 2V Needs 3.4V Needs 3.4V (same as green)
20mA max current = 20mA

max brightness

V=5V-2V V=5V -34V

V=3V V=16V

R = VI R =VI same as green

R = 3V/0.020A R =1.6V/0.020A

R =150 ohm R =80 Ohm

If the LEDs don’t need to be so bright we could test them with a power supply and try different

values of resistors.

If we found that 5mA was enough we would need to calculate the values again.

R = VI
R = 3V/0.005A
R = 600 ohm

R =Vl
R =1.6V/0.005A
R =320 Ohm

same as green

274




31.7 Repetition again - the ‘For-Next’ and the LCD

This command makes programmers life easier by allowing easy control of the number of times
something happens. This is perhaps the essence of computer programming, getting the computer
to do repetitive work for you. If you want some text to move across an LCD then you could do it
the long way

Do
Locate 2,1 ‘first position MoVe Cursor (o position 1
Lcd “Hello” put text on screen
. . wait
Waitms timedelay move cxursor back to postion 1
Locate 2,1 put spaces on screen
I_Cd 13 “*
Y
LocaEe 2,2” second position move cursor to position 2
Lcd “Hello put text on screen
Waitms timedelay wait
Locate 2.2 move cxursor back to postion 2
Led © ' put spaces on screen
Locate 2,3 ‘third posistion Y
Lcd “Hello” move cursor to position 3
Waitms timedelay puttext on screen
wait
LOC?te ?3 move cxursor back to postion 3
Lcd put spaces on screen
Loop

OR the smart way

Do position =1
For Position =1 To 16 ‘ .
Locate 2, position ‘move cursor w \
Lcd “Hello” ‘display text move cursor to position
Waitms Timedelay 'wait a bit put text on screen
Locate 2, position ‘move cursor walt .
. . move cxursor back to postion
N Lth blank lCd put spaces on screen
ex
For Position =16 To 1, step -1 \
Locate 2, position ‘move cursor . N
Lcd “world” ‘display text Incr position
Waitms Timedelay 'wait a bit
Locate 2, position ‘move cursor Lo
Led “” P ‘blank text :’
Next
Loop
End ‘end program

Identifying where and how to use loops in your programs is an essential skill to practice lots when
learning to program. This is only one of several looping commands which all do similar (but not
exactly the same) things.

275



31.8 Defining your own LCD characters

Microcontroller System OUTPUT CODE EXAMPLE
The displays have 8 locations (0 to 7) where you can T A e K
define your own characters O -
. . . - Togram memory

If you want to define a simple animation you can draw 5o Process Code ==L
these using the LCD DESIGNER in Bascom and have i Input o1 Uit Output

. ) ircuits Code | I — Code Circuits
the program write these to the screen one at a time > Variables Humbers) 2
using a loop. []h o e §Z

LCD designer

K
- Setall | Setall |
H N
||
[
| [
" B v Ok v Ok
H N —
X Cancel X Cancel
31.9 LCD custom character program

' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of the micro

$regfile = "m32def.dat" ‘our micro, the ATMEGA8535-16PI
' Hardware Setups

" setup direction of all ports

Config Porta = Output '‘LEDs on portA
Config Portb = Output '‘LEDs on portB
Config Portc = Output '‘LEDs on portC
Config Portd = Output '‘LEDs on portD

‘config inputs

'LCD
Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.5 , Db6 = Portb.6 , Db7 = Portb.7 , E = Portb.0 ,
Rs = Portb.1
Config Lcd =20 *4 ‘configure Icd screen
' Hardware Aliases
‘clear Icd screen
' Declare Constants
Const Rundelay = 300




' Declare Variables
Dim X_pos As Byte
Dim location As Byte
"Initialise Variables
" Program starts here
Cls
Cursor Off
Deflcdchar0,32,4,10,4,6,20,10,1
Deflcdchar1,32,4,10,4,6,4,10, 18
Do
For X_pos=1To 20 'for the wodth of the screen
Locate 1, X _pos ‘position the cursor
find if odd(0) or even(1) location
'-mod returns the remainder of the division 1/2 (0 or 1)
Location = X_pos Mod 2
If Location = 0 Then 'no remainder so second location and all even ones
Lcd Chr(0)
Else 'rem =1 so first location and all odd ones
Lcd Chr(1)
End If
Waitms Rundelay
Locate 1, X _pos 'reposition cursor
Lcd "
Next

‘for a 3 stage animation

'- define your third character here

For X _pos=1To 20 ‘for the width of the screen
Locate 1, X _pos ‘position the cursor
find if odd(0) or even(1) location
'-mod returns the remainder of the division I/3 (0,1 or 2)
Location = X_pos Mod 3

If Location = 0 Then 'no remainder so third location
Lcd Chr(0)
Elseif Location =1 Then first location
Lcd Chr(2)
Else 'second location
Lcd Chr(2)
End If
Waitms Rundelay 'wait a bit
Locate 1, X _pos 'reposition cursor
Led ™" '‘blank the old character
Next
Loop
End

277



31.10 To CLS or not to CLS that is the question

Microcontrolier System USING LOGIC

D_ Microcontroller Hardware —M

What if we want our * to move across the screen, rather %. ensmaaaoe s : E30
than fill the screen as we have done previously. e Process Code

. Input Input b Output Output
You could write: Circuits Code ' Code Circuts
For X_pOS - 1 to 7 U ' ’ Valiﬂb.lt:’l:l'nnhem & : i;

Locate Icdline, x_pos

Lcd “*”

Waitms delaytime

CLS ‘clear the screen
Next

Depending on the value of delaytime this might work or it might actually just be a blury looking
mess.

The LCD displays we buy are slow devices and require a long time (compared to the speed of
computer LCD monitors) to do things like write text and clear the screen.

So generally you would never use a CLS within a loop.

Bascom-AVR Control Code Examples - [C) rightsideup software, www.techideas.co.nz

Control Loops — Strings
Zline * 20character LCD
Dim = _pos as byte *
Dim lcdline as byte
LCDline=|1 : R
Const delaytime =300 Cenfig Ledein = Fin
) Dbd = Portb. 4
Irput Pirs CLE Output LED = Db5 = Parth.3
- DbE = Parth.5
Pin Port Db7 = Parth. &
E =Portb.1
A0 For ®_pos =5 To |15 Ad RS = Porth.0
E— Locate Ledline, . pos -
. LoD T
Pin . . Port
Waltms delavtime
A Locate Loedline, x pos A5 )
— —_ #Pos delayTime
LCD ™ m 5 |:|
1 HNext E 300
Pin Port : 0
A2 A.6 3 300
— N ] 1200
10 1500
i M 1800
Pin Port | | 5100
13 2400
i i 14 2700
15 3000
3300
Run

What we do is add a line that locates the cursor of the LCD to the position we want to delete and
simple write a space to that point
Forx _pos=1to7

Locate Icdline, x_pos

Lcd 11,34

Waitms delaytime

Locate Icdline, X _pos

Lcd (13t

Next
278



31.11 A simpledigital clock

Here is a simple clock using the LCD as a display. It is a great way to know more about if-then and
making an LCD do what you want it to do.

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the crystal we are using

Sregfile = "attiny26.dat" '"the micro we are using

' Hardware Setups

' setup direction of all ports

Config Porta = Output 'LEDs on portA

Config Portb = Output 'LEDs on portB

Config Lcdpin = Pin , Db4 = Portb.2 , Db5 = Portb.3 , Db6 = Portb.4 , Db7 = Portb.5 , E
= Portb.1l , Rs = Portb.0

Config Led = 20 * 2 'configure lcd screen

' Harware Aliases

initialise hardware

Cls 'clears LCD display
Cursor Off 'no cursor

' Declare Constants

Const Timedelay = 350

' Declare Variables

Dim Seconds As Byte

Dim Minutes As Byte

Dim Hours As Byte

Dim Day As Byte

Dim Month As Byte

Dim Year As Byte

' Initialise Variables
Seconds = 50

Minutes = 5

Hours = 14 ' 2pm

Day = 21

Month = 4 'april
Year = 10 '2010

' Program starts here
Do

Locate 1 , 5

Lcd Hours

Locate 1 , 8

Lcd Minutes

Locate 1 , 11

Led Seconds

Wait 1
Incr Seconds

Loop
End 'end program

279



Here is what the display looks like at the start (using the simulator)

There are two big problems to solve with this program:
1. The clock goes up by 1 second, however it doesn’t go from 59 back to 0
2. There is no ‘leading O’ before any of the numbers i.e. 5 is shown not 05

Firstly lets solve the 59 going back to 0
Do

Locate 1 , 5

Lcd Hours

Locate 1 , 8

Lcd Minutes

Locate 1 , 11

Lcd Seconds

Wait 1
Incr Seconds

If Seconds > 59 Then

Seconds = 0
Incr Minutes
End If
Loop
End 'end program

Now you can write the rest of the code to sort out minutes and hours.

Second | will solve the leading zeros.
Think about when we want a leading zero, it is if the minutes are less than 10.

Do
‘display the time
Locate 1 , 5
Led Hours
Locate 1 , 8
If Minutes < 10 Then Lcd "O"
Lcd Minutes
Locate 1 , 11
Led Seconds
‘increase the time
Wait 1
Incr Seconds
"add code to read switches and set time
14
"fix the time
If Seconds > 59 Then

Seconds = 0
Incr Minutes
End If
Loop
End 'end program

Note that when an if-then has only one command it can go on the same line and we don’t need the
end-if.

There is a third issue, the clock will also need some more code so that you can set the time. Also
the clock is quite inaccurate, you can check this by monitoring the time over a few minutes. Some
of this can be fixed by checking how accurate the clock is over a day and changing wait 1 to
waitms something. This wont really fix the issue but it will improve it. A better solution is later in
the book.

280



32 Example System Design - Time Tracker.
Microcontroller System USING VARIABLES

Microcontroller Hardware

I Program memory E E |_I
00— Process Code
Input Output

Circuits Circuits

[] Variables (Numbers) A
ata Memo i‘a

It is often useful for students to see worked examples; this small project is a worked example not
just of a timer project but of the process of development for an electronics project at school.

The process requires several iterations (cycles) of development. For some students the process
described here will be trivial (extremely simply), however it is important that students understand
the process and can carry it out.

Stage 1:
e Stakeholder consultation
Initial brief
Block diagram
Algorithm
Flowchart - a model of the internal process that the microcontroller must carry out
Schematic
Prototype development
Program development
Feedback from stakeholder
Stage 2:
¢ Refinement of brief — modify/ add/delete specifications
e Modification of schematic/algorithm/flowchart/prototype/program as required
e Feedback from stakeholder
Stage 3:
¢ Refinement of brief — modify/ add/delete specifications
e Modification of schematic/algorithm/flowchart/prototype/program as required
e Feedback from stakeholder
Stage 4:
¢ Refinement of brief — modify/ add/delete specifications
e Modification of schematic/algorithm/flowchart/prototype/program as required
e Evaluation by stakeholder

281



32.1 System context diagram and brief

Conceptual Statement:
Design and construct a 3 minute timer that clearly alerts users that the exposure ime
for the PCE is finished

Physical Attibutes:

The green button starts the timing

the LCD shows the remaining time

the piezo alers the class and iz only reset by the grn button

The system context diagram is a visual representation of a brief.

282



32.2 Time tracker block diagram




32.3 Algorithm development

S— T

_ v

32.4 Schematic

The schematic for the ATTiny26 prototype PCB has been modified to include the components for
the switch and LED. Note the LED connection via a current limit resistor, and the switch
connection has a pullup resistor.

51
V &
)
L+
[ua]
+
-
K
—| =
] =
ZSH [an)
[ |
NIE
511 [
5 IC1
4 I SUzZ
3 15 gggc 18 15
i 2 L8l apc1a/RESETIPET : g if
(ADCS/INTB/TOPBE [2—— — -
(ADCE X TALZIPES wlo s
(AOCP XTALLIPES |2 8 z
(OC1BPES P 5 5
3 sk 0L/ ICIERES 4 3
2l (MIZ0/D0/0C1APEL - L
U Hps1/DL SR/ ITIRIPES
(AOCe AINLIPAR [
- (ADCS AINDIPAE ig
—_ (rocpes 18
T (HOCEIPA4
=t 1072 .1 (AREFIPA3 i;i
- T (AOCZoPA2 po—
ap et 12 BHD (AOCLSPAL 12; 51
GND (FOCEIPAE
TINYZ2&P %
| -
ol 17
2 L]
GND *TH
b3 4
GMD

284



325 Time tracker flowchart and program version 1

Scrystal = 1000000 'the speed of the micro
S$regfile = "attiny26.dat" 'our micro

'Hardware Setups

' setup direction of all ports

Config Porta = Output '

Config Pina.7 = Input

'LCD setup

Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.3
Db7 = Portb.6 , E = Portb.l , Rs = Portb.0

Config Led = 20 * 2 'configure lcd screen

, Db6 = Portb.5 ,

'Hardware Aliases
Grn sw Alias Pina.7
Piezo Alias Porta.3

'Declare Variable to store timing
start Dim Seconds As Byte

'program starts here

] Cls
setup variables Cursor Off

Led "Time Tracker V1"

Do
N grnstart=07 'setup countdown value
Y Seconds = 5 '5secs for testing

purposes
'wait for start switch
Do
Loop Until Grn sw = 0

countdown ‘need no debounce as next line has a
delay

‘start countdown
Do
Waitms 1000
Decr Seconds
Locate 2 , 1
Lcd Seconds
Loop Until Seconds = 0

play sound

'countdown finished so play sound
Sound Piezo , 150 , 100

Loop 'return to start

End

285



32.6 Time Tracker stage 2

At this point the student should make contact with their stakeholder or client and show them what
has been done. After the client in this case wanted an LED added to the product to show when the
timer was not timing and to change to a double beep when the timer times out.

The student makes the following additions to their journal for their project:

Stakeholder consultation carried out and:

Brief: new or changed specifications recorded.

Algorithm changes described (no need for a new form - just write it into the journal)
Block diagram — saves as new version, makes changes and print for journal
Schematic: save as new version, make changes and print for journal

Layout: make changes to layout in journal or print new version with changes
Flowchart — saves as new verison, makes changes and prints for journal

Program — saves as new version, makes changes and prints for journal

Nook~rwhE

Time Tracker System Block Diagram v2

Input
Devices

Process
Device

Output
Devices

4.5VDC
Batteries

'Program Description:

'30 second countdown timer

'lcd displays seconds counting after switch pressed

'green led is on when not counting

'double beep at end

'"Compiler Directives (these tell Bascom things about our hardware)
$regfile = "attiny26.dat" 'our micro

$crystal = 1000000 'the speed of our micro

'Hardware Setups

' setup direction of all ports

Config Porta = Output !

Config Pina.7 = Input

'LCD setup

Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.3 , Db6 = Portb.5 ,
Db7 = Portb.6 , E = Portb.l , Rs = Portb.0

Config Led = 20 * 2 'configure lcd screen

286



'Hardware Aliases
Grn_ led Alias Porta.l
Piezo Alias Porta.3
Grn_sw Alias Pina.’

'Declare Variables
Dim Seconds As word 'changed to word as need to count more than 255

start 'program starts here

Cls
. Cursor Off
Setup variables Led "Time Tracker V2"
Do
¢ Seconds = 5 initial wvalue to count down
from
g”lJed on Set Grn led
Do
Loop Until Grn sw = O'wait for start
switch
Reset Grn led
Do
N grnstart:O? 'start countdown
Y Waitms 1000

Decr Seconds
'display time
grn_led off Locate 2 , 1
Led Seconds
Loop Until Seconds = 0
'countdown finished so play sound
Sound Piezo , 150 , 100
Waitms 50
Sound Piezo , 150 , 100

countdown

Loop
End 'end program

countdown=0Q

play sound

287



32.7 Time Tracker stage 3

At this point the student should make another contact with their stakeholder or client and show
them what has been done. After this the client wanted a second (red) LED added to the product to
flash while the timer was timing.

The students makes the following additions to their journal for their project:

Stakeholder consultation carried out and:

Brief: new or changed specifications recorded.

Algorithm: changes described (no need for a new form - just write it into the journal)
Block diagram: saves as new version, makes changes and prints for journal
Schematic: save as new version, make changes and print for journal

Layout: make changes to layout in journal or print new version with changes
Flowchart: saves as new verison, makes changes and prints for journal

Program: saves as new version, makes changes and prints for journal

NoakwnNE

Time Tracker System Block Diagram v3

Input
Devices

Process
Device

Output
Devices

4.5VDC
Batteries

'Program Description:

'30 second countdown timer

'lcd displays seconds counting after switch pressed

'green led is on when not counting

'double beep at end

'red led flashes once per second

'Compiler Directives (these tell Bascom things about our hardware)
$regfile = "attiny26.dat" 'our micro

$crystal = 1000000 '"the speed of our micro

'Hardware Setups

' setup direction of all ports

Config Porta = Output !

Config Pina.7 = Input

'LCD setup

Config Lcdpin Pin , Db4 = Portb.4 , Db5 = Portb.3 , Db6 = Portb.5 ,
Db7 = Portb.6 , E = Portb.l , Rs = Portb.0

288



Config Led = 20 * 2 'configure lcd screen

'Hardware Aliases

Grn led Alias Porta.l
Red led Alias Porta.0
Piezo Alias Porta.3
Grn sw Alias Pina.7

'Declare Variables
Dim Seconds As word

'program starts here
( start ) Cls
Cursor Off
> Locate 1 , 3

\ Led "Time Tracker V3"
setup variables Do

Set Grn led
\ Seconds = 5 'initial value to count down
from
grn_led on Do

Loop Until Grn sw = 0 'wait for start
switch

Reset Grn led

Do

'countdown

Set Red led 'added flashing red LED

Waitms 50

Reset Red led

Waitms 950

Decr Seconds

'display time

Locate 2 , 10

‘} If Seconds < 10 Then Led "O"
Lcd Seconds

countdown Loop Until Seconds = 0

RED LED 'beeps

flashes every second Sound Piezo , 150 , 100
Waitms 50

Sound Piezo , 150 , 100

grn_led off

Loop
End 'end program

play sound

289



32.8 Time Tracker stage 4

At this point the student made yet another contact with their stakeholder or client and showed
them what has been done. After this the client wanted a significant change to the project; they
thought the timer would be really useful if the time delay could be changed. Specifically they want
to be able to push a second switch to increase the count time from 30 to 100 seconds in amounts
of 30 seconds; e.g. 30-60-90-120-150-180-210-240-270-300 seconds.

The students makes the following additions to their journal for their project:

Stakeholder consultation carried out and:

Brief: new or changed specifications recorded.

Algorithm: changes described (no need for a new form - just write it into the journal)
Block diagram: saves as new version, makes changes and prints for journal
Schematic: save as new version, make changes and print for journal

Layout: make changes to layout in journal or print new version with changes
Flowchart: saves as new verison, makes changes and prints for journal

Program: saves as new version, makes changes and prints for journal

NoOakwNE

Of course some students may be able to go straight to this final version of the product straight
away; however in doing this they are missing out on critical marks, as the highest grades come
from stakeholder consultations and subsequent modification to their project.

Time Tracker System Block Diagram v4

Input
Devices

Process
Device

Output
Devices

4.5VDC
Batteries

This final version of the block fiagram has all of the components to date.
The algorithm now has been modified to include:

While waiting for the user to press the green start button, f they press the white button the time will
increase in amount sof 30 seconds to a maximum of 300 seconds.

290



setup variables

'

grn_led on

wht_btrn=07?

incr seconds by 30

seconds=30

grn_led off

]

countdown
RED LED
flashes every second

play sound

201




'Title Block

' Author: A. Student
' Date: Jul 09
' File Name: TimeTrackerVi4

'Program Description:

'30 second countdown timer

'lcd displays seconds counting after switch pressed
'green led is on when not counting

'double beep at end

'red led flashes once per second

'added ability to increase seconds count with white switch
'added switch labels to LCD screen

'"Compiler Directives (these tell Bascom things about our hardware)
S$regfile = "attiny26.dat" 'our micro
$crystal 1000000 'the speed of our micro

'Hardware Setups

' setup direction of all ports
Config Porta = Output

Config Pina.6 = Input

Config Pina.7 = Input

'LCD setup

Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.3 , Db6 = Portb.5 ,
Db7 = Portb.6 , E = Portb.l , Rs = Portb.O0

Config Led = 20 * 2 'configure lcd screen

'Hardware Aliases

Grn led Alias Porta.l
Red led Alias Porta.0
Piezo Alias Porta.3
Grn_sw Alias Pina.7
Wht sw Alias Pina.b6

'Declare Constants

Const Debouncetime = 10

Deflcedchar O , 32 , 4 , 2 , 31 , 2 , 4 , 32 , 32
'Declare Variables

Dim Seconds As Word

'Initialise Variables

Seconds = 30

'program starts here

Cls
Cursor Off

292



Do
'setup initial lcd display

Cls

Set Grn led

Led "Time Tracker start" ; Chr (0)

Seconds = 30 '"initial value to count down from
Locate 2 , 1 'display labels for switches on the LCD
Lcd "count= incr" ; Chr(0)

Locate 2 , 7
Lcd Seconds

'wait for start switch, allow user to change time while waiting
Do

'allow user to increase count in amounts of 30 seconds

If Wht sw = 0 Then

Seconds = Seconds + 30
If Seconds > 300 Then Seconds = 30 'set max
Locate 2 , 7
Lcd Seconds ; " " 'add clear feature “ ™
Waitms Debouncetime 'must debounce switch
Do 'wait for switch up
Loop Until Wht sw = 1
Waitms Debouncetime 'waita little longer
End If
Loop Until Grn sw = 0 'wait for start switch

Reset Grn led

'countdown
Do
Set Red led
Waitms 50
Reset Red led
Waitms 950
Decr Seconds
'display time
Locate 2 , 7
If Seconds < 10 Then Lecd "O"

Lcd Seconds ; " " 'space blanks unwanted digits on lcd
Loop Until Seconds = 0
'beeps
Sound Piezo , 150 , 100
Waitms 50

Sound Piezo , 150 , 100

Loop
End 'end program

293



33 String Variables

So far we have used constants on the display such as

lcd’Hello”.

But what if we want our text to vary e.g. different names and
addresses or different colours or different days of the week. All computer languages allow you to
store this text in a variable called a STRING. Computers all store text in the same way too. Ram
stores only numbers so to store text in RAM we store a code for each letter of the text string.
This table gives us the bonary code for each character e.g. ‘A’ is 01000001 or 65 in decimal.

In a program text can be displayed using the command LCD CHR(...), so to diaplay an A LCD

Microcontroller System

USING VARIABLES

D_

Microcontroller Hardware

L
00—

Input
Circuits

¥
Program memory: a E E LI

Process Code

Qutput
Circuits

IS

CHR(65).
.‘Pn: 0000 | 0010 | 0011 | 0100 | 0101 | Of10 | OI1f | 1000 | 1001 | 1010 | 101f | 1100 | {108 | 1110 | 1111
lowe
4bit
o ROAGK g":: l.--= !'“: .I- s ssug| mes | o gig es A String is a
ol B o || e BILELE variable thatis a
: ] san | aus CLITT] = :.:' -“ . collection of
o001 | (2) H ] sis o sss | mmm = u_ = » "%l
- | = E "aal o0 weina -see312 35| letters (and
. I'I ...i !I:.I .=:i " I l:l Ir I. I.-l dlglts) éuch as
oo | e | B[ 2B e E L e Pt (53, Hlgtm-gilE “My name is
L -ul ! l:l !-n! ! ) ! n'g l-.. i:“. i Frgd” or “37
I et e 11 snan| *™" |ansan enm Frost Road
o0t (4) (wgeas| = ®as o™ (" H e R ean|en _|s"enE "
.-F!. ll.' il.l- nul !.Il. l::. [T -'i -I uan - Mount Roskill”
. (. .-- Esa (masan M -. s § .- o When you
b 3:. l..!. ! _! ! !“'! 1 .| 888 . !. !'. !':' ;..-! 2 =X| dimension a
TN S G g '.___ == string you must
Kl i... ! ! oll | ._:! “j '! oe|f.ef| think about how
..ll -:: ::::: .lu. .:: " s . s |s sussw — b|g it m|ght
oo o (8" el B |B ,!. "It 1 e {1 1 | Rl i:::g & | Dbecome during
=u-l “sus" E " | 3 e " l= s |sesns|sssss |2 the time your
I bt 1P it™ (1] sugss | senug bl W P roaram will use
SIS P ) vt i ey T it and then
. :“ ssus 'u Il sEm | m ® ) s |m g = .::. wwess allocate enouah
o | cr | g (uaad i"'! s !-": o Pt (i ; Z =& |==.| memory for it.g
-l ::: " ..l ll..l a » i. s ) - e.g. dim address
1001 | 2 'g '.... .! !._.i " L anlua|® 'g' ! i g ’ : H E as string * 20
 |us®|obe| 8 | ofu|umet | o | " |8 5" aaet
o [ o (odel B F5E o e S e P T I - -
b » 'nl Snues 'ul slwen sesus llul I !I. 'u.
L] [ L] L] - =
ARTERRIEE Tl o PR ot e TR
. . "s !u ‘ "s '. 66| 60800 e s |"asss Ilni
100 | ¢5) l.. : I=: .! ! BA8 | 8RA8E = ] bttt -t *f* |g"z°s
:' ..'c ssans "i.. .il i BHE | BH .“:= ::|.= n'= .n.= ol
1101 (8) (T -l.! ..E s n ——.; e ansan l:-— . 'g' -
| R (e A e B
e | 7 -.l - E I..-I = an s (LT .!-= .-!.' --.- ‘:To‘ ggggs
o | (T
" | 8 ..l' - ..= H i Iu-! 'l:“ e P i =. i ':':E i i::: iigi
. ] BES sEEaE| san ~ 0000 am --. .l 144

294




Below is a snapshot of the RAM from the simulator in Bascom this program.
Variables are stored in ram in the order in which they are declared in Bascom.
Dim Messagel As String * 20 (first 21 bytes in red below)
Dim Message2 As String * 20 (second 21 bytes in green below)
Dim Xposition As Byte (a single byte in dark red)

Dim Count As Byte (a single byte in dark green)

Merory o =
SRAM | EEPROM

0007 (02 {03 {04 10506 (07 {0503 |04 (0B {OC) 0D ) 0E |OF ~
0060 §58:65 BC BC BF 00 00 00 00 00 00 00 00 00 00 00)helo..........

.......

0070 ga0 00 o0 0o 0oy/A4 |&s B 72 65 00 00 00 00 0o 0. there.....
00E0 jo0 00 00 0000 00 oo 0o oo oojosgot oo oo oo oo

0030 (00 00 00 0o 0o oo oo 0o oo oo oo 0o o oo 0o o0 .
O0&0 (00 00 00 00 00 o0 oo 0o o0 oo oo 00 o0 oo 0o o0 .
OOBO (00 00 00 00 0o o0 oo 0o oo oo oo 0o o0 oo 0o o0 .

0OCO (00 00 00 0o 0o oooo 0o oo oo oo 0o o oo 0o o0 .

OOC0 (00 00 00 0o oo oo oo oo oo oo oo oo oo oo oo o0

OOEQ (00 00 00 00 0o o0 oo 0o oo oo oo 0o o0 oo 0o o0 .

The data stored in the variable changes during the program , so after the first loop of the program
the memory looks like this above.

Message1 has ‘hello’ stored in it. You can see that Bascom has actually allocated 21 bytes not 20,
this is because Bascom puts a 0 on the end of each string in memory. The simulator conveniently
displays any ascii characters stored in ram on the right hand side of its window.

Message?2 has ‘there’ stored in it, again 21 characters are used.

The next byte of ram has the number 5 stored in it, this is the position on the lcd that we want the
text to appear at.

The next byte is the variable count it goes up from 1 to 3 to control the number of times the text
flashes on the LCD.

You can look up the values in the ASCII table for the above RAM, these are hexadecimal numbers
hexadecimal | binary ASCII

68 &B 0100 1000 H

65 &B 0100 0101 E

6C &B 0100 1100 L

6C &B 0100 1100 L

6F &B 0100 1111 O

295



33.1 Strings assignment

' 6. Hardware Setups
" setup direction of all ports

Config Porta = Output 'LEDs on portA
Config Portb = Output '‘LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output '‘LEDs on portD
‘config inputs

Config Pina.0 = Input "Idr

Config Pind.2 = Input 'switch A
Config Pind.3 = Input 'switch B
Config Pind.6 = Input 'switch C
Config Pinb.1 = Input 'switch D
Config Pinb.0 = Input 'switch E

'LCD

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1
Rs = Portc.0
Config Lcd =20 * 4

' 7. Hardware Aliases
Sw_a Alias Pinb.0
Sw_b Alias Pinb.1
Sw_c Alias Pind.2
Sw_d Alias Pind.3
Sw_e Alias Pind.6

' 8. initialise ports so hardware starts correctly

Porta = &B11111100 'turns off LEDs ignores ADC inputs
Portb = &B11111100 'turns off LEDs ignores switches
Portc = &B11111111 'turns off LEDs

Portd = &B10110011 'turns off LEDs ignores switches
Cls ‘clear Icd screen

Cursor On Noblink

' 10. Declare Variables

Dim Mix As Byte

Dim Firstname As String * 12
Dim Middlename As String * 12
Dim Lastname As String * 12
Dim Fullname As String * 40
"11. Initialise Variables

Mix = 0

Firstname = "Edgar"
Middlename = "Alan"
Lastname = "Poe"

Fullname ="

296



'12. Program starts here

Cls

Gosub Welcome

Do
Debounce Sw_a, 0, Welcome , Sub
Debounce Sw_b, 0, Mixup , Sub

Loop

End ‘end program

' 13. Subroutines
Welcome:

Cls

Lcd "Welcome™

Lowerline

Lcd Chr(126) : Led "to strings™ : Led Chr(127)
Return

Mixup:
Incr Mix
If Mix =
If Mix = 1 Then Fullname = Firstname + " " + Middlename + " " + Lasthame
If Mix = 2 Then Fullname = Middlename + " " + Lastname + " " + Firstname
If Mix = 3 Then Fullname = Lasthame + " " + Firstname + " " + Middlename
If Mix = 4 Then Fullname = Mid(fullname , 10, 5)
If Mix = 5 Then Fullname = Lastname + "," + Left(firstname , 2)
If Mix = 6 Then Fullname = Version(1)

If Mix =7 Then
If Mix = 8 Then
If Mix =9 Then
If Mix > 10 Then Mix=0
Cls
Lcd Fullname
Return

From the help file find out how to use and then add to this program 3 of the following at 7,8,9
Instr Lcase Len Lookupstr Ltrim Left Right Rtrim Space Spc String Trim Ucase Mid

Use these to convert numbers to and from strings and display them
Format Fusing Hex Bin Hexval Str Val

297



33.2 ASCII Assignment

1. Copy the following code into BASCOM

2. Compare the datasheet for the LCD with the characters that actually appear on your
LCD.

3. Write the code for the decrementcode subroutine

" 1. Title Block

" Author: B.Collis

' Date: 1 June 2005

' File Name: LCDcharactersV1.bas

' 2. Program Description:

" everytime btn is pressed the character on the lcd changes
" highlights the use of the ASCII code

' 3. Hardware Features:

'LEDS

' 5 switches

'LCD

"4, Program Features

" do-loop to keep program going forever

" debounce to test switches

" if-then-endif to test variables

5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of the micro

$regfile = "m8535.dat" 'our micro, the ATMEGA8535-16PI
' 6. Hardware Setups

' setup direction of all ports

Config Porta = Output ‘LEDs on portA

Config Portb = Output 'LEDs on portB

Config Portc = Output 'LEDs on portC

Config Portd = Output 'LEDs on portD

‘config inputs

Config Pind.2 = Input 'switch A

Config Pind.3 = Input 'switch B

Config Pind.6 = Input 'switch C

Config Pinb.1 = Input 'switch D

Config Pinb.0 = Input 'switch E

'LCD

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E =
Portc.1, Rs = Portc.0

Config Lcd =20 * 4

' 7. Hardware Aliases

Sw_a Alias Pinb.0

Sw_b Alias Pinb.1

Sw_c Alias Pind.2

Sw_d Alias Pind.3

Sw_e Alias Pind.6

' 8. initialise ports so hardware starts correctly
Porta = &B11111100 'turns off LEDs ignores ADC inputs

298



Portb = &B11111100 ‘turns off LEDs ignores switches
Portc = &B11111111 'turns off LEDs

Portd = &B10110011 'turns off LEDs ignores switches
Cls ‘clear Icd screen

'10. Declare Variables
Dim Code As Byte
Dim State As Byte
"11. Initialise Variables
Code =0

' 12. Program starts here

Do
Debounce Sw_a, 0, Swa_press, Sub
Debounce Sw_b, 0, Swb_press, Sub
If State = 0 Then Gosub Intro
If State = 1 Then Gosub Increasecode
If State = 2 Then Gosub Decreasecode
If State = 4 Then Gosub Waiting

Loop

End 'end program

' 13. Subroutines
Intro:
Lcd "ASCII codes"
Lowerline
Lcd "btn A incrs code"
Return

Waiting:
' do nothing
Return

Increasecode:
If Code < 255 Then 'max value is 255
Incr Code
Else
Code =0 'if > 255 reset to O
End If
Cls
Lcd Code : Led "™ : Led Chr(code)
State = 4
Return

299



Decreasecode:
'write your code here

Return
Swa_press:
State =1
Return
Swb_press:
State = 2
Return

300



33.3 Time in a string

Previously we wrote a small program that created a very simple clock. To display the time
we put the time on the screen as hours, minutes and seconds e.g. 10:07:01
We could create a string to hold the time and display it using lcd timestr

Ssim

' Title Block

' Author: B.Collis

' Date: 14 Aug 2003

' File Name: simple clock vl.bas

' Program Description:

' use an LCD to display

Program Features:

' outer do-loop

Hardware Features:

LCD on portc - note the use of 4 bit mode and only 2 control
lines

' Compiler Directives (these tell Bascom things about our
hardware)

$crystal = 8000000 'the crystal we are using
$regfile = "attiny26.dat" 'the micro we are using

' Hardware Setups

' setup direction of all ports

Config Porta = Output 'LEDs on portA
Config Portb Output 'LEDs on portB
Config Lcdpin = Pin , Db4 = Portb.2 , Db5 = Portb.3 , Db6 =
Portb.4 , Db7 = Portb.5 , E = Portb.1l , Rs = Portb.O0

Config Led = 20 * 2 'configure lcd screen

' Harware Aliases

' initialise hardware
Cls 'clears LCD display
Cursor Off 'no cursor

' Declare Constants

Const Timedelay = 350
' Declare Variables
Dim Seconds As Byte
Dim Minutes As Byte
Dim Hours As Byte
Dim Day As Byte

Dim Month As Byte
Dim Year As Byte

Dim Timestr As String * 8

Initialise Variables

301



Seconds = 50

Minutes = 5
Hours = 14 '2pm
Day = 21
Month = 4 'april
Year = 10 '2010
' Program starts here
Do
Wait 1
Incr Seconds
If Seconds > 59 Then
Seconds = 0
Incr Minutes
End If
Gosub Maketime 'make a string of the time
Locate 1 , 5
Led Timestr 'display the string
Loop
End 'end program
Maketime:
Timestr = "" 'delete the string
‘rebuild the string
If Hours < 10 Then Timestr = Timestr + "0"
Timestr = Timestr + Str (hours)
Timestr = Timestr + ":"
If Minutes < 10 Then Timestr = Timestr + "0O"
Timestr = Timestr + Str (minutes)
Timestr = Timestr + ":"
If Seconds < 10 Then Timestr = Timestr + "0O"
Timestr = Timestr + Str(seconds)
Return

302



334 Scrolling message assignment

An alphanumeric (text) LCD is a very common output device used with microcontrollers
however they have limited screen size so a longer message must be either split up and
shown page by page or scrolled across the screen.

If the string was 50 charcters long as with the one below and the LCD was 16 characters
wide then using the mid command we could take the first 16 characters and put them on
the display then wait a bit, then get the next 16 characters and put them on the display,
and so on continuously.

www.techideas.co.n=

|TT TT|
|TT wTTl
[" W'

W "

www . |

www .t "

In this assignment you will scroll a message across the screen. The message will be an
information message regarding a news item or weather forecast up to 200 characters in
length.

‘Declare Variables

Dim message as string * 200

C Scroll_text: _)

v

scroll_length =

lengthCfMes=sage - 40

U

scroll_posn=0

s

Ar—fﬁ
increase
scroll_posn

ge 40 chars starting

atscrgl|] posn

display 40 chars

V

short wait

v

Loop Until

scroll_posn =

~_scroll_length_~
( Return )

Dim scroll_length as byte
Dim scroll_posn as byte
Dim forty_chars as string * 40

‘Initialise Variables
Message = “ the weather today will be .....

Scroll_text:
Scroll_length = len(message)
If Scroll_length > 40 then
Scroll_length = scroll_length — 40
End if
Scroll_posn =0
While scroll_posn < scroll_length
Incr scroll_posn
Forty_chars =mid(message,scroll_posn,40)
Locate 1,1
Lcd forty_chars
Waitms 150
Wend
Return

This routine scrolls the complete message once then returns
to the main loop. This makes it a very long routine to
execute (150mS times the number of characters in the
string)

Change the code so that it uses: a Do-Loop-Until structure and then a For-Next

303



335 Some LCD programming exercises.

These exercises will require you to manipulate the display, manipulate text, manipulate
numbers. And become familiar with the use of loops to get things done.

You need to save each version of the program separately e.g wassup_b.bas,
wassup_p.bas, wassup_a.bas.

Basic: put ‘wassup’ on the display

Proficient: Have ‘wassup’ scroll around the screen continuously

Advanced: Have the 6 letters of ‘wassup’ appear spread out over the display and then
after a brief delay move in towards the centre and in order.

Basic: calculate 278 and display it

Proficient: for n from 1 to 25, display 2”*n on the screen, wait for 1 sec and then do the
next number

Advanced: Write you own code to calculate the square root of the answer for each of the
above answers

Basic: Display a static weather report for Auckland on the LCD

screen

Proficient: Do graphics for sunny, cloudy, wet, and snowy for your ‘
weather report, that flash on the screen, these graphics should be

larger than a single Icd square, perhaps 2/3 lines x 4squares

Advanced: Scroll the message on and off the display and have the * A
graphics flash for a while, then the weather report scrolls back on :

again. d

Basic: Display 2 random numbers between 2,000 and 99,000

Proficient: repeat this process continuously, and also subtract the smaller from the larger
number and display the answer, have a 3 second delay between each new calculation
Advanced: Scroll the results off the display 0.5 seconds after the calculation

Basic: Create 4 different pacman graphics: one pacman mouth
open, one pacman mouth closed, one a target and the last the
target exploding

Proficient: Have the pacman move around the screen these,
staying on each square for only 0.5 seconds.

Advanced: Generate a random location on the LCD and place
the target there, have the pacman move around the screen and
when it lands on the target the target explodes and the pacman
moves on around the rest of the screen

Proficient: create ‘12TCE’ in one large font that covers
all four lines of the lcd like the wording of atmel in this
picture

Proficient: flash the message on the screen three
times, 1 second on then 1 second off after that have it
stay on for 12 seconds then repeat the 3 flashes.

304



34 Power interfaces
So far we have looked at lower power output

interfaces for the microcontroller such as LEDs and
LCDs the problem though is that we will want to add
high power things to our designs so we must know
what to use and how to use it. The learning for this
best takes place in some order, here is what | have

chosen:

know about power

Nookow

Microcontroller System

DEVELOPING QUTPUT CIRCUITS

C—

I
o0—

Input
Circuits

[

Microcontroller Hardware —[K]
Program memorny E E |_|
Process Code a_l
Input T T | Output Output
Code Y T Code Circuits
4{ ” Variables (Numbers) §—

Memory

S?’;‘-

know what we can do and what we cannot do with a microcontroller output port.

know some more detail about how certain semiconductors are used and work
know about the output devices and their power requirements
know about the extra features the AVR has to help us drive those devices

34.1 Microcontroller power limitations

The microcontroller specifications we are interested in are found in the electrical characteristics

section of the datasheet for the microcontroller, here are the specs for an ATTiny461.

23. Electrical Characteristics

23.1 Absolute Maximum Ratings*

Operating Temperature ...........ccoerveerinrnienns *99°C t0 +125°C
Storage Temperature ........c.ocovviiecrcinncean -65°C to +150°C

Voltage on any Pin except RESET
with respect 10 Ground ........cccoceiicicininninnn=0.5V 10 Voo #0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Volage ...........cocovveecemeamrnasionerscer e 6.0V
DC Currentper 1O Pin ...c...ccvvimiiimiisiiamsonsssses s sesssas 40.0 mA
DC Current Vi and GND Pins.........c.ococrcreccecnnes. 200.0mA |
Injection Current @t VCC=0V .....cocoveeviecrsveririesinnneens £25.0 MAL
Injection Current at VCC=5V ......ccccccevvvvviererinnnsesiennnns £1.0 MA

Notes: 1. Maximum current per port = +30mA

There is more data we need to know about.

We are initially interested in the DC current
specification 40mA per I/O pin —that sounds great
40mA is heaps for a pin we could do lots with that.

BUT wait — the next line says 200mA for the power

pins so we cannot draw 40mA from all 15 pins

because that would exceed the 200mA for the power
pins by 400mA (15 x 40 = 600mA)

305




23.2 DC Characteristics

T, = -40°C to 125°C, V. = 2.7V to 5.5V (unless otherwise noted)'"

Symbol |Parameter Condition Min. Typ. Max. Units

y Output Low Voltage ™! loL = 10 MA, Voo = 5V 0.6 v
oL (Except Reset pin) lg. =5 mA, Vo= 3V 0.5 v

v Output High-voltage' lop = ~10 mA, Vo = 5V 4.3 v
OH (Except Reset pin) loy = -5 mA, Vo =3V 2.5 )

4. Although each /O port can sink more than the test conditions (10 mA at Ve = 5V, 5 mA at Ve = 3V) under steady state
conditions {non-transient), the following must be observed:
1] The sum of all |OL, for all ports, should not exceed 60 mA.

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

conditions (non-transient), the following must be observed:
1] The sum of all IOH, for all ports, should not exceed 60 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current

greater than the listed test condition.

. Although each IO port can source more than the test conditions (10 mA at V¢ = 5V, 5 mA at Ve = 3V) under steady state

Two terms sink and source are used here we first need to understand these specifications.

uc

Mty

SINK current

O0=on

1= off

, 1=o0n

A 0= off
SOURCE Current

The names sink and source describe
which way the current is going in a
circuit, either to positive or ground.
They are with repect to conventional
current (not electron current).

It was common for microcontrollers to
have different sink and soure
characteristics but nowadays it seems
more common to see the sink and
source ratings for a microcontroller are
the same (but not always).

The really important characteristic from the datasheet is in notes 3 and 4 where it states that the sum
of all currents for all ports should not exceed 60mA sink and 60mA source. So if we wanted to use all
15 pins of the ATtiny as outputs and switch them all on at the same time then we cannot sink more
than 4mA current from each pin (60mA/15pins)! So be warned!!

In the first example we will use the microcontroller to switch a backlight for an LCD on and off.

306



34.2 Power

So far the concepts of voltage and current have been introduced however when these are present a
third important aspect of circuits is present as well, that is power.

Any device that has a voltage across it and current is flowing uses energy, and therefore dissipates

this energy in the form of heat.

Components don't like to get too hot and are rated to work only below a certain temperature. The
more energy the hotter a component gets and the more likely it is to overheat and be destroyed

34.3 Power dissipation in resistors

Power = voltage times current, P=V*l , Power is measured in Watts.
2V across a 10ohm resistor. I=V/R, I= 2/10, 1=0.2A, so P=V*l,
P=2*0.2, P=0.4W.

Resistors come in different power ratings so it

is important in a circuit to understand that the /
power ratings should not be exceeded or the /"/ o»
component may overheat, become burnt and

have its life shortened or be destroyed. \ 5

Resistors can be bought in various ratings, on
the left are 1/8, 1/4, 1/2, 1, 5 & 10 Watts.

On the right 5 and 10 watt metal cased ones
Note that the physical size grows proportionally with the rating

V=10V I=2A P=V*I,P=10*2, P=20W
V=5VI=03A
| =200mA YV =12V

V =100V I = 3mA

V =100V P = 50W

V =48V | =20mA

A 5 Watt bulb draws 1.6A what is

the voltage?

A 12 battery supplies 20mA to a
resistor, what is the power?

What wattage resistor would you
use for 15V and 0.2A

What wattage resistor would you
use for 36V and 100mA

307



34.4 Diode characteristics

When a voltage is applied to the diode in a forward direction it is called forward bias; as this
increases there is little current until the voltage reaches 0.65 to 0.7V and the diode will conduct fully.

When voltage is applied in a reverse direction it is called reverse biased and as the voltage is
increased a point will be reached where the voltage is greater than the diode can handle the diode
will suddently conduct. In a normal diode exceeding the reverse voltage specification will generally
destroy the diode.

T

k) L'l\\\‘ak'\\\\nt‘n‘. L

TR

iy
e BOWRR BT

sy
- .. oc SOWERN 34
o= OV BBA OOV =8

A A YA A

St e

it D

REVERSE BIAS - NO CURRENT FORWARD BIAS - CHARGE FLOW
forward
current
I, |
| knee
T |
reverse
i —— = Vi
bias 0.7 forward
ln' v bias
This graph decribes the characteristic of diode
conduction in a visual form. When the diode is
l forward biased above 0.65 the diode conducts,
when it is reversed biased it will not conduct
avalanche Freverse o . .
breakdown current until it safe operating voltage is exceeded. At
or'zener' reverse voltages higher than that it will
effect probably be detroyed.

308



34.5 Using Zener diodes

Cathode The reverse conduction effect can be put to use in controlled circumsnaces and in
Zener diodes this effect is used to make small regulated power supplies.

T Note the symbol for a zener is different to a normal diode and shows the knee and
avalanche effects in the symbol with the angled line at the cathode end.

Anode

If we want to make a small power supply for
R YrR=Yin~ Yout a common circuit (5V) and we find a 20V dc
power pack we can use a zener diode.

The first calculation is simply the voltage

20v — across the Resistor Vg = Vin - Vout
] Rload

Vout [
51y

<

S

|
—p—{

Ltotal :Izener+IIoad

+ Ttotal
Vin——
20v —

We must know what load the rest of the

circuit presents to the power supply. We
%?1"‘: D Rioad don’t need to draw the rest of the circuit to
help us we can represent it as a resistor
Rioad €.9. a small microcontroller circuit
might draw 150mA (0.15A).

Zener

g
A

The current though the load will be 150mA, a zener requires some small current to work e.g. SmA, so
the total current will be 150mA + 5mA — 155mA (0.155A).
Using Ohms law the value of R will be V/I = (20-5.1)/0.155 = 96ohms.

The issue however with zener circuits is not so much the voltage and resistance calculations it’s the
power calculations.

We assume worst case so the power the resistor has to dissipate is V x | = (20-5.1) x 0.155 = 2.3W
so we would use a 5W resistor, not a usual 400mwW one we would find in the workshop!

For a zener diode, power is also factor and worst case will be when the load draws no current.
Power =V x| =5.1 x0.155 =0.79W so a 1W zener would be used (not a usual 400mW one).

Vin Vout | VR =Vin-Vout lLoad | lzener ltotal R = VR/lotal | Pr= VR Xliotal | Pzener = Vout X lzener
20 51 149 0.15 | 0.005 | 0.155 | 96 2.3W 0.79W

12 51 0.08 | 0.005

24 51

309




34.6

How diodes work

A diode is made from silicon (a semiconductor). Semiconductors have more electrons in their outer

shells than conductors. To the silicon other materials (impurities) are added, these other materials
have either more or less electrons in the outer shell. A diode is made from a piece of silicon which is
doped with both N-type and P-type impurities. Knowing how a normal diode works will help you
understand the basics of how an LED gives off light.

Conductor

Atoms with more - electrons flow Atoms with few
electrons and cancel out electrons

d to the diode there is a region in the middle where
electrons flow over and the effect is cancelled out
depletion region).

When a large enough voltage is applied to a diode
0.4v to 0.6V) electrons will flow from the negative to

positive. This is called forward bias. In the process
depletion region disappeatrs.

cathode

Semiconductor

cathode

One part of the silicon has N-type impurities added (slightly
more conductive), in the other part P-type impurities are
added (slightly less conductive).

When no
voltage is
connecte
some
(the

(about

the
the

When the battery is connected back to front the diode is "reverse
biased" and the depletion region in the middle gets larger, so

electrons cannot flow. This explains why diodes conduct

only when connected into a circuit the right way

around.

310



34.7 How does a LED give off light?

Light
emission

In an LED when electrons move from the N side to the P side photons
are released.

Photons are released whenever electrons move from one shell

level in an atom to another. In an LED the electrons move from
. the N to the P and also change levels within the atomic structure
* at the same time, therefore releasing photons.

Note that the voltage required for an LED to conduct is much
greater than a normal diode. Typical values range from_1.8V to
3.6V, and like an ordinary diode they only work in one direction

LED Colours

In an LED different colours are achieved by using different types of impurities.

Eallar NEmE Wavelength Semicondy_ctor
(Nanometers) Composition
Infrared 880 GaAlAs/GaAs
Ultra Red 660 GaAlAs/GaAlAs
Super Red 633 AlGalnP
Super Orange 612 AlGalnP
Orange 605 GaAsP/GaP
Yellow 585 GaAsP/GaP
Incandescent 4500K (CT) INGaN/SiC
Pale White 6500K (CT) InGaN/SiC
Cool White 8000K (CT) InGaN/SiC
Pure Green 555) GaP/GaP
Super Blue 470 GaN/SiC
Blue Violet 430 GaN/siC
Ultraviolet 395 InGaN/SiC

311



@ SURE

OorTr Ta
® electronics

34.8

LCD Backlight Data

DE-LMOO0S5

B Electrical Characteristics
Stendard value
ITEM Symiba! ndition UNIT
Min. Typ. Max
Supply Voltage For Logic Vigoeh 45 54 55 A4
Supply Voltage For LCD \ \ 4.7 - \
Inpt High \olizge v 22 Vao v
Input Low  Nollage Vg 43 vV
uput High  \alisg vV ol efi2mA 2 v
ul il L Vo ltag |
Power Supply Cusréent Voo Vige iV - 2 5
With B/L I Vg3 1V 2 R u

In the datsheet for a 4 line LCD, the LCD typically draws 2mA with the backlight off and 72mA with it

on, so the backlight requires 70mA, it also requires 4.7V.

Although we don’t have a schematic for the backlight we can make a good guess at what the circuit
for it might look like. A typical LED requires 2V to 2.5V to drive it, so if the backlight LEDs require
4.7V we can safely assume that there are 2 LEDs in series. As the backlight LEDs draw 70mA in
total and a typical LED is up to 20mA we could guess at either 3 or 4 sets of LEDs in parallel.

LED
Backlight

As the backlight LEDs draw 70mA it is not possible to drive them directly from a microcontroller 1/0

pin, we need another control component in between.

312




Microcontroller System DEVELOPING OUTPUT CIRCUITS

34.9 Transistors as power switches O Microcontroller Hardware —K
There are many differe_nt types of transistqr (_alnd th_e L S ===
BJT has already been introduced so we will investigate Input Input b output Output
it as an intermediate stage of switching between the el 1 | IR | SURLAR ISR | R cireutts
microcontroller and the backlight. E]% emor §;ﬁ

BC547
Type NPN BJT type
Case T092

Ic (MA) 100 mA [The maximum current that we can control

Ve MaX 45V The maximum voltage we can apply to the circuit

hee (gain) 110-800 [The amplification factor I¢/l,

Pror (power) | 500 mW [The maximum power that can be dissipated by the device

What we know:
The backlight is a bunch of LEDs
requiring 4.7V and 70mA.

LED
Backlight

You need to know:

A transistor when it is completely
switched on will have a Vbe of 0.7V
A and a Vce of 0.3V

The current to the LED backlight comes
from the transistor and is the same as I,
(collector current) We want this to be
70mA.

uc

To get and I, of 70mA we need some
current through the base Ip.

The relationship between Colector and
base current is called gain or hgg. Gain or
h|:E = Ic/ Ib

lp=lc/hge = 70/110 = 0.6mA
The current in the base is the same as the current in the the resistor R from the microcontroller.
Using ohms law R = V/I = (5-0.7) / 0.0006 = 7k166 ohms
A suitable value of R would be lower than 7K to make sure that at least 0.0006A flows. So we would
choose a convenient 4k7. In fact it would be fine to go lower or a bit higher.

Now the hidden calculation is power, the transistor has a voltage of Vcg across the emitter and
collector. This will always be about 0.3V for a BJT transistor when it is fully switched on.

Power =V x1=0.3x70mA=0.3x0.07 =0.021W = 21mW.

Looking at the specifications in the above table the BC547 can dissipate 500mW and we want it to
dissipate 21mW, so it should work fine.

This fine for a 70mA, 4.7V backlight but more powerful devices will require bigger transistors. The

problem with bigger transistors however is that you have to drive them with a lot of current from the
microcontroller which cannot provide a lot of current!! So...

313



34.10

High power loads

When we have a load that requires higher power we may
need a higher voltage supply and more current.

Here is an LED based traffic light, it has 168 LEDs and
requires a 12V supply voltage.

uc
1 2 3 4 5 6 7 8
Load Ic hFE Ib Vbe R Vce I:)tot
Green I=P/V |BC547= |ly=Ic/hge
300mm =14/12 | 110 =1.16/110
traffic light =1.16A =0.011A
12V 14W =11mA
(168 LEDS)

Now 11mA from a microcontroller sounds ok but lets review the datasheet for the AVR.

34.11

23. Electrical Characteristics

23.1 Absolute Maximum Ratings*
Operating Temperature......... RGeS R -55°C to +125°C
Storage Temperature ........ccccovveivicceciinenanes -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ..........cooceiicicciiiinnnnn 0.5V 10 Vg o #0.5V

Voliage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage .............covveeimrmrmrcrnrerierernenrns 6.0V
DO Current per 1O Pin i i bicimu il 40.0 mA |
DC Current Ve and GND Pins.......cooococicorreceecnee. 200.0 mA |
Injection Current @t VCC=0V .....cvviveevveeeivnnirsrnnenneens 5.0 mAL
Injection Current at VCC=5V ......cccvvivivivieririeevnssennne. £1,0 MA

Notes: 1.

Maximum current per port = +30mA

AVR Power matters

The datasheet might initially lead you to believe
that we can draw 40mA from an I/O pin. However
there is an absolute maximum rating of 200mA
from the power supply pins, so if we were to
draw 40mA from 5 1/O pins then we would have
reached the maimum for our device.

But theres more...

314




23.2 DC Characteristics

T, =-40°C to 125°C, V. = 2.7V to 5.5V (unless otherwise noted)'"

Symbol |[Parameter Condition Min. Typ. Max. Units

y Output Low Voltage ' lg. = 10 MA, Vo = 5V 0.6 v
oL (Except Reset pin) lgL=5 mA, Vg =3V 0.5 W

v Output High-voltage' lgp=-10 mA, Vg = 5V 4.3 v
OH (Except Reset pin) lgy = -5 MA, Ve =3V 2.5 v

4. Although each /O port can sink more than the test conditions (10 mA at Vo= 5V, 5 mA at Ve = 3V) under steady state

conditions (non-transient), the following must be cbserved:

1] The sum of all IOL, for all ports, should not exceed 60 mA.

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

conditions (non-transient), the following must be cbserved:

1] The sum of all ICH, for all ports, should not exceed 60 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current

greater than the listed test condition.

. Although each IO port can source more than the test conditions (10 mA at Ve = 8V, 5 mA at Ve = 3V) under steady state

In note 4 and 5 above from the datasheet there is a maximum rating of sinking 60mA and sourcing
60mA total from all 1/0 ports. This is in effect 120mA in total.

uc

A
A

SINK current

0=on
1= off

p 1=o0n
2 0=off

SOURCE Current

Sink current is when the current is from ther AVR
I/O pin to Vcc (a low or 0 turns on the load)

Source current us when the current is from
ground to the AVR I/O pin (a high or 1 turns on

the load)

So there are significant limits to what we can drive from our AVR. This is why the current has been

limited to a few mA by a 1K resistor with the all the multiple LED circuits so far, so that we do cannot
stress the AVR.

So back to our LED traffic light, we could drive a few of them from our AVR but not many. It would be
better to use an alternative.

315




34.12

Darlington transistors - high power

A darlington transistor is two transistors inside one

package like this BDX53C

NPN COLLECTOR
BDX538

BDXS3C [——————— -

I

I

I

I

I

I

I

Jd

o)
EMITTER

MAXIMUM RATINGS

Microcontroller System DEVELOPING OUTPUT CIRCUITS

D_ Microcontroller Hardware —[lq
T Program memol ry EEL'
00— Process Code a—I

Input Input T T Output Output

Circuits Code === Code Circuits
~ Variables (Numbers) A

| ]
Memiory $

This device has a gain of at least 750 so
to get the maximum current of 6A out of it
will require only 6/750 = 0.008A = 8mA
into the base.

BDX53B | BDX53C
Rating Symbol BDX54B BDX54C Unit
Collector—Emitter Voltage VCEO 80 100 \Vdc
Collector-Base Voltage VB 80 100 Vdc
Emitter-Base Voltage VER 5.0 \Vdc
Collector Current — Continuous Ic 8.0 Adc
Peak 12
Base Current 1=} 0.2 Adc
Total Device Dissipation @ T¢ = 25°C Pp 60 Watts
Derate above 25°C 0.48 W/°C
Operating and Storage Junction TJ. Tstg —65to +150 °C
Temperature Range
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Ambient RaJa 70 “CIW
Thermal Resistance, Junction to Case ReJc 70 “CIW
ON CHARACTERISTICS (1)
DC Current Gain hFE 750 — —
(Ic = 3.0 Adc, Vg = 3.0 Vdc)
Collector—Emitter Saturation Voltage VCE(sat) Vdc
(Ilc = 3.0 Adc, Ig = 12 mAdc) —_ 2.0
— 4.0
Base—Emitter Saturation \Voltage VBE(sat) — 2.5 Vdc
(Ilc =3.0 Adc, Ic =12 mA)




v

ucC ‘ The BJT NPN transistor has been
replaced by an NPN Darlington
R transistor.

1 2 3 4 5 6 7 8

Load Ic hFE Ib Vbe R Vce I:)tot

Green |=P/V |BDX53C |lp=I./he 2.5V | =VRr/ 1y =Vee X I¢

300mm =14/12 | hge=750 =1.16/750 =(5-2.5)/0.0015 |2 =2x1.16

traffic light =1.16A =0.0015A =1,667 ohms =2.32W

12V 14W =1.5mA Use 1k5

(168 LEDS)

The BDX53C can dissipate 60W power, however it will heat up at the rate of 70 degrees per watt that
it dissipates.

The BDX53 will then heat up by 2.32 x 70 = 162.4 degrees over and above ambient temperature.
Ambient temperature is the temperature of the piece of equipment and is influenced by the air
temperature other components that generate heat. This exceeds the temperature range of the
device which is 150 degrees. So we should use a heat sink.

317




34.13 ULN2803 Octal Darlington Driver

This really useful IC has 8 darlington transistors built into it. Which makes it really useful for
connecting to the 8 pins of one port on a microcontroller.

12Volts
In this circuit for one 1/0 of the ULN2803 you
can see the protection diodes on both the
input and the outputs.

. output

z

The protection diodes go to pin 18 which must be connected to the
power for loads you are driving.

This device is great for connecting high power loads such as relays, solenoids, light bulbs
Each transistor can switch 500mA each however you cannot have more than 1W per output and a
total of 2.25W per IC (all 8 outputs) at once.

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit
Vo Output Voltage 50 Vv
Vi Input Voltage V

for ULN2802A, UL2803A, ULN2804A 30
for ULN2805A 15
lc Continuous Collector Current 500 mA
Is Continuous Base Current 25 mA
Piot Power Dissipation w
(one Darlington pair) 1.0
(total package) 2.25
Tamb Operating Ambient Temperature Range — 20 to 85 °C
Tstg Storage Temperature Range — 55 to 150 °C
Tj Junction Temperature Range — 20 to 150 g

318



ELECTRICAL CHARACTERISTICS (Tamb = 25°C unless otherwise specified)

Symbol Parameter Test Conditions Min. Typ. Max. | Unit | Fig.
lcex Output Leakage Current Vce = 50V 50 LA | 1a
Tamb = 70°C, Vce = 50V 100 LA 1a
Tamb =70°C
for ULN2802A
Vce =50V, Vi =6V 500 uA | 1b
for ULN2804A
Vee =50V, V; =1V 500 uA | 1b
Veegay | Collector-emitter lc = 100mA, Ig = 250uA 0.9 1.1 Vv
- | Saturation Voltage lc = 200mA, Ig = 350uA 1 1.3 \ 2
lc = 350mA, Ig = 500pA 1.3 1.6 v

12V
8 bulbs
12V
150mA
from
micro
GND

In this example we want to drive 8 bulbs, bulbs are not socommon but theywillserve as an example of
power calculations.

1. Power for each transistor

The transistor will have to supply 0.15A, when it is turned on (saturated)
The voltage across the Collector to Emitter will be 1.1V (worst case)

So the power for each transistor willbe P =V x 1 =1.1 x 0.15 = 0.165W

2. this measn if we want all 8 bulbs on at once we will have
P=8x0.165 =1.32W

3. We can do this as the specification for each transitor and for the the whole package have not been
exceeded.

4. We will need a power supply capable of delivering 12V and 1.2A (8 x 0.15A) plus other power
requirements of the circuit.

319



Microcontroller System DEVELOPING OUTPUT CIRCUITS

34.14  Connecting a FET backlight control | |~ WMicrocontroller Hardware —K
to your microcontroller X o =52

Input Input T 1 7 | Output Output

. . . . Circuits Code I —— Code Circuits

The LCD requires six I/O lines to be used on the micro to — 1 Variables (Numbers) 4+ A
control the data to it plus 1 more to switch the backlight [:]h — §Z

=
11 | S
= = T
- MAT6-1
_— EEE 1 [ 1=vss (0w
(BOCTIPAT gi X A1 0 g - %:xBD (5]
N e Xns Zqh.  l P
(ADCAIPAY (22 5 i <, : g:Efw
e £
Y .
(ADCTIPAT ig XK A g
(ADCOIPAD 5 a0 - —
(SCKIFBT [ % E.7 o ol s
(MISO)PBE |- Oy | 12208
(MOSIPES [ — 5 BEA 1= |
1II[E|?’§)PE4 4 {6 - o 15 : 15=BL+
e e X B3 o -
IjocO)FEz [— 5 B2 ¢ 160 | 16=EBL-
(T1IFE1 K B.1
UKCKPEO ¥ B0 Ug2
“0SCHPCT gg X 7
OSC1IPCE X CE
FCS gg
pce (22
PC3 V&
Poz |22 @
(SDAIFC %3
(SCLPCO
(OCTPDT 310 5 07
(CPIPDE  —g X DA
(OC1APDE - ¥ 05 U4 .
(OC1E)PD4 == 5 D4 BL 2rTaoo
(NT1IPD2 X D3 X— e
(NTO)PD2 (2 X D2 R12 mG 5
(THDIPD XK D1 o
(RxDPOO |14 00 I
.
GND

320



3415 FET baCk“g ht Control Microcontroller System DEVELOPING OUTPUT CIRCUITS

The FET (field effect transistor) is different to the KO— Wicrocontroller Hardware —K

more familiar BC547 which is a BJT (bipolar T Program memory =R

; ; ; oo Process Code

junction transistor). Input Input S output i

e A FET’s output current is controlled by the Circuits Code Y Code Circuits
voltage in and there is almost no current in the i Variables (umbers) > S?J’"
gate of the FET from the microcontroller

meaning a microcontroller can control large
FETSs directly.

e Generally FETs require about 10V to drive the gate but low voltage versions called ‘logic’ FETs are
available. The 2N7000 is a logic MOSFET, capable of driving 200mA loads and dissipating 1W of
power at 25 degrees Celsius AND can be controlled directly by 5V (a logic 1) from a
microcontroller

e The power dissipated by a FET is much lower than a BJT. Itis measured by multiplying the
current flowing by the Rys value (50hms for a 2N7000, but typically milliohms for high current
FETS)

DRAIN

2N7000 - ‘N channel enhanancement-mode
MOSFET’

BVpss / Rosion lojon
BVpas (max) (min) n

B0V 5.0Q 75mA

GATE

- TO82
Ip (continuous)* Ip (pulsed) Power Dissipation ZNT000

@ Te=25°C
200mA 500mA W

SOURCE

The FET can be connected directly to the
microcontroller output pin without the 100k
resistor; however we prefer to connect it
with a high value resistor.

LCD

It is good practice to connect the gate to
ground with a high value resistor. The
reason being that the gate is so highly
sensitive that if the micrcocontroller pin is
configured as an input it will easily drift in
voltage and the FET might turn on due to micro
noise nearby in the circuit (and so will the .
device you have connected to it). This is the GATE r/‘f: A
) Nhaty
case when an AVR is turned on and before — 3 —i
any config statements have been run in 100k
your program. M

DRAIN

/.

\‘1

SOURCE]

In worst case the power dissipation will be
P=VxlandV=IxRsoP=IxRxlI
P=1°R = 0.07 x 0.07 x 5 ohms

P =0.0245W = 24.5mW

So a lot less power is wasted by using a FET rather than a BJT.

Note the 5 ohms in the datsheet is a maximum value for RDS, looking through the datsheet shows
that it is typically going to be around 2 ohms, but we used 5 as a worst case scenario.

321



35 Power Supply Theory — every micro needs high quality power

Over time a significant number of
students have developed power
supplies and breadboard
prototyping centres for their own
use

Some have been built into
existing items like this toolbox

A range of various materials are
used
Sheet metal
Acrylic
MDF
Pine
Plywood

T —

Some included microcontroller
based control of the voltages

Sketchup plays a significant
role in helping students
visualise and plan the final
product

3 2illo08
gV

322



35.1 Typical PSUs
Typical power supply units and their characteristics/features

Input voltage range: 230V AC 50Hz

DC Output range: 5 - 15 Volt

Output Current:10 amp DC (no variable limit)
Analog Amp & Volt Meter

270mm x 200 mm x 120mm

Input Voltage: 230-240V AC. 50Hz

Output Voltage: Variable 0 to 30V DC

Variable Output Current Limit: O to 2.5A

Load regulation (0-100% load): 10mV

Line regulation (240V +/-5%): 10mV

Digital Volt and Ammeter Accuracy: 0.7%

Mains overcurrent protection: 1A resettable circuit breaker

Output Voltage: 3-15V DC or fixed at 13.8V
Output Current: 40A regulated (no variable limit)
Ripple & noise: 10mV rms

Load regulation: 230mV @ 0 - 100% load.
Measures 220(W) x 110(H) x 300(L)mm.
Weight 3.5Kgs. — digital volt and amp meters

Input voltage range: 230V AC

DC Output range: 5 - 15 Volt

Output Current:10 amp DC (no variable limit)
Analoge Amp & Volt Meter

270mm x 200 mm x 120mm

Input Voltage:240VAC10%/50Hz

Output Voltage: 0 - 30 Volts DC

Output Current: 0 - 5 Amps

Line Regulation: £0.01%+3mV <0.2%+3mA

Load Regulation:0.01%+2mV <0.2%+3mA

Ripple & Noise: <0.5mVrms <3mArms

Display Accuracy:Voltmeter(0.2%Rdg+2digits), 2.5% Full Scale

Silicon Chip Magazine power supply kitset
Two independently switched outputs: 5V,12V &15V

______ Voltage outputs: +1.25V to 15VDC @ 0.25A.
ESan, . -1.25V to -15VDC @ 0.25A.
e +5VDC @ 0.25A.
+30VAC center-tapped to 15VAC @0.25A.

Various switches, LEDs, potentiometes, breadboard for testing circuits

"o
¥ -
o
y WOW: a power supply and breadboard prototyping super kit
Extra features include: tools storage, multimeter

The specifications we need to know more about are highlighted above: Input Voltage range and
frequency, variable output voltage range, output current limits, ripple, line regulation and load
regulation.

323



35.2 The four stages of a PSU (power supply unit)

Most modern electronic devices require fixed and stable power supply voltages, to achive this we
follow a recommended design.

Transformer Rectifier Filter Regulator . IOW voltage DC outto
circuit or system under test

Amplitude Peak-to-Peak
3 £

Mains 230V in

LT,
230V Jf \ /’ In NZ we use an AC (alternating current) mains
power supply system which delivers 230V to
/ our homes.

. | ! . The 230 is an RMS (root means square) value.
-5 / 0 | / 5 \ 0 15 Although it is 230VRMS it peaks at about 230 x

/ \ / \ / 1.414 (+325V and — 325V).

/ \ / \ ' 230 VAC

/J [/ TRMS

Period

Of course we cannot use 230V directly in our projects as it is unsafe to so so. We use a transformer
to convert the voltage to a lower value. A transformer is 2 (or more) insulated coils of wire wound on

a laminated metal core.

The ratio of the number of turns between the primary and secondary windings determines the voltage
out put. If we want 23Volts out of our transformer we would have 1/10™ the number of windings on

the secondary as we have on the primary.

35.3 Stage 1: step down transformer

I =

Primary Sec&mdary
ANANAN
(IBVARV,

Input High Voltage AC Transformer Output Low Voltage AC

-~
+

g output 0 e e

324



Wiring up our own mains transformer within a project is complex and requires a specific process to
be followed thoroughly. This circuit looks simple enough it shows the switch, fuse, mains connector
and primary of the transformer all in series.

Switch

Fuse I

Transformer
= e

However the actual product requires very specific wiring and earthing as well as testing by a
registered person before it is used.

In this power supply DH covered the mains area with a plastic cover, then we had it certified by an
electrician before mounting and testing the rest of the low voltage circuits.
. : !

325



354 Stage 2: AC to DC Conversion

The second stage of the power suppy requires the conversion of AC to DC because all the circuits
we use require DC voltage. A diode rectifies the AC .

A half-wave rectifier (a single diode) blocks the negative voltage. This is however very inefficient use
of a resource as half the power is never available for use — this means we might buy a 100VA
transformer but only be able to use 50VA — transirmers are expensive so this is a waste of money.

Voltage > > Voltage

‘NN N “N NN
VY, o

Time

A more efficient use of the power is to use a full wave rectifier, where there are 4 diodes.

The output power of the bridge reEtifier is almost all the power going into it not half of it.

Voltage

V'|V\\/\\/\

!

Time

When the mains voltage is one polarity only two diodes conduct.

+ + -

When it is the opposite polarity the other two diodes conduct. The output however is always the same
polarity

326



35.5 Stage 3: Filtering AC component

Volt
e V"VO\,a\ge‘,\/\/\

"

Time

We need a steady DC voltage from our power supply, to assits we
will use a capacitor. A capacitor is made of two metal plates
RSV separatgd by an insulator (called a dielectric). The_ characteristic of

i 3 ) ZL . a capacitor is to store charges (electrons). If there is no voltage on a
capacitor and a voltage is applied a large flow of charges (current)
will occur, when the applied voltage is removed the capacitor will
release these to the circuit. In our Power supply circuit the voltage
rises and falls 100 times per second, while the voltage is low the
charges stored in the capacitor will be used by the circuit, while it is
high the charges used by the circuit will be supplied by the rectified AC which will also charge the
capacitor. In a power supply we typically use very large capacitors e.g. 2200uF or 4700uF.
These capacitors are polarised, so must go around the right way — they can explode so get it right!
We also need to make sure that the voltage rating is more than the peak volate of the transformer. So
a 13VAC transformer will have a peak output of 13x1.414 = 18V. Capacitors come in standard values
16V is a common value as is 25V. A 16V capacitor will not do, here a 25VDC one was used.

35.6 Stage 4: Voltage Regulation

The ‘DC’ coming out of the filter section of the PSU is not completely smooth and it has a slight ripple
component due to capacitor discharging and recharging. As the load changes the ripple increases
(the load is the circuit we connect to the PSU and we show it as a resistor in the circuit below). This
means that the voltage can go up and down as the load changes, something that happens a lot in
digital circuits as things switch on and off.

Also we want 5V for our microcontroller, so an unstable 16-18V DC supply is too high.

LOW LCAD (CURRENT)

AC Unregulated DC
HIGH LOAD (CURRENT)
i LOAD
o
Lower effectve DC
Higher ripple

327



From the portions of the datasheets below for the ATMegal6 and the ATTiny26 we can see that they
need around 5V for the standard higher speed devices and 3V would be fine for the type L devices
Voltages that exceed 5.5V will very like damage the microcontroller. Every now and again there is a
loud POP in the classroom and the smoke inside a microcontroller is released as another student
forgets to check the voltage on the bench power supplies we are using and tries to run their micro at
30vDCl!!

ATmegal6

* Operating Voltages
- 2.7 - 5.5V for ATmegai6L
- 4.5 -5.5V for ATmegai6
* Speed Grades
— 0 -8 MHz for ATmegai6L
- 0-16 MHz for ATmegail6
* Power Consumption @ 1 MHz, 3V, and 25°C for ATmegai6L
- Active: 1.1 mA
- |ldle Mode: 0.35 mA
- Power-down Mode: < 1 gA

ATtiny26

Operating Voltages
- 2.7V - 5.5V for ATtiny26L
- 4.5V - 5.5V for ATtiny26

Speed Grades
— 0- 8 MHz for ATtiny26L
- 0- 16 MHz for ATtiny26

Power Consumption at 1 MHz, 3V and 25°C for ATtiny26L
- Active 16 MHz, 5V and 25°C: Typ 15 mA
- Active 1 MHz, 3V and 25°C: 0.70 mA
- Idle Mode 1 MHz, 3V and 25°C: 0.18 mA
- Power-down Mode: < 1 A

The output voltage must be controlled by some form of voltage regulator circuit. Here the regulator is
a series pass transistor controlled by an opamp and transistor. The opamp compares the difference
between the output voltage (Vfeedback from the voltage divider) and the reference voltage (Vref from
the zener diode). It increases or decreases the drive voltage to the series pass transistor to keep the
two input voltages equal.

Vin _ TN Vout

S

Vref

Vdifference

Ground |

328



Here is a common commercial device to do just that for us. It is the 7805 (or LM340T-5).
It comes in various package styles depending upon its use or its current limiting characteristics.

TO220 TO5 SMD (surface
T092 mount device)

+—ViN

Inside the 7805 IC an
there is a
reasonably complex
circuit.

The components of rén
interest however

can be identified
easily they are R1
and D1 (Vref), Q16
(series pass
transistor), R20 and
R21 (Vfeedback).

Q15

R15
1.62k

R16
0.25

Vour

R20

This circuit has a
current limit built
into it, R16 is a
0.250hm resistor
and is used to
detect the amount
of current flowing,
more about that
later.

-—GND
773107

329




A 7805 can be added easily to our circuit. But we must know about it so that we use it correctly.
The datsheet for a 7805 can be downloaded from the internet, here are some sections from it.

Absolute Maximum Ratings (Note 1) Lead Temperature (Soldering, 10 sec.)
If Military/Aerospace specified devices are required, TO-3 Package (K) 300°C
please contact the National Semiconductor Sales Office/ TO-220 Package (T), TO-263
Distributors for availability and specifications. Package (S) 230°C
(Bote.5) ESD Susceptibility (Note 3) 2 kV
DC Input Voltage
All Devicas grcant Operating Conditions (note 1)
LM7824/LM7824C 35V
LM7824/LM7824C 40V Temperature Range (TA) (Note 2)
Internal Power Dissipation (Note 2) Internally Limited LM140A, LM140 ~55°C 1o +125°C
Maximum Junction Temperature 150°C LM340A, LM340, LM7805C,
Storage Temperature Range -65°C to +150°C LM7BY2C: L MZB15C, LM7B0RO 2 S0y

LM340A Electrical Characteristics

lour = 1A, =55°C £ T, < +150°C (LM140A), or 0°C < T, £ + 125°C (LM340A) unless otherwise specified (Note 4)

Output Voltage 5V 12V 15V
Symbol Input Voltage (unless otherwise noted) 10V 18V 23V Units
Parameter Conditions Min I Typ IMax Min ‘ Typ I Max | Min | Typ IMax
Vo Output Voltage | T, =25'C 49 5 511175 12 1225|147 15 153| V
Po< 15W, 5 mA< o < 1A 4.8 52 | 115 12.5| 14.4 15.6| V
Vs SN 00 S Vi (75<V,y<20) | (14.8<V,,<27) | (17.9<V,y<30)| V
What is the maximum input voltage?
What do you think storing the device below -65 degC might do to it?
If it got hotter than its maximum operating temperature of degC what might happen?
What is the typical output ? ,
the maximum output voltage?
the minimum output voltage?
£8.9)
Rg Dropout Voltage | T, = 25°C, Ig = 1A 2.0 2.0 2.0 \Y
Quiput f=1kHz 8 18 19 m£l}
Resistance

From the small section above we can determine what the minimum input voltage is that we can use
to get 5V out. This spec is called dropout voltage and it is the voltage difference between the input
and output that is required to make sure the 7805 operates correctly.

To get 5V out we need at least input voltage

330



35.7 Ripple (decibel & dB)

1 o ]
AViN Ripple Rejection | T, =25'C, f = 120 Hz, I = 1A 68 80 61 72 60 70 dB
AVouTt or f = 120 Hz, I = 500 mA, 68 61 60 dB
Over Temperature,
Viun £ Vin € Vinax (8=Vy<=18) (16 <V £ 25) (185 =V < Vv
28.5)

Although the filter capacitor reduces the ripple voltage we do not want any of it getting onto the power
pins of our microcontroller. That sort of thing really upsets fast switching digital and microcontroller
circuits and also can create hum in audio circuits. The 7805 rejects ripple, the datasheet gives its
specification as 80dB (decibels).

A Decibel is a measure that is not linear but logarithmic in scale .
+3dB means 2times the power (or if a voltage is specificed ,1.4 times the voltage)
-3dB means half the power (0.71 x the voltage)

+6bB means 4x the power (2x the voltage)
-6dB means Y of the power (1/2 the voltage)

+80dB means 100,000,000 x the power (10,000 x the voltage)
-80dB means 1/100000000 of the power (1/10000 the voltage)

80db from the datasheet means it reduces ripple output to 1/10000 of the ripple voltage coming in.

If the ripple voltage was 100mV (0.1V) coming in it would be coming out of the
7805 (not much!)

The power supply units looked at earlier had ripple specifications of 10mV that means that if we set
our PSU to 5V then the voltage will fluctuate from 4.990V to 5.010V at the rate of 100 Hertz (100
because we full wave rectify the 50Hz AC voltage)

Often a datasheet will give typical applications for a device

Typical Applications

Fixed Output Regulator

INPUT TPUT
LM340-X X _.OU__U-

GND
ci* e .
0.22 4 g —_— 27

0778104
“Required if the regulator is located far from the power supply filter.
**Although no output capacitor is needed for stability, it does help transient
response. (If needed. use 0.1 pF. ceramic disc).
Note: Bypass capacitors are recommended for optimum stability
and transient response, and should be located as close as possible to the regulator.

The note about the two small capactiors is very important when designing a 7805 circuit put them real
close to the IC (within a few millimetres)

As an aside | always use at least a 10uF electrolytic capacitor on the output of the 7805 if 1 will
be using the ADC circuit of the ATMEL AVR, as this makes the ADC readings more stable!

331



35.8 Line Regulation

Line regulation refers to the line input voltage varying. In our case we have a nominal (typical) mains
voltage of 230V AC. This voltage however fluctuates as people turn applicances on and off,
expecially large power users. So these changes in line input voltage should not effect the output
voltage.

One of the power supplies above quoted Line regulation (240V +/-5%): 10mV this means that if the
mains voltage varies by up to 5% either side of 240V then the output voltage will change by no more
than 10mV. Another one quoted Line Regulation: <0.01%+3mV so when the input AC voltage varies
0.01% of that variation + 3mV may be passed through to the output.

The 7805 Line regulation from the datasheet is 10mV at 500mA output.

35.9 Load Regulation

Load regulation is perhaps the most important specification for our power supplies as we want the
output voltage to be constant while our circuits current load changes (i.e. we trun LEDs, motors etc
on and off). Three of the power supplies had specifications for this

8. Load regulation: 230mV @ 0 - 100%

9. Load regulation (0-100% load): 10mV

10. Load Regulation:<0.01%+2mV
The first one is the worst upto 230mV variation, so a 5V setting might drop down to 4.770V, the
second at 10mV means that the 5V would drop down to 4.990V and the last one by a little more than
2mV. The 7805 has a load regulation specification of 10mV typical and a maximum of 25mV. So it is
really good!

332



35.10

Current Limit

Although we regulate voltage we seldom regulate the current that a circuit can draw. Using ohms law
we can work out what the different currents are for circuits below

7805
9VvDC input ‘ A m 1000hms
I 7805
9VDC input ‘ B m1ﬂul1ms
I 7805
9VDC input ‘ C m 1ohm
I 7805
I short
9VDC input ‘ D circuit

The 7805 has a built in current limit circuitry to protect itself

In this circuit 5V into a load of
100 Ohms
I=V/R = 5/100 = 0.05A or 50mA

In this circuit 5V into a load of 10
Ohms
I=V/R = 5/10 = 0.5A or 500mA

In this circuit 5V into a load of 1
Ohms

NO it wont work, sorry

I=V/R =5/0, don’t try this on your
calculator because it generally
gives E, which students
sometimes think is infinity so
infinite Amps!

Output Voltage 5V 12v 15V
Symbol Input Voltage (unless otherwise noted) 10V 19V 23V Units
Parameter Conditions Min ] Typ ] Max | Min [ Typ I Max | Min I Typ |Max

Short-Circuit T,=25C 2.1 1.5 1.2 A
Current
Peak Output T,=25C 24 24 2.4 A
Current
Average TC of Min, T,=0°C, Io =5 mA -0.6 =1.5 -1.8 mV/'C
Vo

It can deliver no more than 2.1A maximum. HOWEVER, current limit is a function of the whole circuit,
if your 9VDC coming in is provided by a plugpack that has a 500mA output rating then you will only
ever get 500mA max (trying to draw more may kill the plugpack) If it is coming from a 10A power
supply then it will allow you to draw an absolute max of 2.1A if you put a short circuit on the 7805.

333



What exactly is current limiting and why is it important?

Often batteries are used to test circuits. This is fine if the circuit is working well. The circuit under test
may be drawing 120mA so it can be thought of as a (R=4.8/0.12 =) 40 ohm equivalent resistance.

4.8V

-

i

Circuit
under
test

If however you make a mistake with your breadboard or pcb and the circuit becomes 0 ohms then a
problem can occur!
In fact explosions can occur!!!

150m ohm

4.8V |

T

Ik

Cire
un

it
er

test

Batteries are not perfect but they are very good; they
have a small internal resistance, which will limit the
current. 1 =V/R =4.8/0.15 = 32A!l This internal
resistance depends on things like temperature and
the chemical reactions going on and could even be
lower.

In the class we have had batteries explode into fire. When testing circuits if it doesn’t work check the
temperature of your batteries, if they are very hot disconnect them and if they are really hot put them
outside immediately; as they may explode even after having been disconnected as they can continue

to heat up.

Check out the internet for videos and pictures of exploding batteries if you don’t believe!

334



How does current limiting work?

+-Vin
Q15
Q16
R15
1.62k
R16
0.25
Vour

The 7805 current limiting circuitry from the datasheet (above), this has been reduced down to a basic
block type diagram in the circuit below.

Betweent he input and output of the 7805 is transitor Q16 and resistor R16 (0.250hm). The current
that the 7805 supplies to the circuit goes through the 0.250hm Current Sense (lsense) resistor.

This resistor will develop a voltage (potential difference) across it which is directly proportional to the
current (V = IXR - ohms law - as current increase so does voltage).

Vin Vout
i

IS&T’IS&

Vref

Vdifference

| E—

A

Ground

V=1xR

At 50mA
V =0.05x0.25= 0.0125V

At 100mA
V =0.1x0.25=0.025V

At 1A
V=1x0.25=0.25V

At some point the current sensing transistor Q14 will turn on and shut off the main transistor Q16.

335



35.11 Power, temperature and heatsinking

Using the first of the 4 previous circuits we can work out some power calculations for our 7805.

4V dropped
7805 I
9VDC input 5V output 1000hms
0.05A
(50mA)

If the 7805 needs to drop 4V at 0.05A, then it will have to dissapate 0.05A x 4V watts of power

P=VI = 0.05 x 4 = 2Watts. In doing this the 7805 will act as a heater and get warm.

This is where the specifications for a device become very important, as we do not want to exceed the
power ratings or damage may occur. Damage is not really a problem with the 7805 as it is
“essentially indestructible” as the datsheet says. However it will shut itself down if it gets too hot.

Note 2: The maximum allowable power dissipation at any ambient temperature is

a function of the maximum junction temperature for operation (T y4ax = 125°C or_150°C),

the junction-to-ambient thermal resistance (8 a).
and the ambient temperature (Ta). Ppmax = (Tumax = Ta)Bga.

If this dissipation is exceeded, the die temperature will rise
above T juax and the electrical specifications do not apply.

If the die temperature rises above 150°C. the device will go into thermal shutdown.
For the TO-220 package (T). 8,4 is 54°C/W and 8¢ is 4'C/W.

The ‘die’ is the internal silicon wafer that the circuit is built on; if this goes over 150 °C the device will
shut itself down. The 7805 is able to radiate heat however it has only a small surface area and so it
is not very efficient at getting rid of heat. Its warms up at the rate of 54 °C/W . The specification of
interest is ©j-a (theta junction to ambient).

If in the example we want to dissapate 4W then the junction temperatire will rise to 4 x 65 or 260 °C,
clearly the devie will shut itself down if this were to happen as it would get too hot.

So we bolt a heatsink to the 7805. The specification of interest becomes ©j-c (theta junction to case)
which is 4°C /W

336



7805

internal
junctions
/
o B —3
AR
\
1\ . N
"x\ il
\ e(hs-a)
e(c-hs) heatsink
caseto to ambient
heatsink 17 °CIw
with washer
! and heatsink
e 7} junction con;pound
U-¢) ‘to case 19Ciw
4°Ciw

Each part of the chain of dissipating heat has a negative impact, the lower the overall number the
better heat can be dissipated. A small heatsink might be 20°C/W, in this case the one shown is
17°C/W. A large heatsink might be 4°C/W.

If we use a mica insultor between the 7805 and the heatsink and thermal paste (to exclude any air
from the join) it adds 1°C/W.

Our total is now 4+1+17 = 22°C/W. Much better than 54°C/W.

At 4W our junction temperatire will be 4*22 = 88°C, which is below the max of 150°C .

If we raise the input voltage to 16VDC, and we want to draw 1A from the 7805.

We will have 16-5 = 11V across the 7805 and it will have to dissipate 11V x 1A = 11Watts.
At 22 °C/W, that means 11W x 22 = 242°C.

To be within range of our 150°C we will have to have reduce the rating to 150/11 = 13°C/W.

If we have a heatsink of 8°C/W it will be OK, but that is a reasonable size heatsink.

337



35.12 Typical PSU circuit designs
35.13 PSU block diagram

7805 ——  Fixed 5V
I Regulators
/-D
(ransformep L LM317 —— Variable Voltage

35.14 PSU Schematic

M o] : v
GND sYOUT
7805 .
C4 —L=
= Lo T
=a
- ou
K D
¥
AL + =X
3 MO
= GHD
® &
g =
= [ 1N4004 |
312 NELE
=
= i
k1
]-"_"-[ SK104-FpD
N OUT| v
L YARQUT
= =
! IC1 =
. =
D
ry— T — T o4
e =
[ |
CH
0
ACD 4 - i To
N - - A" Ay
<5 . 10uf 10u a
Tm
[
@ ' *
G—L—D GHD
GHD In

this circuit the thick lines indicate higher current paths, which will require thicker tracks on the PCB
Note that there is no current limit apart from the 7805 and LM317 internal current limits (at least that’s
better than 30+amps direct from batteries). Note the three GND connections, these points are
connected as they are all called GND, there is no need to add wires to connect the points.

338



O

160 18uf

..-I-
+I?I

r.1 r."

L+ 4

LT 4 L=a

AR out

SKi1d4-PA0

Ol

A

O @
VE /s

Initially layout your components in a
logical way

Here a small heatsink was used in the
centre of the PCB and the two
regulators were mounted on either
side of it. The components that
belonged with each part of the circuit
were put on each side of the heatsink.
The capacitor and voltage regulator
were added to one end f the board.
The wires to connect to other
components were all placed around as
few sides of the board as possible,
and as close to the edges as possible.
3.5mm mounting holes were placed in
the corners.

Next the tracks were started. The
ground was laid first around the
outside of the board and using 0.086in
thickness, this is the thickest track
possible to connect to the voltage
regulators as their leads are 0.1inch
apart.

There is another consideration here,
this is a powersupply designed to
deliver current to other ciruits, we
must know about the current limits of
the PCB tracks. This is all to do with
resistance and heat. A copper track
although a conductor still has a finite
resistance and will burn up if too hot
(too much current flows through it).
We use PCB which has 20z (ounce)
of copper per square foot. This
equates to 0.0028 inch thick tracks.
A 0.086 inch wde track can carry
about 3.5A and will increase in
temperature by about 10 degrees C.
(which is ok).

In an effort to reduce electrical noise
and any voltage fluctuation a large
ground plane is added to the board.
Type ‘polygon gnd’ into eagle and set
the values for width, isolate and
spacing for 0.032 inch. Then draw the
polygon around the edge of the board
and redraw the ratsnest to fill in the

polygon. A ground plane also reduces the amount of copper that will need to be etched, saving on

chemicals.

339



Insulating of heatsinks and voltage regulators

Most devices need insulating from heatsinks, because the metal tab of the IC package os electrically
conneted to one of the legs.

7805 LM317

!

Gnd Vout

In the 7805 the metal tab is electrically ground (or OV),

In the LM317 variable voltage regulator the metal tab is connected to Vout, the variable voltage.

If we were to bolt them to the heatsink without insultating them the variable voltage would short out to
ground. When we have a 7805, its case is already ground sowe don’t need to insulate it, but the
LM317 still needs insulation.

Small amount of

i i Small amount of
Heatsink Compound Heatsink ot of eatain
M3
Bolt Insulating Bush M3

Bolt

R QH ] ﬂ m\\\\\\\ Plain QH

AT }

/ .
Lock Washer Insulating Bush Lock Washer
edges of the
heatsink and the LM317 7805
holes must be
Voltage clean so as not to Voltage
Regulator damage the mica Regulator
insulator
] Mica
——Insulator Mica _—¢—

Insulator

PCB ‘ ‘

340




35.15 Practical current limit circuit.

From the LM317 datsheet there is an application to build a current limit. The current can be
controlled by using different values of resistor (a potentiometer could be fitted if it was a special high
power one). Check out the datasheet for other applications for the LM317.

1A Current Regulator

VIN Vin  Vour
ADJ 5
c1

0.1uF I' W

=

In this circuit below the current can be set using two values for R1 and R2 and a switch to select
either or both (giving three different preset values)

If 1R2 ohms gives 1 amp limit

What value of R would give a current limit of 200mA?

)F
x RE=a " X ‘ ! 8
3 ¥ >
Y Lo, it [l] A ’
* X I'—_L T -
o T L

341



1HS400
B

1603

2200 II_ B

-
-

342

In this layout the 3 voltage
regulators are mounted on
the very edge of the PCB.

This means that we can
solder them onto the PCB
and then heatsink them easily
against a large heatsink or a
metal case.



36 Yearll typical test questions so far

Capacitors

What is the value of the small yellow Capacitor in the microcontroller circuit- in pF? nF? uF?

What is the value written on it and what does it mean?

Why is it used?

What does polarised mean?

What are the two ways of knowing how to put an electrolytic capacitor into the circuit correctly?
Resistors

Calculate the value for a current limit resistor with a 12V battery , and an LED drawing 2mA

Slect the closest value we have in class that you could use.

If you could use 2 values of resistor found in class combining them together which 2 would you use?
Explain what a voltage divider does

What do we use potentiometers for in circuits? Expalin how a potentiometer is a voltage divider
Multimeter use

You want to measure the current drawn by your LED in a microcontroller circuit, draw a diagram of
how you would do it and what settings you would use on the multimeter.

Algorithms/Modelling

Why do we write algorithms before we program? (Do 2 of the following algorithms)

Write pseudo-code then draw a flowchart for a program to read 2 switches to control the position of
an LCD character, one to move it left, one to move it right and press both to change line.

Write an algorithm to play as many different tones as possible if you have 4 switches and press them
in different combinations

Write an algorithm to change the speed of a flashing led using 2 switches

Write an algorithm that uses 1 switch to enter the number of times an led will flash and a second
switch to start the LED flashing

Write an algorithm to allow a user to enter their name into a variable, using 3 switches, the first to
increase the litter, the second to move to the next letter, the third to finish.

Variables

If you were to record the position of a character on an LCD what type of variable would you use?
Describe overflow

If you were have a user enter their age what type of variable would you use?

If you were counting seconds in a minute what type of variable would you use? In an hour? In a day?
In a year? In a century? Give good names for these variables.

Dimension variables that would hold each of your first, last and any middle names.

Programming

Write a short piece of code that counts 15 switch presses and then flashes an LED

Write a short piece of code that checks 4 switches to see if they are all pressed.

Write a subroutine to check if a value is a multiple of 10 and if it is to flash an led once

Write a subroutine to add three strings together with a space beweeen each string

Write a subroutine that gets the first character from each of three strings and displays it on the Icd
Write asubroutine to get the middle letter of a string and display it on the lcd

Write a subroutine to get a random letter from a string and display it on the lcd

Microcontollers

What are the different uses of the three microcontroller memory types:RAM, FLASH & EEPROM
Subsystems

Draw a system context diagram for your project

Draw a block diagram for your project

What does ‘black box mean’

What are at least 3 things about a 7805 that makes it so useful for a microcontroller circuit
Describe the inputs and outputs of an LCD,

Explain each of the main commands to use an LCD

343



37 Analog to digital interfaces

In the real world we measure things in continuously varying amounts.

The golf ball is some distance from the hole. It might be 11 metres from
the hole, it might be 213.46236464865465437326542 metres from the
hole.

The airplane might have an altitude of
11,983 metres or perhaps
1,380.38765983 metres.

A computer works in binary (or digital) which means it has the ability to sense only two states. For
example the golf ball is either in the hole or not. The plane is either in the air or not.

When we want to measure the actual distance in binary we must use a number made up of many
digits e.g. 101011010 (=346 decimal) metres.

37.1 ADC - Analog to Digital conversion

We need to be able to determine measurements of more than on and off, 1 and 0, or in and out. To
do this we convert a continuously varying analogue input such as distance, height, weight, lighltlevel
etc to a voltage.

Using the AVR this analogue value can then be converted to a binary number within the range 0 to
1111111111 (decimal 1023) within the microcontroller. We can then make decisions within our
program based upon this information to control some output.

37.2 Light level sensing

We will measure the amount of light falling on a sensor and use the LED's on the microcontroller
board to display its level.

The LDR

The LDR (Light Dependant Resistor) is a semiconductor device that
can be used in circuits to sense the amount of light. Get an LDR and
measure the resistance when it is in the dark and measure the
resistance when it is in bright sunlight. Record the two values.

344



37.3 Voltage dividers review

When you studied ohms law you also studied the use of voltage dividers. A voltage divider is typically

two resistors across a battery or power supply.

A voltage divider is shown here. With the 5volts applied to the circuit the

i Vout  yoltage will vary.

than R1 the output voltage will be high.

Replace one of the resistors with an LDR, we know that the resistance of an
LDR changes with the amount of light falling on it.

If the light level is low, and then the resistance is (high/low),
therefore the output voltage is (low/high).

If the light level is high then the resistance is (high/low), therefore the
output voltage is (low/high).

Now this is what we call an analogue voltage. Analogue means that the
voltage varies continuously between 0 and 5 volts.

But computers only know about digital voltages O volts or 5 Volts. We
need to convert the analog voltage to a digital number that the computer
can work with. We do that with the built in ADC (Analogue to Digital
Converter) inside the Microcontroller.

37.4 AVR ADC connections

output voltage will be some proportion of the input voltage.
R1 i|

If the two resistors are the same value then the output voltage will be
one (quarter/half/third) of the input voltage; i.e. it has been divided
by (2/3/4). If we change the ratio of the two values then the output

With R1 larger than R2 the output voltage will be low and with R2 larger

LDR [

V out

yee On a micro such as the ATMega8535/16, Port A has dual functions
< inside the microcontroller. Its second function is that of input to the
. LDR internal ADC. In fact there are 8 separate inputs to the ADC one for
each pin of portA.
4.9 T In the diagram a 4k7 resistor is shown, this can be changed for a higher
or lower value to achive the effect you want with the LDR (also the LDR
G and resistor can be swapped in the circuit to alter the effect as well)

345



37.5 Select-Case

In this example you will learn about how to use select case which is a very tidy way of writing a whole
lot of if-then statements.

Specification from the brief:
Turn on one of 4 leds which represents one of 4 levels of light.

Algortithm

When the lightlevel is brightest turn on the 4™ led
When the lightlevel is medium high turn on 3" led
When the lightlevel is low turn on 2" LED

When the lightlevel is very low/dark turn on 1° LED

Planning Tool Selection
(A table is selected to help us clarify the algorithm and plan the program)

Lightlevel range testing values using simple math output
From 901 to 1023 Lightlevel > 900 (ignore over 1023) LED 3
From 601 to 900 Lightlevel > 600 AND Lightlevel <901 LED 2
From 401 to 600 Lightlevel > 400 AND Lightlevel <601 LED 1
From 0 to 400 Lightlevel < 401 LED O

Planning using a flowchart

lightlevel > 9007 led 3
N
—Tightlevel > 600 and lightlevel < 901? Y= led 2
N
—Tightlevel >300 and lightlevel < 601? Y= led 1
N
lightlevel < 301 led O

N

A

If Lightlevel > 900 Then Portc = &B11110111
If Lightlevel > 600 And Lightlevel < 901 Then Portc = &B11111011
If Lightlevel > 400 And Lightlevel < 601 Then Portc = &B11111101
If Lightlevel < 401 Then Portc = &B11111110

346




There is a much better way to plan this code, so that it is more efficient (the micro has less to do
and the program runs faster). It does this by once having found a solution it stops checking for any
other solutions. This can save a lot of processing in large programs. You do however have to watch
the order in which you check values and how you use the < and > tests.

lightlevel > 900? Y led 3
N
lightlevel > 6007? Y led 2 —
N
lightlevel > 3007? Y led1l —
N
lightlevel < 301 — led0 —>
N

This is handled for us by the select case statement

Select Case Lightlevel
Case Is > 900 : Portc = &B11110111
Case Is > 600 : Portc = &B11111011
Case Is > 400 : Portc = &B11111101
Case Is <401 : Portc = &B11111110
End Select

Once the select case has found a solution it does no more checking and exits the at
the END SELECT

347



37.6 Reading an LDR’s values

Now we will write some code to make use of the LDR.

Note that the variable used in this program is of size WORD i.e. 2bytes (16 bits)

This is because the values given from the analogue to digital converter are bigger than 255.
Note also a new programming structure select-case-end select has been used.Select-case is
equivalent to a whole lot of IF-THEN statements

" 1. Title Block

" Author: B.Collis

' Date: 7 Aug 2003

*Version: 1.0

' File Name: LDR_Verl.bas

' 2. Program Description:

' This program displays light level on the LEDs of portc

' 3. Hardware Features:

' LEDs as outputs

" An LDR is connected in a voltage divider circuit to portA.O

"in the dark the voltage is close to 0 volts, the ADC will read a low number
" in bright sunlight the voltage is close to 5V, the ADC will be a high value

' 4. Software Features:

" ADC converts input voltage level to a number in range from 0 to 1023

' Select Case to choose one of 8 values to turn on the corresponding LED
' 1023, 895, 767, 639, 511, 383, 255, 127,

5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of operations inside the micro
$regfile = "m8535.dat" ' the micro we are using

' 6. Hardware Setups

' setup direction of all ports

Config Porta = Output '‘LEDs on portA

Config Portb = Output 'LEDs on portB

Config Portc = Output 'LEDs on portC

Config Pina.0 = input ' LDR

Config Portd = Output 'LEDs on portD

Config Adc = Single_ , Prescaler = Auto, Reference = Avcc
Start Adc

' 7. Hardware Aliases

' 8. initialise ports so hardware starts correctly

must not put a high on the 2 adc lines as this will turn on the micros
internal pull up resistor and the results will be erratic

Portc = &B11111100 ‘turns off LEDs

348



' 10. Declare Variables
Dim Lightlevel As Word
' 11. Initialise Variables
' 12. Program starts here
‘ note the use of select case instead of many if statements(see next section)
Do
Lightlevel = Getadc(0) ' number from 0 to 1023 represents the light level
Select Case Lightlevel
Case Is > 895 : Portc = &B01111111 ‘'turn on top LED in bright light
Case Is > 767 : Portc = &B10111111
Case Is > 639 : Portc = &B11011111
Case Is > 511 : Portc = &B11101111
Case Is > 383 : Portc = &B11110111
Case Is > 255 : Portc = &B11111011
Casels> 127 : Portc = &B11111101
Case Is <128 : Portc = &B11111110 'turn on bottom LED in dark
End Select
Loop ' go back to "do"

End 'end program

"14. Interrupts

349



37.7 Marcus’ Nightlight project

In this project Marcus used 28 high intensity surface mount LEDs soldered to the copper side of the
PCB.

pAUE 2UTEM

350



The schematic is quite straight forward with an LDR on PinA.O.

x—9

-l U‘.

[
e

Initial programs were desgined to

>

-
|

-

@

B e I I S

L
)
=
L
o
-
)
5

'Program Description
'This program shows LED working when LDR detects different light level

'Hardware features:
'LEDs as outputs
'An LDR is connected in a voltage divider circuit to portA.0

'In the dark the voltage is close to 0 volts, the ADC will read a high

number

'"In bright sunlight the voltage is close to 5v, the AVC will be a high

value

'Software features:
'ADC converts input voltage level to a number in range from 0 to 1023

'"Computer directives
Scrystal = 8000000

'Hardware setups

Config
Config
Config
Config
Config

Porta = Output
Pina.0 = Input
Portb = Output
Portc = Output
Portd Output

351

'make these micro pins outputs



Config Adc = Single , Prescaler = Auto
Start Adc

'Declare variables
Dim Lightlevel As Word
Dim I As Byte

'Program starts here

Do
Lightlevel = Getadc (0)
Select Case Lightlevel
Case Is > 700 : Porta = &B0O000100O0
Portb = &B00010000
Portc = &B00100000
Portd = &B01000000
Wait 10
Case Is > 600 : Porta = &B00011000
Portb = &B00011000
Portc = &B00110000
Portd = &B01100000
Wait 10
Case Is > 500 : Porta = &B00111000
Portb = &B00011100

Portc = &B00111000
Portd = &B01110000
Wait 10

Case Is > 400 : Porta = &B01111000
Portb = &B00011110

Portc = &B00111100
Portd = &B01111000
Wait 10

Case Is > 300 : Porta = &B11111000
Portb = &B00011111
Portc = &B10111100
Portd = &B11111100
Wait 10

Case Is > 200 : Porta = &B11111010
Portb = &B00011111

Portc = &B10111110
Portd = ¢B01111111
Wait 10

Case Is < 201 : Porta = &B01111111
Portb = &B00011111
Portc = &B11111111

Portd = &B11111111
Wait 10
End Select
Loop
End

The next stage in a project like this might be to implement a timer so that the night light turns off
automatically after a set period of time.

352



37.8 Temperature measurement using the LM35

The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is
linearly proportional to degrees Celsius temperature.

T0-92

Plastic Package

+V5 Vour GND

BOTTOM VIEW

DS3se15-2

Order Number LM35CZ,
LM35CAZ or LM35DZ
See NS Package Number Z03A

T0-220
Plastic Package™

+Ve "IC\{J'
GND
DGrOss1e-24
ab is connected to the negative pin (GND).

Order Number LM35DT

35000

30000

25000

20000

-
o
2
e

10000

Resistanoe (Ohms)

5000

Figure 1 - Typical Thermistor Output Curve

10K-2 Sensor

o

1]

25

- —
50 it] 100 125 W54 15
Temperature 'C

The usual temperature sensor that comes to mind is the
Thermistor however thermistors are not linear but logarithmic
devices as shown in this graph. If you do want to use a
thermistor then try putting a resistor in parallel with it to make it
more linear, however it will not be linear over its whole range.

The LM35 varies linearly over its range with typically less than
a Y. degree of error. The voltage output changes at 10mV per
degree. Connect the LM35 to 5V, ground and one analog input

pin. The code is very straight forward

Config ADC= Single, prescaler = auto
Dim Lm35 as word

Read_LM35:
Lm35 = getadc(2)
Locate 2,1

Lm35 =1m35/ 2 (rough conversion to degrees)
Lcd “temperature="; LM35"

return

The value increases by 2 for every increase of 1 degree. When connected to 5V a temperature of
25 degrees will give an output of 250mV and an ADC reading of approximately 50 (the ADC range
is 0 to 1024 for O to 5v).

353



37.9

A simple temperature display

RN

° @ * £ .
| ,
1 D |
| ¥ ¢¥. #¥
¢ .
=]
+—g Tm —
o L 2
Algorithm:

® 2 4

%

In this project there is no display apart from the LEDs so the temperature is displayed by flashing

the LEDs, Red is 10s of degrees, Green is units of degrees. So a temperature of 23 degrees celcius
will be displayed as the red LED flashing twice followed by the green LED flashing 3 times, followed
by a 2 second wait.

Here is the code for this

B.Collis
19 June 2010
Tiny45 temprV3.bas

Date:
File Name:

Program Description:
reads LM35 connected to ADC and displays
Hardware Features:

temp by flashing leds

RESET - | |- VCC
LM35 - ADC3/PB3 -] |- PB2/ADC1 - RED LED
ADC2/PB4 -| |- PB1 - GRN LED
GND - | |- PBO - YEL LED

It is good practice to
include a title block
and full description of
your hardware and
program at the
beginning of your
code.

With a small micro a
simple text diagram
was created to show
the connections.

Compiler Directives (these tell Bascom things about the hardware)

$regfile = "attiny4d5.dat"
$crystal = 1200000
'attiny45 is 9.6 MHz / 8

'the micro we are using
'the speed of the micro

354




' Hardware Setups

' setup direction of all ports as outputs

as inputs)

Config Portb = Output
Config Pinb.3 = Input
Config Adc = Single ,
Start Adc

(by default they power up

'LM35 on B.3

Prescaler = Auto , Reference = Internal 1.1

' the attiny45 has 2 internal references 1.1 and 2.56
' We want to measure voltages in the range of 0 to 0.5 or so,
' the 1.1V reference is better because it will give us a more

precise reading

' A voltage of 0.25V will be converted by 0.25/1.1 * 1023

! and become the number 232,

' so the ratio of ADC voltage to temperature is 1023/1.1*100 = 9.3
' 1f you can live with the error divide it by 9

' 0.25V (25deq)

becomes 232/9 =

25.77 on the display

' if you want more accuracy then use single sized variables for the

division

'Hardware Aliases
Redled Alias Portb.2
Grnled Alias Portb.1
Yelled Alias Portb.O0
the code

'10s of degrees
'units of degrees
'not used inthis verison of

Here the hardware
attached to the micro
is setup, there is a
decription of why the
1.1v reference was
chosen

'Declare Constants

Const Flashdelay = 250
Const Tempr conv_ factor = 9 'rough conversion factor
Const Tempr conv offset = 1 'rough offset for rough conversion

Although a
conversion of 9
looked like it would
work, the temperature
was out by a degree
at room temperature.
This was found by
measuring the LM35
voltage out put as
0.228 and seeing the
LED flash the number
24. This probably
enough accuracy for
room temperature
measurements as the
LM35 has at best an
accuracy of ¥4 of
adegree anyway.

' Declare Variables
Dim Tempr As Word

Dim Tempr 10s As Byte

Dim Tempr 1ls As Byte

'temperature tens
'temperature units

Variables used in the
program

These are not given
initial values because
they are measured

' Program starts here

Set Redled
Set Grnled
Set Yelled

'led off
'led off
'led off

Turn off the LEDs at
the beginning

355




Do
Tempr = Getadc (3)
Tempr = Tempr / 9
1.1V internal reference being used
Tempr = Tempr - 1

'rough compensation for rough conversion

The first part of the
program reads the
temperatire and
converts itto a
useable value

'read the ADC value
'rough conversion due to

'split the tempr into 2 digits
Tempr 10s = Tempr / 10
Tempr 1ls = Tempr Mod 10

This is a vital piece of learning here about division and
the use of modulus. We are dealing with whole numbers
when we use words , bytes and intergers in Bascom. So
if we divide 27 by 10 we get 2 (note that there is no
rounding) so a command exists <MOD> that allows us to
get the remainder of the division 27 MOD 10 will return 7.

'flash the tempr on the LEDs
While Tempr 10s > O

Reset Redled

Waitms Flashdelay

Set Redled

Waitms Flashdelay

Decr Tempr 10s

'flash the red led the number of 10s

Flashing the leds
requires us to set a
loop in motion, we
control the number of
times the loop repeats
by starting it with the

Wend

Waitms 200 r“"nberand

While Tempr 1s > 0 'flash the grn led the number of units progressnnﬂy
Reset Grnled subtracting 1 each
Waitms Flashdelay time.

Set Grnled

Waitms Flashdelay

Decr Tempr 1s
Wend

Wait 2
Loop
End

This is actually an
efficient piece of code
as microcontrollers
programs are
generally more
efficient if they loop
down to zero rather
than some number
other than zero, this is
because of the way
the hardware in a
micro works

'end program

356




37.10 LM35 temperature display

' Title Block

' Author: B.Collis

' Date: Nov 2011

' File Name: LM35 Ver2.bas

' Program Description:

' This program displays temperature on the LCD

' An LM35 temperature sensor 1is connected to portA.0

' LCD to PortB

' Compiler Directives (these tell Bascom things about our hardware)
Scrystal 8000000 'the speed the micro porcesses instructions
$regfile = "mlo6def.dat" 'the particular micro we are using

|

' Hardware Setups

' setup direction of all ports, initially as outputs
Config Porta Output

Config Portb = Output

Config Portc = Output

Config Portd Output

Config Lcdpin Pin , Db4 = Portb.4 , Db5 = Portb.5 , Db6 = Portb.6 , Db7
= Portb.7 , E = Portb.l , Rs = Portb.0
Config Led = 20 * 4 'configure lcd screen

Config Pina.0 = Input 'LM35 temperature sensor

'setup the ADC to do a conversion whenever we use the command getadc ()
Config Adc = Single , Prescaler = Auto , Reference = Avcc

Start Adc

' Hardware Aliases

Backlight Alias Portd.4

' Declare Constants
Const Reading delay = 2000

' Declare Variables
Dim Adc value As Word '10bit adc value needs word variable
Dim Rough temperature As Byte
Dim Accurate temperature As Single
Dim Temperature As String * 5
' Initialise Variables

357



' Program starts here
Cursor Off
Cls
Set Backlight
Do
Gosub Read 1Im35 voltage Gosub Disp adc reading
Gosub Calc rough tempr
Gosub Disp rough tempr
Gosub Calc accurate temp
Gosub Disp accurate temp
Waitms Reading delay
'these subroutines do not need comments as they have useful names
Loop

End 'end program

'Subroutines -these are actions so often start with words like read,
calc, displ, squeeze, move...

' a subroutine is best if it only contains one action (even 1if it
consists of only a few lines of code

' this makes them easier to follow, modify and reuse.

Read 1m35 voltage:
Adc value = Getadc (0) 'number from 0tol023 represents the voltage in
Return

Disp adc reading:

Locate 1 , 1

Led "adc reading= " ; Adc_value ;
Return

Calc _rough tempr:
'this is a rough conversion as words can only be whole numbers
Rough temperature = Adc value / 2

Return -

Disp rough tempr:

Locate 2 , 1

Led "rough tempr= " ; Rough temperature ; "
Return

358



Calc accurate temp:
'using singles we can have decimal places in our calculations
Accurate temperature = Adc value 'convert word to single
'adc_value of 51 = 0.259V
'conversion factor is 51/25.9= 1.96911197
Accurate temperature = Accurate temperature / 1.96911197
'turn the single into a string and round it to 1 decimalplace
Temperature = Fusing(accurate temperature , "#.#")
'note we can do maths with numbers stored in singles
' we cannot do maths with numbers strored in string form
' as they are no longer numbers just codes representing digits
Return

Disp accurate temp:
'this subroutine displays the two accurate readings one is a number
'the other is a number in string form
Locate 3 , 1
Led "tempr= " ; Accurate temperature ; " "
'display 1 decimal place plus deg symbol and capital C
Locate 4 , 1
Led "tempr (l1dp)= " ; Temperature ; Chr(223) ; Chr(67)
Return

359



37.11 Voltage measurement using a voltage divider

Having developed a variable power supply it is important to be able to measure the voltage it is set
to. We can monitor the output of a power supply by reading the voltage with an ADC pin on the
microcontroller and converting this to voltage display on the LCD.

_ Variable
~ DC output

DC input > 317

=

LCD

GND/;@/Y

Attiny
[JVoltage
. |—JI:|Divider

GND/OV
1

AAAA AR

In the block diagram above the voltage divider divides the output voltage of the PSU down to a
value within the range of the ATTiny26 ADC port and uses that to measure the voltage.

The AVR has an internal reference voltage we can use. It is 2.56 volts so you must make sure that
the voltage into the ADC cannot exceed 2.56V so some ohms law and resistance calculations are
necessary.

If the maximum voltage out of the PSU is 20V then a ratio of 10:1 for the resistors would be
satisfactory

The following shows what the voltage (to 1d.p.) would be for 2V, 5V and 20V in along with the
reading for the ADC.

A — Y A— 20V —y—
] o ] o ] o
> V=2 x1/11 20.2V -V =5x1/11 =0.5V >\ = 20 x 1/11 =1.8V
U 1K U 1K U 1K
ADC reading = ADC reading ADC reading
=02/ 2_57_’2 x 1024 =0.5/2.56 x 1024 =1.8/2.56 x 1024
- =182 =727

360



We used the Attiny461-20PU for this project. ATMEL like to change models of its microcontrollers all
the time, we don’t mind this as each time they do they tend to get a little better for the same cost!
However it does mean keeping up to date with the micros specifications. The ATTiny461 has 11
ADC inputs (although we cannot use ADC10 because it’s the reset pin and we need ot for
programming).

(MOSI/DI/SDA/OC1A/PCINTS) PBO ] 1 20— PAD (ADCO/DI/SDA/PCINTO)
(MISO/DO/OC1A/PCINTY) PB1 ]2 19 1 PA1 (ADC1/DO/PCINT1)
(SCK/USCK/SCL/QC1B/PCINT10)PB2 [ 3 181 PA2 (ADC2/INT1/USCK/SCL/PCINT2)
(OC1B/PCINT11) PB3 ] 4 17 [ PA3 (AREF/PCINT3)
VCC[]5 16 1 AGND
GND[]6 15 ] AVCC
(ADC7/OCTD/CLKIXTAL1/PCINT12) PB4 ] 7 14 1 PA4 (ADC3/ICPO/PCINT4)
{ADCB/OC1D/CLKO/XTAL2/PCINT13)PB5 ] 8 13 ] PAS (ADC4/AIN2/PCINTS)
(ADCO/INTO/TO/PCINT14) PBE ] 9 12 1 PAG (ADCS/AINO/PCINTE)
(ADC10/RESET/PCINT15) PB7 (] 10 11 [ PA7 (ADC6/AIN1/PCINT?)
6.2 ATtiny461
Speed (MHz)” Power Supply Ordering Code” Package'" Operational Range
ATtiny461V-10MU 32M1-A \
10 1855V ATtiny461V-10PU 20P3 " 45"2‘3“3‘85' b
ATtiny481V-10SU 20582
ATtiny461-20MU 32M1-A - .
[ 20 2.7 -55V ATtiny461-20PU | 20P3 s &
ATtinyd61-2080 2082

* Non-volatile Program and Data Memories
~ 2/4/8K Byte of In-System Programmable Program Memory Flash
* Endurance: 10,000 Write/Erase Cycles
- 128[256/512 Bytes In-System Programmable EEPROM
* Endurance: 100,000 Write/Erase Cycles
- 128/256/512 Bytes Internal SRAM
- Data retention: 20 years at 85°C / 100 years at 25°C

This computer program simulates the variable power supply, the action of the voltage divider and
the conversion process within the microcontroller
¥ Var PSU System Block Diagram r"m}: E i’h:b‘

= 6.70V

LM317

5V

— 7805

390

pay reference

ks 17000hms
= e 10K

1| e70v Vi

Prograe Operabory

Irged Code The program nasucts the ADC
Caoutny 10 conved! the wokage on e rout
P to A vabue and tlore £ in a vasable Yin
The valus sl be i range 040 1023, IV
will b D ird 2557 Wil be 1023

>
14

=

Il

1K

15 not i e same range a1 e wput wollags
A fosreds 1 wamd to cormet Vi to & vabhae
Ihat malchns B vinable povwt supply
voltage, this 1 stosed @ a vanabie Voks

J . Process Code: The vasable Vin from the ADC

b Outpust Coder Tha progears displays Voks on
Ihe LTD # coukd oo be uted bo daw & gaph
onthe LCD, beep & peco, flash LEDs

GND |

361



37.12

Variable power supply voltmeter program

'Title Block

‘Name: B.Collis and Anka
'Date: May 2010

'"File Name: Voltmeter.bas

'Program Description:

'use ADC to read voltage from output of a voltage divider
'convert adc value to one that matches the voltage into
the voltage divider

'use an LCD to display value of the voltage

'"Compiler Directives

$crystal = 1000000 'speed of operations
inside the micro
$regfile = "attiny4d6l.dat" 'the micro we are using

This program was developed to display the voltage of the variable
powersupply, Anka (yearll) and | worked on it together, since then
he has taken his program to a further stage to incorporate more
features such as audible warnings and other visual warnings.

'Hardware Setups
Config Porta = Output

Initially we configure all the pins on port A as outputs, however the
voltage divider is connected to A.7 so it must be configured as an
input.

Config Pina.7 = Input
Config Lcdpin = Pin , Db4 = Portb.3 , Db5 = Portb.6 , Dbé6
= Portb.4 , Db7 = Portb.5 , E = Portb.2 , Rs = Portb.1l
Config Led = 20 * 2 'configure lcd
connections

The first line sets up the analogue to digital conversion circuits
Config Adc = Single , Prescaler = Auto , Reference = within the AVR. In terms of systems knowledge this is is an
Internal 2.56 extcap example of sub systems where students must be familiar with the
Start Adc I/O characteristics and function of a device but not the detail of its

internal operation. The Attiny26 has 11(though we can only use 10)
ADC inputs. AN ADC requires an input voltage and a reference
voltage against which to compare the input voltage. It has different
voltage references we can use, external, 1.11V or 2.56 internal. In
this case we are using the internal 2.56 volt reference with a 0.1uF
capacitor on AVCC (pin 15). The ADC reading will be in the range
of 0 to 1023, where a 0 means OVolts and 1023 means the same as
the reference voltage.

362




'initialise hardware
Cls 'clears LCD display
Cursor Off 'cursor not displayed

No need to display the cursor on the LCD

'Declare Constants
'Declare Variables

Dim Adc in As Word

Dim Voltage As Single
Dim Dividor As Single
Dim Volts As String * 5

'Tnitialise Variable
Dividor = 32.6255

Variables store data, here we need a variable to store the value we
read from the ADC input. This must be a word sized variable as it
may store up to 1023 (remember a byte can only store upto 255).
We want to display decimals so we must use a single or a double,
we do not need the precision of a double so we use the single.

We want to display the number on the LCD as well. We could use
the same variable voltage however it will give us loads of decimal
places so we will convert it to a string and then format the string so
we need a varibel that can hold a string.

'Program starts here

Do
Adc_in = Getadc (06)
Voltage = Adc_in
Voltage = Voltage / Dividor
Volts = Fusing(voltage , "#.##")
Locate 1 , 1
Lcd vVolts ; "v" oo " "

Loop

End

1. Read the voltage into the word variable adc_in.

2. Put this number into the single variable

3.This number will not be the voltage but a number that changes in
relation to the voltage so we must convert it into a number that is
the same as the voltage.

4. This will be a number with loads of decimal places so we conver
it to a string

5. the string is formatted to have only 2 decimal places.

6. position the cursor

7. display the string version of the voltage, the letter V and then a
couple of blank spaces on the LCD.

8. repeat the process all over again

363




37.13 Force Sensitive Resistors

The FSR is a neat device for sensing pressure, its not accurate enough to measure weight
but useful to detect the presence of someone standing on a mat or tapping on a surface.

B S |

o (P o
LT

|

These are used in exactly the same type of circuit as the LDR (voltage divider with a 10K).
You must be extremely careful trying to solder to these as the plastic melts so easily. You
may find that the use of some type of connector may make your project cheaper!

37.14 Piezo sensor

A piezo make s aperfect vibration sensor in exactly the
same voltage divider circuit, especially if you fixed one
side of it mechanically to something and the other side is
left to float inthe air. You can even buy more sensitive
version of this type of sensor — they make great impact
sensors.

o] +’ 2
— R MEAS (@

364



37.15  Multiple switches and ADC

There is a very convenient way of reading multiple switches with your
microcontroller and only use 1 input port.

By making up a long voltage divider as in this diagram and connecting its
output to a microcontroller ADC pin, the voltage will change to a different
voltage output for every different switch press. This happens because the
voltage divider changes the number of resistors in the voltage divider for

every different switch press

If no switch is pressed then there is no voltage divider as all the resistors
R21 to R31 are unconnected. The input voltage to the ADC will be Vcc
(5V) and the ADC reading will be max (1023).

If S1 is pressed then othere is also no voltage divider, however the adc
input is now connect to ground (0V) and the adc reading will be O.

If s2 is pressed there will only be two resistors in the voltage divider and
the output will be

390%1
Vout = 5v ¥ ———
390%1+390

= 0.5V (ADC reading of 0.5/5*1023 = 102)

If S3 is pressed then only 3 resistors will be in the voltage divider and the
output will be

390%2
Vout = 5v *

390%2+390

=0.667V (ADC reading of 0.667/5*1023 = 136

If S4 is pressed then only 4 resistors will be in the voltage divider and the
output will be

390%3
Vout = 5v %

390%4+390

= 0.75V (ADC reading of 0.75/5*1023 = 153

The emerging patterns here are that the output is becoming larger and
larger, and the differences between the steps are becoming closer and
closer. Note the pattern in the voltages 1/2Vcc , 2/3Vcc, 3/4Vcce, 4/5Vcc,
5/6Vcc, 6/7Vcc....

This means that there is a limit to the number of switches that can be put
in this type of circuit.

365

>

<o

—
)

L

: q\-a

pE

}_ -

1

I_ .

—y— ]—0‘{:‘.‘{:—44{:—[
\3
I_;

3

q\

—i
I
I_

|



38 Arrays

It is easy to dimension variables to store data, however what do you do when you want to
store many similar variables e.g. 50 light level readings over a period of time.

Do you create 50 variables e.qg. lightlevell, lightlevel2, lightlevel3 .... lightlevel50 ?
The answer is no because it is so difficult to read and write to 50 different variables.

Think of the data we want to collect as in a table, each row is labelled with a number to
identify the row — we call this an INDEX.

Index lightlevel
1 345
2 267
3 378
4 120
5 203
49 432
50 198

An ARRAY type variable is dimensioned to store the data. Arrays are a highly important
programming structure in computer science.

e.g Dim lightlevel as byte(50) this array becomes very easy to read and write using a loop.
In Bascom the variable lightlevel(1) will be the first value and lightlevel(50) will be the last.

'get 50 values and store them in the array
For index=1 to 50

lightlevel (index) = getadc(0)

Waitms 50
Next

'read the 50 values from the array and display them
For index=1 to 50

Locate 2,1

Lced lightlevel (index)

Waitms 50
Next

In this next program a system has been developed that takes 50 lightlevel readings. The user
can start the readings process and control the display of the readings on the LCD.

Note that the flowchart is split into 2 parts to allow for 1 page printing.

There are 8 if conditions, the first 4 read the 4 buttons, the second are carried out depending
on the value of the variable MODE. All processing is within the subroutines.

366



Start

g

Compiler setup

Hardware setup
Variables setup

Do
\/

True

WV
GOSUB
data

367




In this exercise you will need to make a small modification to the given program.
' File Name: arrayV1.bas

" Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the speed of the micro

$regfile = "m8535.dat" ‘'our micro, the ATMEGA8535-16PI

' Hardware Setups

' setup direction of all ports

Config Porta = Output '‘LEDs on portA
Config Portb = Output '‘LEDs on portB
Config Portc = Output '‘LEDs on portC
Config Portd = Output 'LEDs on portD
‘config inputs

Config Pina.0 = Input "Idr

Config Pind.2 = Input 'switch A
Config Pind.3 = Input 'switch B
Config Pind.6 = Input 'switch C
Config Pinb.1 = Input 'switch D
Config Pinb.0 = Input 'switch E

'LCD

Config Lcdpin = Pin, Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E =
Portc.3 , Rs = Portc.2

Config Lcd =40 * 2 ‘configure lcd screen

'ADC

Config Adc = Single , Prescaler = Auto , Reference = Internal
Start Adc

' Hardware Aliases
Sw_a Alias Pind.6
Sw_b Alias Pind.3
Sw_c Alias Pind.2
Sw_d Alias Pinb.1
Sw_e Alias Pinb.0

"initialise ports so hardware starts correctly

Porta = &B11111100 'turns off LEDs ignores ADC inputs
Portb = &B11111100 'turns off LEDs ignores switches
Portc = &B11111111 'turns off LEDs

Portd = &B10110011 'turns off LEDs ignores switches

' Declare Variables

Dim Opmode As Byte

Dim Reading As Word

Dim Lightlevel(50) As Word
Dim index As Byte

Dim Reading_delay As Byte
Dim num_eadings As Byte
' Initialise Variables
Opmode =0
num_eadings=50

368



' Program starts here
Cls ‘clear lcd screen
Do
‘read the switches
Debounce Sw_a, 0, Mode_select , Sub
Debounce Sw_b, 0, Enter_button , Sub
Debounce Sw_c, 0, Prev, Sub
Debounce Sw_d, 0, Nxt, Sub
‘choose what to do
Select Case Opmode
Case 0 : Gosub Display_welcome
Case 1 : Gosub Collect_data
Case 2 : Gosub Display_data
Case 3 : Gosub Cont_reading
End Select
Loop
End ‘end program

' 13. Subroutines

Mode_select:
Cls '‘when mode changes clear the Icd
Incr Opmode
If Opmode > 3 Then Opmode =0

Return

Display_welcome:
Locate 1,1
Lcd " Data Collector "
Lowerline
Lcd " version1.0 "
Return

Enter_button:
If Opmode = 1 Then Gosub Collect_data
Return

Collect_data:
Locate 1,1
Lcd " press enter to "
Lowerline
Lcd "start collection”
Cls
For index =1 To num_eadings
Reading = Getadc(0) 'read lightlevel
Lightlevel(index) = Reading ' store reading in array
Locate 3,1
Lcd index 'display the index
Locate 4,1
Lcd Reading ;" " 'diplay the reading
Waitms Reading_delay
Next
Opmode =0
Return
Display_data:

369



Locate 1,1

Lcd index ;" "

Locate 2,1

Lcd Lightlevel(index) ; * "
Return

Cont_reading:

Locate 1,1

Lcd "continous readings”

Locate 2,1

Reading = Getadc(0)

Lcd Reading ; "
Return
Prev:

Decr index

fix this routine so that it doesn’t underflow
Return
Nxt:

Incr index

fix this routine so that it doesn’t overflow
Return

1. Fix the bugs with the prev and nxt routines so that they don’t go below 0 or above 50.

2. can you modify the proram so that prev and nxt buttons change the timing of the reading,
which mode would it be best to place the new code in?

3. can you modify the program so that the prev and nxt buttons change the number of
readings to be stored.

370



39 DC Motor interfacing

Nowadays who doesn’t want to see motor attached to a microcontroller moving something
around! But to do this a bit of knowledge and understanding is required first, some of which is

important physics knowledge.

A dc motor is made from a coil of wire, a magnet, a battery, brushes and a commutator
(rotary switch). There is a neat video on youtube
http://www.youtube.com/watch?v=zOdboRYf1hM of a simple motor and another one that

demonstrates the importance of the commutator (only one side of the wire has its insulation

removed) http://www.youtube.com/watch?v=it

Z7NdKagmyY

DC Motor

uc

from sure desctruction.

A motor is a coil of wire i.e. an inductor; when there is

While a diagram such as this on the left shows
a simple description of the construction of a
DC motor a typical dc motor has:

e several separate coils and multiple
connections to the commutator,

e many turns on each coil of wire

¢ a shaft through the coil to which we can
connect things like wheels or gearboxes.

>~y

We can control a small DC motor with a
simple transistor switch ciruit, similar to the
LCD backlight control.In this case the
backlight has been replaced by a motor, a
capacitor and a diode.

When a motor is running it produces a lot of
electrical noise, this is due to the current
being switched on and off by the commutator
several times per second. The actual
sparking can be seen between the brushes
ane the comutator on some motors. This
noise appears as spikes in the voltage on the
power lines to the microcontroller and can
cause your micro to reset all the time.

The diode is another important safety device
to protect your transistor and microcontroller

current a magnetic field forms around the coil and when -

you turn it off this field collapses back into the coil turning
your coil into a generator for a very short period of time,
the field collapse causes charges to flow in the opposite

X4

direction and these can flow back into tyour transistor +

killing it instantaneously. The diode conducts these

charges away safely.

371


http://www.youtube.com/watch?v=zOdboRYf1hM
http://www.youtube.com/watch?v=it_Z7NdKgmY

DC Motors come in all shapes and sizes

Car electric window motor
12V approxiamately 4 Amps
with fitted worm gear

Tamiya RE-260 Motor

RPM: 5040 {(max efficiency) to 6300
supply voltage: 1.5V (4.5V max)
operating current: 640mA

torque: 15gcm

gear ratios: 41.7:1 to 64.8:1

Wheel is turned acrylic with
rubber rim

Car windscreen wiper motor
supply voltage: 12V
operating current: 6-8A
these have a built in gearbox
and a reversing switch.

We dont use the reversing
switch so we wire directly to
the wires on the motor

itself not the connector.

reclaimed printer DC Motor
supply voltage: 12V
operating current: 300mA

Knowledge about driving these devices relies on understanding the specifications for your
motor.

A DC motor is rated at the voltage it is most efficient at. It is always tempting to run it at a
higher voltage but if you apply too much it will overheat, when it gets too hot the insulation on
the wires of the coil will melt shorting the whole lot out and cause a small (hopefully not big)
fire. If you run it at a lower voltage, it just wont work or it wont work anywhere as well. The
reason being that voltage is directly related to motor torque. Less voltage less torque, more
voltage more torque.

DC motors are generally made as non-polarized do if you reverse the voltage it goes in the
opposite direction.

They have an operating current which is the typical current the motor will use under normal
load/torque. The power used wll be the operating current times the rated voltage.

Your power supply must be able to meet this power requirement. If you have a 12V 2A (24W)
motor and your power supply is only capable of 12V 500mA you will never drive the motor

properly.

Another current rating is of significance it is the stall current. If you run you motor, but you
hold the shaft so that it stops rotating a lot of current will flow (stall current) and a lot of power
will be required. You must understand this when designing the power control circuits. Your
power supply should be fused as well in case problems with the motor draw too much current
over heating it.

372



39.1 H-Bridge

A single transistor may be useful for turning a motor on or off however if a motor needs to be

reversed in direction then an H-Bridge circuit is called for.

The principal is simple to reverse direction reverse the connection to the battery

NOTE : the circuit has fuses in it — these are a really really really good idea!!

373

B and C
switches closed

A and D
switches MUST
BE OPEN

or the battery
will be shorted
out!

Aand D
switches closed

Band C
switches muts
be open or the
battery will be
shorted out!



A microcontroller can be used successfully to achieve this by switching 2 out of 4 transistors
on and off in sequence.

Micro

In the above diagrams the thick lines represent the fact that large currents are drawn through
the motor and transistors, so heavy wiring is also required as well as fuses!

Micro

374



39.2 H-Bridge Braking

If we turn off all the transistors in an H-Bridge then the motor is free to turn. If we want it to
stop in a hurry though we can force the motor to brake by shorting it out. To do do this we
turn on two transistors suchas Aand BOR Cand D .

Micro

Truth table

This is a common thing to see in electronics a table that describes what happens on the
output for each different combination of inputs. With 4 inputs there are 16 possible inputs.
All combinations of inputs have been covered in this table.

A B C D Motor

H L L H Rotate Left

L H H L Rotate Right

H H L L Brake

L L H H Brake

L L L L Free

H L L L Free

L H L L Free

L L H L Free

L L L L Free

L L L H Free

H X H X Shorted Battery!!

X H X H Shorted Battery!!
H=high=1
L=low=0

X =don’t care ( this means that the otherinputs selected as high or low already have priority
over these and it doesn’t matter what you choose here)

375



PIN1

PIN2

PINO

PIN 4

PINS

PIN3

Supply voltage, Vo1 (see Note 1)
Output supply voltage, Vee2
Input voltage, V,
Output voltage range, Vg

39.3 L293D H-Bridge IC

45V
o 1
V(+) +5v
o2 | DIRA1 1 |8
Y
/' \
L) M
o—'| DIRB 1 6 T
o | ENABLE 1
& =

L2¢3

4| 5 12[ 13J

Making an H-bridge
circuit is not necessary
for small and medium
sized motors as plenty
of ICs exist to help
you, one of these is
the L293D.

There are a couple of
different versions of
this IC the D model
has internal protection
diodes.

There are 4 ground
pins which all must be
connected to the pcb,
they act as a heatsink
for power to dissipoate
through.

-3VtoVCC2+3V

Peak output current, Ig (nonrepetitive, t<5ms): L293 . ... .. ... i 2 A
Peak output current, Ig (nonrepetitive, t< 100 us): L293D . ... ...t 21.2A
ContinUOUS OUBUt OUMENE, 1)t L2093 Lo ivvrirrvessvnvsssstroesossssnsososeessoysssonssossyssos 1A
Continuous:output cument, lg: L293D . ... ivvrreervosnomensssresssensesomes sy rossesesss +600 mA
Package thermal impedance, 0, (see Notes 2 and 3): DWP package ....................... TBD°C/W

Npackage ...........cccvviniiennnennrs. 67°C/W

NE PACKAGE .« . oo <005 55500308 05355808 TBD*C/W

Maximum junction temperature, T
Storage temperature range, Tgig

-65°C to 150°C

T Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the davice at these or any other conditions beyond those indicated under “racommended operating conditions” is not

implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability

NOTES:

1. All voltage vakies are with respect to the network ground terminal.

2, Maximum power dissipation is a function of T jimax). HJa, and TA. The maximum allowable power dissipation at any allowable

ambient temperature is Pp = (T y(max) — Ta)/H 4. Operating at the absolute maximum Ty of 150°C can affect reliability.
3. The package thermal impedance s calculated in accordance with JESD 51-7.

376

7V

150°C



FUNCTION TABLE
(each driver)

INPUTST OUTPUT
A EN Y
H H H
L H ji
X L Z

H = high level, L = low level, X =

Z = high impedance (off)

T In the thermal shutdown mode, the output is
in the high-impedance state, regardless of
the input levels.

irrelevant,

The Enable pin must be
high (1) for the chip to
do its job, if it is low (0)
then the output is off,
what we call high
impedance, that means
floating, something we
normally want to avoid
on input pins to a
microcontroller but
whichis great on
outputs.

Vcez

377



39.4 L298 H-Bridge IC

L298
Logic supply motor supply
9 4l
Enable1|. 6
DirA |5 2
Dire |1 >
Enable2 |11
Dira |10 L
Dire |12 . L
13.15
Ground

378



39.5 LMD18200 H-Bridge IC
In this diagram two LMD18200 circuits are connected to two DC motors from handheld drills.

yd T T/ s
11— 1) )
s THERMAL FLAG GUTPUT
[ CURRENT SEWSE QUTPUT
— GROUND
{5 v POWER SUPRLY
> FM INPUT

BRAKE INPUT
— CLRECTION INPLIT
> outRuT
— ] BOOTSTRAP 1

/HOIJNTINI} TAB GONNECTED TQ GROUND (FIN 7}

L I SRR A

)ﬁ

§ /ey v
3 e !" . " b , )‘

a b
:

379



THERMAL FLAG OUTPUT  BOOTSTRAF 1 GUTPUT 1 Ve auTeuT 2 BOOTSTRAP 2
] I 2 & 10 1

ﬁ? Q O . Q

THERKMAL —
SEMEING
UMDERYOLTAGE I

LOCKOUT W
OYERCURRENT CURKENT
BETECTION CURRENT {O) & SENSE
SENSING QUTPUT
SHUTDOWN

DIRECTION 3 {OJ— —DB_‘ o
BRAKE 4 (J—— :_HGPGLIE
P 5 (O — 6

7
CROUND

The circuit is straight forward, but some LEDs have been added so that the operation of the
circuit can be observed while under the control of the microcontroller.

There is on this chip a great current sense feature that we can use to feedback information to
the micro.

U_MOTOR -
% 4 1 1k
Rér R2 5 |ce |c+
cal 18] |70 +| 338 B4
T T T
o g ICL nmuﬁ
pal D4 1| [TF: cﬂilﬂﬂi
DIR BOOTL il
ouTL
| R out2 £2 891
22 PHI BOOT2 ——
-1 THERHAL ISENSE
i [HDi628@ ™ []h
]
MOTOR2
GND
b
To control this IC we need to know how to turn it on and off
TABLE 1. Logic Truth Table
PWM Dir Brake Active Output Drivers From this truth table we read:
H H L Source 1, Sink 2
H L L Sink 1, Source 2 To run the motor brake should be low, direction
L X L Source 1, Source 2 will be high or low and PWM should be high
H H H Source 1, Source 2
H L H Sink 1, Sink 2 To stop the motor, the brake should be high,
L X H NONE PWM should be high and DIR can be either high

or low.

380



Motor Conn
| g | | g |

O O

L L

LI_MOTOR

LrAD1=288

Layouts for the board, note the very large tracks becase a lot of power can be used in this
circuit.

381



39.6
LMD18200 program

$regfile = "8535def.dat" ' the micro we are using
' Hardware Setups

' setup direction of all ports
Config Portd = Output

' 7. Hardware Aliases
M1dir Alias Portd.0

M1brk Alias Portd.1
M1pwm Alias Portd.4
M2brk Alias Portd.3

M2dir Alias Portd.2
M2pwm Alias Portd.5

' Program starts here
Reset M2brk

Set M2dir

Reset M2pwm

Reset M1brk

Reset M1dir
Set M1pwm
Wait 3
Do
Reset M1pwm ‘off
Waitms 10
Set M1pwm ‘'on
Waitms 1
Loop ' keep looping forever
End ‘end program

382



39.7 Darlington H-Bridge

In this project TC developed a tool trolley for a mechanic working under
a car. Here is it shown upside down with two darlington H-bridge
boards on it.

The motors are used electric window motors form a car and the wheels
were from roller skates. Two castors were also needed for the final
product.

A high current circuit was needed so Darlington
transistors were used.

Darlingtons such as BDX53C have much higher gain,
because they effectively have 2 transistors one after the
other in the circuit.

hee for the BDX53C is at least 750.

Note that it has a protection diode built e::gaa ok
into it already, but more were added in BDX53C p——————— —
the circuit in case transistors without |
protection diodes were used to replace :
them in the future. |
|

In other uses of this circuit TIP126 and TIP127 transistors were used. They have an hge of at last 1000,\ |
|

Jd

o
EMITTER

383



LI+

LI+
I

=+ =+
Ny 8 S <]
e = o= 27
T ] B ] B | " R7
SR rotor K o2 C
TIP127 D14 I~ TIP127
—1 1 —+ " 49
SalA kﬂ
D
Dﬁectﬁﬁ
X *
M1
=+ =+
= =
&= =l
TIP126|  |E ol TIP126
L3 ZS ZS o4
] I S = |
—L = — =
| ] [ ]
| l | l
= =

gKz

Pl

ﬁlm

ChY1#7

Ok

LI+
N ] =N

L]

>|JM

CMY 17

Rt

U

bsa

A

Xo X=X

hitp:/ uuumemanis.coms chuck/Hobotics A tutorial /h-bridge /b [t-circult.hitml

Fud
1
5|

Rew
A
1

Ema
A
A

H1 & G4 On
HZ & G4 On

R3

This circuit was based upon the circuit from www.mcmanis .com all we did differenyl was use parts easily available to us in NZ.

It has a really neat feature of protectingthe micr from transistor and motor noise using opto isolators and the smart way in which it is wired

means we cannot turn on Q1 and Q3 (or Q2 and Q4) at the same time and blow them up!

384



Layout diagrams

P TIP126

TIP1Z2s

L2

TIr1z7  Tir1z7 @

Gl (=

380
-
F
M1
" Mz
*—0
-
ENA

REU

FE’

pouer E
FLD

e

Mo tar
.llre-ct 1o

m#CN"r'i?

QK

10k

i | 10k

1 DDn 10k

47k

a7 I
1 |mc1n

BC
550

BC
550

(o el
{ ‘-?.::// ‘i!‘; oL
g R e
& - \

385

An important point to note are the heavy current tracks from the
power supply to the power transistors.

Here is the microphone sensor circuit.fo this sound tracking
robot; 4 of these were needed with one mounted in each
corner.



39.8 Stepper motors
Stepper motors can be found in old printers and depending on the voltage and current can make small robots.




Think of a stepper motor as having 4 windings, they can be driven in full step mode where only one winding is on at a time, however they are
better driven in half step mode where either one winding or two windings are on at a time.

b b
a a
1a 1a
2b Z2b
2a 2a
b — 1h —
—+2b T—F2b
2a 2a
1a 1a
1b —% 1b
—
Phase 1 Phase 2
Stepper Motor Operation (Unipolar, Full step) Stepper Motor Operation {(Unipolar, Half step)

387



To get drive the motor in either of the above ways a simple ULN2803 darlington transistor array could be used

ULKZB803 Ve

Power

Driver _
Stepper
—{ —t Motor
1 h 1

=

] r-\"'\.\_ ]

I A

1 h 1

P

However there are a lot of inefficiencies in this sort of circuit and the motor power can be more fully made use of by driving more than one
winding at a time, sometimes in differentdirections, which requires an H-Bridge type circuit.

1a POWER + POWER +
2b
1b
28 — — ] i 2 : 5 6 :
T—F2b : :: 1
winding 1 winding 2
1b 1a
i :‘ 3 4 ;‘ 7 8
3 3 2a
=
Conceptual Model of Bipolar Stepper Maotor POWER - ' POWER -

388



The L297 and L298 are some great driver chips for stepper motors, they do require careful use and are probably harder to find nowadays.

[fL

.

g .
]
-7
2 & C15
C16 o 14 —
—— —— 0.1
10U 0.1
C12 4
GND
and 1
IC4 o GMD
—— =I = = =
GND GMD 16 L oge - = 2 12 |2
= 3 vee =2 22 ZI2 22
10 1 EnepLE INHT |2 EMABLE_A A A K A
MHZ |2 1 EnsBLE B
17X cwicow
o | N ouTt |2 W
18 ¥ cLock g I npuT2 outz B Y
c L 10 npUTS outs P =0,
19 ¥ o |2 12 pUTY ouTd At o
10k = _l2 2 |2 PADA
2 svnc SENgY 12 - U cEn_A S
B . s IR — 15| oEnh o= ol ol gz
- VREF R13 i (Y. (N
> = | BTN
11 = 3
CNTL HOME |—— - L L L
10 C11 GND GND GND GND
T 2 a]of]f
. . N
wh cefpzznp - H UEH S LS
GND GNDGND

GHD

GND  GND

389



>

IR

I

by

Foes
Ll i
-

Bl :
e Y in

ol "V g

=

-
s+

‘T“‘“N‘f:f

e
T— Bt

o

o]

3 o KT B o e e

g g

ooy

R

Full schemtic of the PCB
with two complete driver
circuits



Component layout for the PCB

3

]

|21

R3

L |

R0

15

L6

ol

R17

15

2

ol

6%

e
1.

o

e

1
-

O

T
L

| £
D13
2

|

PaD *P'ﬂ.D_fEII_:'ADTADfl
£

r

&

-
L

O

L

| &=
| B

N

9
-

OO0

T
L

|

5

|
F'ADQ’AD_?&D_:EA‘J-.D 13

_LO_L

r
L

|

L1

|

q
N

EU
e
IE'AD 10
&

-
N
q

391



As with all motor circuits there is a
need to keep tracks as short and
direct as possible do note how this is
achieved on the board

2iehbsk CoU ko Sk

[30LM530H

O

392



39.9 PWM - pulse width modulation

To control the brightness of an LED or speed of a dc motor we could reduce the voltage to it, however this
has several disadvantages in terms of power reduction; a better solution is to turn it on and off rapidly. If
the rate is fast enough then the flickering of the LED or the pulsing of the motor is not noticeable.

If this waveform was applied to a motor it would run at around half speed.

period
" 2ms | mark-to-space ratio 1:1
! I
| pulsewidth | duty cycle 50%
= |
5y l 1mS | }_= -
mark |space
1 1
oV

4 5 time (I:rISec)

(=Y
nN g
w

If this waveform were applied to an LED it would be at about % brightness

period
I 2msS | mark-to-space ratio 3:1
| |
| pulsewidth | duty cycle 76%
|
5V | 16mS | |
mark
3
oV * ! o
1 2 3 4 5 time(mSec)
If this waveform were applied to an motor it would be run at about ¥4 speed
period
I 2mS : mark-to-space ratio 1:3
| |
| pulsewidth | duty cycle 25%
! |
5y | j0BmS :=
m
a
r
II spasce
1 2 3 4 5 time({mSec)

The AVR timer/counters can be used in PWM mode where the period of the wave or frequency is kept
the same but the pulse width is varied. This is shown in the 3 diagrams, the period is 2mS for each of the
three waveforms, yet the pulsewidth (on time) is different for each one (other modes do exist however
these will not be described yet).

393



39.10 PWM outputs
In the Atmel microcontrollers there are one, two or sometimes more PWM output pins attached to each

timer. On the ATMegal6 Timer O has 1 PWM output, Timer 1 has two PWM outputs and Timer 2 has 1
PWM output :

These special pins mean that the PWM output once it is going is completely separate from your software.
e For Timer0 the pin is OCO (portB.3)
e For Timerl the pins are OC1A (portD.5) and OC1B (portD.4)
e For Timer2 the pin is OC2 (portD.7)

W
PBO ] 1 40 PAD
PB1 2 39 PA1
PB2 3 38 PA2
(OCO/AIN1Y) PB3 ™| 4 37 PA3
PB4 ] 5 36 PA4
PBS | 6 35 PAS
PB6 7 34 PAG
PB7 8 33 PA7
RESET 9 32 AREF
VCC 10 31 [ GND
GND 11 30 AVCC
XTAL2 12 29 [0 PC7
XTALT (] 13 28 |71 PC6
PDO ] 14 27 |1 PC5
PD1 ] 15 26 [ PC4 -
PD2 16 25 PC3
PD3 ] 17 24 PC2
(OC1B) PD4 m| 18 23 PC1
—3—(OC1A)-PD5-® 19 22 PCO
PD6 20 21 m—PD7-(0C2)

..':."I -
Here is example code to drive some different output devices connected to OC1A and OC1B

'0/P Period = 4ms /freq = 250Hz (suitable for dimming an LED)

' range of brightness is controlled by the Comparela and Comparelb registers
' as the Timer is set in 8 bit mode the values can be from 0 to 255

Config Timerl = Pwm , Prescale = 64 , Pwm = 8 , Compare A Pwm = Clear Down ,
Compare B Pwm = Clear Down

Comparela = 200 'high values = bright

Comparelb = 2 'low values = dim and high values = bright

'0/P freq = 16kHz (suitable for speed control of a dc motor) , range is 0 to
255
Config Timerl = Pwm , Prescale =1 , Pwm = 8 , Compare A Pwm = Clear Down ,

Compare B Pwm = Clear Down
Comparela = 200 'high speed
Comparelb = 20 'low speed

'0/P freq = 8kHz (suitable for speed control of a dc motor) , range = 0 to
511

Config Timerl Pwm , Prescale =1 , Pwm = 9 , Compare A Pwm = Clear Down ,
Compare B Pwm = Clear Down

Comparela = 511 'high speed

Comparelb 20 'low speed

394



39.11 Uses for PWM

PWM Digital o Analogue converter

1 L1 —J—O05V A pulse is used to charge a capacitor through a resistor, when the
_I_ pulse is high the capacitor will charge, when it is low the capacitor
3 will discharge, the wider the pulse the longer the capacitor charges
and the higher the voltage will be.
2 [L11 :‘J_ 2.6V
uC
T
3 [ 1 I: T 45V
&
, _ PWM Motor Speed Control _
The width of the pulse determines the average DC voltage getting
to the motor which in turn slows or L] 8 speeds up the motor. the
advantage of using PWM rather 1 than reducing the actual voltage
is that torque (power) of the motor maintained at low speeds.
5 iy medium
uC
3 o' fast
Period - the time from one point in the waveform to the same point

in the next cycle of the waveform.

Frequency - the inverse of the period, if period = 2mS the frequency = 1/0.002 = 500 Hz (Hertz).
Pulse width - the length of time the pulse is high or on. The 'mark’ time.
Duty cycle - the on time of the pulse as a proportion of the whole period of the waveform.

395



39.12 ATMEL AVRs PWM pins

As time goes by every new model of the AVR microcontroller that is introduced has more features; and it
can be hard to keep up with all these features. For instance PWM each chip has different capabilities for

hardware PWM.

AVR PWM Pins
ATTiny13 2 using Timer O OCOA 0OCO0B
ATTiny45 2 using Timer O OCOA 0OCO0B
2 using Timer 1 OC1A 0OCi1B
(note OCOB and OC1A share the same
pin so cannot be used at the same time)
ATTiny2313 2 using Timer O OCOA OCO0B
2 using Timer 1 OC1A OC1B
ATTiny26 2 using Timer 1 OC1A OC1B
ATTiny461 6 using Timer 1 OC1A OC1B OC1D
(and their inverses)
ATMega8535/16 /32 1 using Timer O oCo
2 using Timer 1 OC1A OC1B
1 using Timer 2 0C2
ATMega48 / 644 2 using Timer O OCOA OCO0B
2 using Timer 1 OC1A OC1B
2 using Timer 2 OC2A OC2B

396




39.13 PWM on any port

The issue with hardware PWM is that it is fixed to particular pins on the microcontroller.
What happens then when you want more PWM outputs or to use different pins.
Here is a PWM solution for PWM on portA.7 using the 8 bit timerO0.

'"PWM Timer2 pwm on any port

'"Timer 2 PWM 8bit period = 15.8mS =64Hz (suitable for driving a servo motor)
Config Timer2 = Pwm , Prescale = 256 , Compare Pwm = Disconnect

Compare2 = 50

Enable Timer? : Enable 0Oc2

Enable Interrupts

LR dh b b I b g b b I b b i b I b b S b b b b I b b b b A b b i R A b b I b b b b b b i b b

'Program starts here
Do

Loop
End

LEE SR SR Sb ab b b b b S 2 2 AR Sh  db b b b b S S SR db  Ib I b b b b S S 2 S IR Ih b b b b b S S S dh b ¢

'Interrupt Routines
'Timer2 pwm on any port, freq = 64Hz
T2 ovf:
Set PORTA.7
Return
T2 oc2:
Reset PORTA.7
Return

397



39.14 PWM internals

Each PWM output has independent settings for the pulse width however if they are controlled by the same
timer they will will run at the same frequency.

The 3 PWM modes for timerl discussed here are the 8, 9 & 10 bit mode.

¢ In 8 bit mode the counter counts from 0 to 255 then back down to 0.

e In 9 bit mode the counter counts from 0 to 511 then back down to O.

e In 10 bit mode the counter counts from 0 to 1023 then back down to O.
8bit 25b 25b

mode

Oto 255
il 0 0

The programmer sets a point from 0 to 255 at which the output will change from high to low.

If the value were set to 100 then the output pulse on portd.5 (OC1A) would switch from OVolts (0) to 5
Volts (1) as in the next picture.

/) N N/

0 0 0
.
oV
/zx 255 255
1oy \// /\\\/ /\
0 0 0
OC1A
OC1B

To work out the frequency of the pulses
For 8 bit: Freq = 8000000/prescale/256/2
For 9 bit: Freq = 8000000/prescale/512/2
For 10 bit: Freq = 8000000/prescale/1024/2

398



The lines of code to get the above waveforms on OC1A and OC1B would be
e Config Timerl = Pwm , Pwm =8, Compare A Pwm = Clear Up , Compare B Pwm = Clear up ,

Prescale = 1024
e Comparela =100
e Comparelb =10

Frequency values for different input crystal and prescale value

OUTPUT FREQUENCY (Hz) for a crystal frequency of 7,372,800

Prescale Value

1 8 64 256 1024
8 Bit 14,456 | 1,807 226 56 14
PWM 9 Bit 7,214 902 113 28 7
10 Bit 3604 450 56 14 4

399




40 AVR pull-up resistors

A useful thing to know about is that the AVRs have internal pullup resistors for use when you connect a
switch to an input pin.

These can be activated from within software; this means you don’t have to connect a separate resistor;
however you still have to activate it.

Note that by default it is not activated.

VCC Config Pind.2 = Input
Set portd.2 ‘activate internal pull-up
i O
ﬂ O o_ If pinb.2 = 0 then
GND
end if

Why didn’t you learn about this straight away, well its important to understand the concept of pullup
resistors and by physically using them you gain a better understanding of them.

400



41 Keypad interfacing

It is quite straightforward using Bascom to read a keypad, it handles all the hard work for us with the built
in function Getkbd().

Config Kbd = Portb

Dim kbd_data As Byte

Kbd_data = Getkbd() 'keybdb returns a digit from 0 to 15
LCD kybd_data

The connection to the microcontroller is straightforward as well, just 8 pins.
Solder headers into the 8 pins of the keypad and 8 pins as shown on the
PCB

How do the 16 key keypad and the software work together?

The Keypad is 1 - 3 & arranged in a matrix of 4x4 and each row
and column are Row] ——3—c—t = 7 1 connected to the microcontroller.
Software: _f_q _f’_q _ﬁ_q _E_q
The micro sets the Row2 ———F—""27" . rows as outputs and puts a low on those
ports. The columns are Row3 -3 &= = ¢ A set as inputs, it reads the columns and if
any key is pressed s of #| D there will be a 0 on one of the columns. If
there is a 0 then it Row 4 ————4+—3-—r—31 reverses the situation with the rows as
inputs and columns as outputs and if there is a low on one of the
rows it has a valid Col 1 keypress. The combination of 0's is used
to determine exactly Ez: g —_— which key is pressed.

Col 4
The code which is returned from getkbd() will not match the

number on the keypad so a translation process is required. It is also better to have a subroutine handle
this process and keep it away from your main code. Then this routine can be called from anywhere in the
program.

In this code not only is the key translated but it is not returned untilt he user releases the button, this stops
the key frombeing sensed multiple times.

41.1 Keypad program 1

" 1. Title Block

"Author: B.Collis

"Date: 14 Aug 2003

' File Name: keypad_Verl.bas

‘develop a simple subroutine that translates key press codes into more recognisable key values.
' 5. Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the crystal we are using

$regfile = "m8535.dat" 'the micro we are using

' 6. Hardware Setups

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs =
Portc.0

Config Lcd =20*4 ‘configure Icd screen

Config Kbd = Portd

‘8. initialise hardware



'9. Declare Constants

' 10. Declare Variables

Dim Kbd_data As Byte

Dim Key As Byte

"11. Initialise Variables

Key =16

Cls ‘clears LCD display
Cursor On Noblink

' 12. Program starts here
Do
Gosub Readkeypad
Lcd Key s
Loop
End ‘end program

Readkeypad:
'gets a key press and returns a key value 0 to 16
'16 is no key pressed
Kbd_data = Getkbd()
If Kbd_data < 16 Then
Select Case Kbd_data
Case0:Key=1
Casel:Key=2
Case 2 :Key=3
Case 3: Key =10 ‘A
Case4:Key=4
Case5:Key=5
Case 6: Key =6
Case 7 :Key =11 ‘B
Case 8 : Key =7
Case 9 :Key =38
Case 10: Key =9

Case 11 : Key =12 'C
Case 12 : Key = 14 *
Case 13 :Key =0
Case 14 : Key = 15 ‘#
Case 15: Key =13 ‘D
End Select
End If

Return

402



41.2 Keypad program 2

Generate text / ASCII rather than a numeric value
' Declare Variables
Dim Kbd_data As Byte

Dim Key As String * 2
" Initialise Variables

Key=""

Cls

Cursor On Noblink

' Program starts here

Do

Gosub Readkeypad
Lcd Key
Loop

End

‘clears

.
)

‘end program

Readkeypad:

'gets a key press and returns a key value 0 to 16

'16 is no key pressed
Kbd_data = Getkbd()
If Kbd_data < 16 Then

Select Case Kbd_data

Case 0:
Case 1:
Case 2:
Case 3.
Case 4:
Case 5:
Case 6:
Case 7.
Case 8:
Case 9:

Case 10:
Case 11:
Case 12:
Case 13:
Case 14 :

Case 15
End Select

End If
Return

This program however don’t do anything much for us, they need a little more control to be useful

Key = "1"
Key = "2"
Key ="3"
Key = "A"
Key = "4"
Key ="5"
Key = "6"
Key = "B"
Key ="7"
Key ="8"
Key = "9"
Key ="C"
Key = "*"
Key ="0"
Key = "#"
. Key ="D"

o Debounce the keys a little

o Only return the value once if a key is held down
o Use the other keys to do something different like move the cursor around the Icd

403

Changes to
use a string




W

Compiler setup

Hardware setup
Variables setup

display the digit
move cursor right

cursor
ight

display a space
move cursor right

41.3 Keypad program 3 — cursor control

The really big concepts to understand here are 1. cursor control and 2. that
numbers on an LCD are not data.

1. A cursor is a flashing or steady line on a screen to show you where the next
text will be entered. If you want text to appear in certain places on an LCD (or
any screen) you must control it within your program, the LCD itself has very
limited cursor control.

Often with LCDs there appears to be no cursor, as it is not turned on. The
cursor however is still there; just invisible. When text is sent to the display it will
appear at the cursor location and the LCD will move its cursor one space to the
right. In simple programs as with the above two the microcontroller has no idea
where the cursor is, it just gives the LCD data to display.

If you want text to appear in a certain location on the screen then you have to
move the cursor with Bascom’s LOCATE function.

In a complex program you may want to move the text around the screen at will,
so you do this by moving the cursor first and then sending data to the display.
In this case you need to keep track of the cursor location yourself by using
some variables, as in this next program.

2. Data is in your program. In this program data is collected from a keypad and
stored in a variable. Then this data is put onto the LCD, these are two separate
and different control processes. Don’'t mix them up, when programming keep
them within separate sub routines.

' Declare Variables

Dim | As Byte

Dim Cursor_x As Byte
Dim Cursor_y As Byte
Dim Kbd_data As Byte
Dim Key As Byte

" Initialise Variables
=0

Cursor x=1
Cursor_y=1

Key =16 'nothing to process to start with
Cls ‘clears LCD display

Cursor Noblink 'steady cursor

Cursor
R control
variables

' Program starts here
Locate Cursor_y , Cursor_x 'move lcd cursor to top left corner of LCD
Do
Gosub Read_1 keypress 'get a single key press
Gosub Disp_char 'display char and move cursor
Loop
End ‘end program

Disp_char:

‘displays numbers on Icd

'uses A,B,C,D to move the cursor , * to clear the screen, # to insert space
'the use of key=16 is so that the key is sensed only once per press

404



‘cursor control is one of the big concepts here.
Select Case Key

Case Is < 10: ‘number
Lcd Key
Incr Cursor_X
If Cursor_x > 20 Then Cursor_ x=1 ‘'on overflow wrap to left
Locate Cursor_y , Cursor_x 'position the cursor
Key = 16 'key processed
Case 10: ‘A = go right
Incr Cursor_x
If Cursor_x > 20 Then Cursor x=1 ‘on overflow wrap to left
Locate Cursor_y , Cursor_x
Key = 16 'key processed
Case 11: 'B = go left
Decr Cursor_x
If Cursor_x =0 Then Cursor_x =20 ‘'on underflow wrap to right
Locate Cursor_y , Cursor_x
Key = 16 'key processed
Case 12: 'C = go down
Incr Cursor_y
If Cursor_y >4 Then Cursor_ y=1 ‘on overflow wrap to top
Locate Cursor_y , Cursor_x
Key = 16 'key processed
Case 13: ‘D =go up
Decr Cursor_y
If Cursor_y =0 Then Cursor_y =4 ‘on underflow wrap to bottom
Locate Cursor_y , Cursor_x
Key = 16 'key processed
Case 14 : * = clear screen
Cls
Cursor x=1
Cursor_y=1
Key =16 'key processed
Case 15: '# = clear screen
Led "
Incr Cursor_x
If Cursor_x > 20 Then Cursor x=1 ‘on overflow wrap to left
Locate Cursor_y , Cursor_x
Key =16 'key processed
End Select
Return

405



Read 1 keypress:
'gets a key press and returns a key value 0 to 16
'16 is no key pressed
Kbd_data = Getkbd()
If Kbd_data < 16 Then
Select Case Kbd_data
Case0:Key=1
Case 1:Key=2
Case 2 :Key =3
Case 3:Key =10 ‘A
Case4:Key=4
Case 5:Key=5
Case 6 : Key =6
Case 7 :Key =11 ‘B
Case 8 : Key =7
Case 9:Key =8
Case 10: Key =9

Case 11 : Key =12 'C
Case 12 : Key = 14 *
Case 13 :Key =0
Case 14 : Key = 15 ‘#
Case 15: Key =13 'D
'‘Case 16 : Key = 16 'nothing pressed
End Select
End If
‘wait until the user releases the key

Do
Kbd_data = Getkbd()
Loop Until Kbd_data = 16
'by experimentation, it was realised that a small debounce
‘delay made this routine stable
Waitms 5
Return

Routines like this are useful where the user has to enter data into the program and you want it on the
display as well.
Remember the two concepts

1. Cursor control
2. Reading data and displaying data are two separate things

406



41.4 Keypad texter program V1

In this program we want to get text froma keypad. It will operate so that when the button is held down it
will scroll through the text on the key pad as well. e.g. holding down 6, will initially return ‘6’ then after
80ms ‘M’, then after 80ms ‘N’, then after 80ms ‘O’, then after 80ms ‘m’, then after 80ms “n then after

80ms ‘0’.
< keypad texter >

\ So we start a counter (and every 1ms

read keypad increase it) o
get a key value The routine exits but everytime it

returns it increase count
keypressed? N
Y

return a '?" From O to 79 the routine returns ‘6’.

From 81 to 160 it returns ‘M and so on

remember new value
lookup key_char
return

increase 1ms counter

countedtoofar? Y
N

counter a multiple of 807

limit counter to end of table

lookup new key_char

\
return ,

' Title Block

" Author:B.Collis

" Date: Aug09

"Version: 1.0

' File Name: keypad_texterV1.bas

" Program Description:

' This program reads a keypad for digits and letters (both small & caps)
' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 "internal clock

$regfile = "m8535.dat"

' Hardware Setups

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs =
Portc.0

Config Lcd =20 *4 ‘configure lcd screen

407



Config Kbd = Portd

' Declare Constants
Const Key_repeatdelay = 50

Const Key_debouncedelay = 20

Const Key_repeatl = 80

Const Key_repeat2 = 160
Const Key_repeat3 = 240
Const Key_repeat4 = 320
Const Key_repeat5 = 400
Const Key_repeat6 = 480
Const Key_repeat7 = 560
Const Key_repeat8 = 640

' Declare Variables

Dim Kbd_data As Byte
Dim Key As Byte

Dim Oldkey As Byte

Dim Lookupval As Byte
Dim Key_counter As Word
Dim Key_char As String * 2
" Initialise Variables

Key counter =0

' Program starts here

Cls

Cursor Off

Do
Gosub Read_keychar
If Key_char <>"?" Then

Locatel1l,5
Lcd Key char ;" "
End If
Loop

End

‘end program

408



' Subroutines
Read_keychar:

Kbd_data = Getkbd() 'read a key
Key = Kbd_data 'store the keypress
If Kbd_data = 16 Then 'no key pressed
Oldkey = 16 ‘remember no key pressed
Lookupval = 144 ‘return '?'
Key char = Lookupstr(lookupval , Chrcodes)
Return ‘exit the subroutine
End If
If Key = Oldkey Then 'key still pressed
Waitms 1

Incr Key_counter
Select Case Key_counter

Case Key_repeatl :

Lookupval = Lookupval + 16

Key char = Lookupstr(lookupval , Chrcodes)
Case Key_repeat? :

Lookupval = Lookupval + 16

Key char = Lookupstr(lookupval , Chrcodes)
Case Key_repeat3 :

Lookupval = Lookupval + 16

Key char = Lookupstr(lookupval , Chrcodes)
Case Key_repeat4 :

Lookupval = Lookupval + 16

Key char = Lookupstr(lookupval , Chrcodes)
Case Key_repeat5s :

Lookupval = Lookupval + 16

Key char = Lookupstr(lookupval , Chrcodes)
Case Key_repeat6 :

Lookupval = Lookupval + 16

Key char = Lookupstr(lookupval , Chrcodes)
Case Key_repeat? :

Lookupval = Lookupval + 16

Key char = Lookupstr(lookupval , Chrcodes)
Case Key_repeat8 :

Lookupval = Lookupval + 16

Key char = Lookupstr(lookupval , Chrcodes)

End Select

If Key_counter > Key_repeat8 Then Key_counter = Key_repeat8
Else 'new keypress

Oldkey = Key

Lookupval = Key
Key counter =0
Key char = Lookupstr(lookupval , Chrcodes)
End If
Return

409



Chrcodes:

Data "1","2","3","A","4" "5" "6","B",

Data "7","8","9", "C", ™" "0", "#",6"D",

'2nd press

Data "1","A","D","A","G","J","M","B",

Data "P", "T","W", "C", ™" "C", 6 "#" 6 "D",

'3rd press

Data "1","B", "E","A","H","K","N","B",

Data "Q", "U", "X", "C", ™" LM, "# "D,

'4Ath press

Data "1","C","F","A","I","L","O","B",

Data "R", "V",h "y", "C", e nSt Y DY

'5th press

Data "1","a","d","A","g","","'m","B",

Data "S", "t","z","C", ™" "d","#","D",

'6th press

Data "1","b", "e","A","h","k","n", "B",

Data "p", "u","w","C", ™" "a","#","D",

"7th press

Data "1", "c","f", "A","","I","0", "B",

Data "q", "v","x","C","™" "M","#" 6 "D",

'8th press

Data "1", "c","f", "A","I","I","0", "B",

Data "r", "v",K "y", "C", " AT "#Y DY

'Oth press

Data "1", "c","f", "A","","I","0", "B",

Data "s", "v*,"z","C", " "N, "#", "D", "?"

'keypad layout and codes

1T 2 3

‘4 5 6

7 8 9
0 #

"%

Onow>»

This program works however there is some repetition in it with the lookups so that there is the opportunity
for it to be rewritten as per the next page

410



41.5 Keypad texter program la

This version of the program instead of having a lot of repeating code does some maths to work out the
multiple of 80 and uses that to lookup the key character.

' new constants to replace all the old ones
Const Key_repeatdelay = 80
" ADD ONE NEW VARIABLE TO THE OTHERS ABOVE

Dim | As Word
' Subroutine
Read_keychar:
Kbd_data = Getkbd() 'read a key
Key = Kbd_data 'store the keypress
If Kbd_data = 16 Then 'no key pressed
Oldkey = 16 'remember no key pressed
Lookupval = 144 ‘return ?'
Key_char = Lookupstr(lookupval , Chrcodes)
Return ‘exit the subroutine
End If
If Key = Oldkey Then 'same key still pressed
Waitms 1
Incr Key_counter ‘count in 1ms increments
| = Key_repeatdelay * 8 ‘check we havent gone too far
If Key_counter > 1 Then Key_counter = | 'so we dont overflow end of table
| = Key_counter Mod Key_repeatdelay 'MOD means get remainder
If =0 Then '0 means it is a multiple of 80
| = Key_counter / Key_repeatdelay 'how many multiples of 80
Lookupval =1 * 16 'get char from table

Lookupval = Lookupval + Kbd_data
Key char = Lookupstr(lookupval , Chrcodes)

End If

Else 'new keypress
Oldkey = Key ‘remember key press
Lookupval = Key
Key_ counter =0 'start counting again
Key char = Lookupstr(lookupval , Chrcodes) 'get char from table

End If

Return

411



41.6 ADC keypad interface

A 16 button keypad is a really nice feature for our projects but generally it requires 8 lines to connect it to
a microcontroller; and sometimes we just don’t have these available as we have used them all up.
In this voltage divider circuit whenever a key is pressed the voltage to the microcontroller changes and
can be sensed using a single ADC input.

T Rowl EI

A

] =

[l
T
il
T
T
_T4
2

J ? ? ? Rowz

" A T i i T ]
J ? ? ? Row3

LA LA I LA N AL ]

LT
‘:-I_—
14
4
14
4
14
4

Coll Colz Col3 Col4

— 1 —e—1 1—+— 1 —

This program reads the ADC value and displays both it and a value representing which key is pressed on
the LCD. The values of resistor chosen in the above schematic allow a range of values from 0-2V, so we
will use the internal reference voltage rather than the VCC voltage as comparison value for our ADC
converter. NOTE YOU MUST NOT HAVE AREF PIN CONNECTED ON THE MICRO WHEN USING THE
INTERNAL VOLRAGE REFERENCE!!

'Title Block

' Author: B.Collis

' Date: July 2010

' File Name: keypadlioLine.bas

Program Description:

Hardware Features:

LCD on portc - note the use of 4 bit mode and only 2 control lines
keypad connected as per R4R circuit on 1 ADC line

Im35 on adc

412



' AREF PIN32 disconnected — uses internal 2.56V reference

' Compiler Directives (these tell Bascom things about our hardware)
Scrystal = 8000000 'the crystal we are using
Sregfile = "m32def.dat" 'the micro we are using
'Hardware Setups
Config Porta = Input
Config Adc = Single , Prescaler = Auto , Reference = Internal

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =
Portc.7 , E = Portc.3 , Rs = Portc.2

Config Led = 20 * 4 'configure lcd screen
'Harware Aliases
Kp Alias 1

Im35 Alias O
Led0 Alias Portc.O
Ledl Alias Portc.l

'Declare Constants
Const Timedelay = 150

'Declare Variables

Dim Keypress As Word

Dim Key As Byte

Dim Tempr As Word

'Initialise Variables

Key = 16 'no press

'Program starts here

Cls 'clears LCD display
Cursor Off 'no cursor

Lecd "ADC Keypad tester"

Do

Keypress = Getadc (kp)
Locate 2 , 1
Lcd Keypress ;
If Keypress < 955 Then
Gosub Lookupkey
Lcd Key ; " "
End If
Tempr = Getadc (1m35)
Tempr = Tempr / 2
Locate 3 , 2
Led Tempr ;
Waitms 100

Loop
End 'end program

413



'Subroutines
Lookupkey:
Select Case Keypress

Case 290 To 340 : Key =1
Case 341 To 394 : Key = 2
Case 395 To 443 : Key = 3
Case 444 To 505 : Key = 10
Case 506 To 563 : Key = 4
Case 564 To 603 : Key = 5
Case 604 To 640 : Key = 6
Case 641 To 688 : Key = 11
Case 689 To 734 : Key =7
Case 735 To 765 : Key = 8
Case 766 To 795 : Key = 9
Case 796 To 832 : Key = 12
Case 833 To 868 : Key = 14
Case 869 To 894 : Key = 0
Case 895 To 917 : Key = 15
Case 918 To 940 : Key = 13

Case Else : Key = 16
End Select

'Interrupts

414



42 Do-Loop & While-Wend subtleties

Learning to keep things under control by understanding what happens with loops

$sim ‘copy this code into Bascom and run it in the simulator

$crystal = 8000000

$regfile = "m8535.dat"

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5, E = Portc.1 , Rs =
Portc.0

ConfigLcd =20*4

Cls

Cursor Off

Const Timedelay = 150

Dim Count As Byte

Locate 1,1 Prints 5 *x*x*

Count=0 even though the count never gets to 5
While Count <5
Incr Count

Led ™
Wend

Locate 2, 1 Prints 5 *****
Count=0 Count must get to 5 for the output to be 5 asterisks
Do
Incr Count
Led ™
Loop Until Count =5

Locate 3,1 Does not print anything

Count=5 A while wend might not execute

While Count <5
Incr Count
Led ™

Wend

Locate 4,1 Gets stuck and continues to print **x***

Count=5 A do loop will always execute at least once

Do So in this case it executes the first time and increases
Incr Count count to 6 and then just keeps going
Led ™

Loop Until Count = 5

Output of the above code

It is essential when programming to test your code and when you have loops getting out of control look
for tests that might be wrong

415



42.1 While-Wend or Do-Loop-Until or For-Next?

When you want something to repeat there are different ways to do it Here are a number of different ways
to do the same thing. The program puts a shooter and a target on an LCD and fires bullets if the shooter
is to the left of the target. The differences however are subtle and require careful testing of the routines to
expose the clearest and best functioning

The first 2 use the do-loop-until, then the next 3 use while-wend and the last uses a for-next
" 1. Title Block
" Author: B.Collis
' Date: 21 April 2005
' File Name: shoot_vl.bas
' 2. Program Description:
Program moves a bullet across the Icd display
' Hardware Features:
LCD
" Program Features
' 3. Compiler Directives (these tell Bascom things about our hardware)
$regfile = "m8535.dat" ‘our micro, the ATMEGA8535-16PI
$crystal = 8000000 'the speed of the micro
" 4. Hardware Setups
' setup direction of all ports
Config Porta = Output
Config Portb = Output
Config Portc = Output 'LCD on portC
Config Portd = Output
'LCD redefine these for your LCD connection
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5, E = Portc.1 , Rs =
Portc.0
Config Lcd =20 * 4
'LCD special characters

Deflcdchar0,8,20,11,30,8,8,20, 20 ' shooter
Deflcdchar1,32,32,16,32,32,32,32, 32 "bullet
Deflcdchar2,2,7,18,15,2,2,5,5 ' target
Deflcdchar3,32,4,16,32,2,8, 14,31 ‘dyingman
Deflcdchar 4,32 ,32,32,32,32,6,14, 31 ' deadman

'5. Hardware Aliases

' 6. initialise ports so hardware starts correctly
Cls

Cursor Off

' 7. Declare Variables

Dim Bullet_pos As Byte

Dim Shooter_pos As Byte

Dim Target_pos As Byte

' 8. Initialise Variables
Shooter_pos =1
Target_pos = 20

416



' 9. Declare Constants and program aliases
Const Bullet_speed = 600

Const Deathroll = 300

Const Bullet =1

Const shooter = 0

Const Target = 2

Const Dyingman = 3

Const Deadman2 = 4

' 10. Program starts here

Do
Lcd "shooter"
'test program for bullet routine

Shooter_pos = Rnd(20) 'get a random position (0 to 19)
Incr Shooter_pos ‘get a random position (1 to 20)
Target_pos = Rnd(20) ‘get a random position (0 to 19)
Incr Target_pos ‘get a random position (1 to 20)
Locate 3,1

Lcd "S="; Shooter_pos ;" "

Locate 4,1

Lcd "T="; Target_pos ;
Locate 2, Shooter_pos

Lcd Chr(shooter) 'man with gun
Locate 2, Target_pos
Lcd Chr(target) 'target man
Gosub Fire_bullet_do v1 ‘replace with alternative routines
Wait 3
Cls 'use cls carefully in programs
" or the LCDs can flicker
Loop
End ‘end program

Here is a flowchart for the fire_bullet routine, on the next pages are
different implementations of it and explanations of their problems

fire-bullet

thooter left of True

target?
e
v

mave bullet

y

Loop Untl

L bullet=target

*p

(Trewm )

417



Fire_bullet_do_v1: '1336 bytes
'this routine moves a bullet across the display
If Target_pos > Shooter_pos Then  'shooter is left of target
Bullet_pos = Shooter_pos
Do 'not hit yet
Incr Bullet_pos ‘increase first
Locate 2, Bullet_pos ‘draw bullet
Lcd Chr(bullet)
Waitms Bullet_speed
Locate 2, Bullet_pos
Led ™"
Loop Until Bullet_pos = Target_pos
Locate 2, Target_pos
Lcd Chr(dyingman)
Waitms Deathroll
Locate 2 , Target_pos
Lcd Chr(deadman2)
End If
Return

'blank the bullet

'start at the shooter position

Using the do-loop this
way resulted in the
programming taking
up 1336 bytes in flash
making it the shortest
version.

However it has a
subtle problem. When
the bullet reaches the
target it first replaces
the target then there is
a delay and then the
dying man image
appears. Using a high
value for bulletspeed
allows you to see the
problem happen.

Fire_bullet_do_v2: '1343 bytes
'this routine moves a bullet across the display
If Target_pos > Shooter_pos Then  'shooter is left of target
Bullet_pos = Shooter_pos + 1  'start in next lcd segment
Do 'not hit yet
Locate 2, Bullet_pos
Lcd Chr(bullet)
Waitms Bullet_speed
Locate 2, Bullet_pos
Led ™"
Incr Bullet_pos ‘increase after
Loop Until Bullet_pos >= Target_pos ‘check if gone past
Locate 2 , Target_pos
Lcd Chr(dyingman)
Waitms Deathroll
Locate 2 , Target_pos
Lcd Chr(deadman?2)
End If
Return

‘draw bullet

'blank the bullet

This code implements
the bullet hitting the
target properly as the
last bullet appears in
the space before the
target and then after
the bulletspeed delay
the target becomes
the dying man. To do
this the code had to
be changed. Note the
changes in the lines in
bold that are different
or in different
locations to the
previous routine.

418




Fire_bullet_while_v1.: '1344 bytes
'this routine moves a bullet across the display
If Target_pos > Shooter_pos Then ' shooter is left of target
Bullet_pos = Shooter_pos + 1 'start in next lcd segment
While Bullet_pos < Target_pos  'not hit yet
Locate 2, Bullet_pos
Lcd Chr(bullet)
Waitms Bullet_speed
Locate 2, Bullet_pos
Led ™"
Incr Bullet_pos
Wend
Locate 2 , Target_pos
Lcd Chr(dyingman)
Waitms Deathroll
Locate 2, Target_pos
Lcd Chr(deadman2)
End If
Return

'draw bullet

'blank the bullet

This code segment
uses the while-wend.
Even though it is
longer than the above
code when compiled it
correctly implements
the final bullet not
hitting the target.

Fire_bullet_while_v2: '1342 bytes
'this routine moves a bullet across the display
Bullet_pos = Shooter_pos + 1 'start in next Icd segment
While Bullet_pos <= Target_pos 'not hit yet
Locate 2, Bullet_pos
Lcd Chr(bullet) ‘bullet
Waitms Bullet_speed
Locate 2, Bullet_pos
Led ™"
If Bullet_pos = Target_pos Then
Locate 2 , Target_pos
Lcd Chr(dyingman)
Waitms Deathroll
Locate 2 , Target_pos
Lcd Chr(deadman2)
End If
Incr Bullet_pos
Wend
Return

'‘blank the bullet

In this subroutine the
initial if-then statement
that checks the
relative positions of
the shooter and
targets is removed in
an attempt to
streamline the code.
However it is not quite
as efficient code as
the first. When the
target is left of the
shooter 2 lines of
code are executed,
first the bullet pos is
calculated and then
the position is
checked.

It also reintroduces
the same problem as
first do-loop with the
bullet replacing the
target.

419




Fire_bullet_while v3:

1340 bytes

'this routine moves a bullet across the display

Bullet_pos = Shooter_pos + 1

While Bullet_pos < Target_pos

Locate 2, Bullet_pos

Lcd Chr(bullet)

Waitms Bullet_speed

Locate 2, Bullet_pos

Led ™™

Incr Bullet_pos
Wend

'start in next segment
'not hit yet

'draw bullet

'blank the bullet

This code executes
correctly however it is
also inefficient. If the
target is left of the
shooter three lines of
code are executed.
Bullet_pos is calculated,
the while is checked and
the if is checked. It is
really untidy code as it
tries to separate the 2
ideas which are

If Bullet_pos = Target_pos Then  'hit integrated together in the
Locate 2, Target_pos flowchart by separating
Lcd Chr(dyingman) the while and if parts,
Waitms Deathroll These 2 ideas are
Locate 2, Target_pos importantly linked
Lcd Chr(deadman2) together. This can lead to

End If real big problems as

Return changing one of them has
consequences on the
other.

This also has the problem

Fire_bullet_for: '1352 bytes of the bullet replacing the

'this routine moves a bullet across the display

If Target_pos > Shooter_pos Then

target
Incr Shooter_pos
of lcd

' shooter is left of

'start in next segment

For Bullet_pos = Shooter_pos To Target_pos

Locate 2, Bullet_pos
Lcd Chr(bullet)
Waitms Bullet_speed
Locate 2, Bullet_pos
Led ™"
Next
Locate 2 , Target_pos
Lcd Chr(dyingman)
Waitms Deathroll
Locate 2 , Target_pos
Lcd Chr(deadman2)
End If
Return

‘draw bullet

'‘blank the bullet

target. It is really bad
programming practice
though as the variable
shooter_pos had to be
increased for the code to
work. It is poor
programming practice to
alter a variable you don’t
need to. If you use the
variable shooter_pos
elsewhere in your
program then it could
have disastrous effects.
This also compiled into
the longest code

The best of these is the first while loop, it is the easiest to follow and works correctly.

Lessons:

e Get to know the three looping methids

420

TEST TEST TEST your code carefully and methodically to identify correct operation
When changing code retest it thoroughly for introduced errors
Avoid changing variables you shouldn’t change
Keep records of your experiments to get the best possible grades




43 System Example — Alarm Clock

Bascom has built in functions for managing the time and date. These require a 32.768Khz crystal to be connected to the micro.

In System Designer you can
add the crystal to the diagram.
Take note that this must go
onto the pins shown and that
Bascom software routines for
the time use Timer2. So it
canot be used for anything
else.

In the variables table the
variables that Bascom creates
automatically are avaialbel for
you to use within your program.

To use the cryatal and these
features add the following 3
lines to your program

Config Clock = Soft
Config Date=Mdy, Separator=/
Enable Interrupts




In this first program the date and time are displayed on an LCD

‘SoftClockDemoProgam1.bas
‘32.768kHz crystal is soldered onto C.6 and C.7 of an ATMEGA

$crystal = 8000000
$regfile = "m8535.dat"

Config Porta = Output

Config Portb = Output

Config Portd = Output

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs = Portc.0
Config Lcd =20 * 4

Enable Interrupts 'l activate internal timer

Config Date = Mdy , Separator =/ '2 you have some choices here

Config Clock = Soft '3 — note uses internal timer
Date$ = "06/24/09" '4 set the date using the Bascom created variable
Time$ = "23:59:56" '5 Bascom created variable to store the time
Cls
Cursor Off
Do
Locate 1,1
Led Time$ ;" " ; Date$ '6 display the two strings on the LCD
Loop
End

422



This next program introduces the 1 second interrupt called sectic and the built in Bascom routine to find the day of the week

‘SoftClockTrialDemoProgam?2.bas

$crystal = 8000000

$regfile = "m8535.dat"

Config Porta = Output

Config Portb = Output

Config Portc = Output

Config Portd = Output

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs = Portc.0
Config Lcd =20 *4

Grnled Alias Portd.7

Enable Interrupts
Config Date = Mdy , Separator =/
Config Clock = Soft , Gosub = Sectic 'l - every second automatically interrupt the main dprogram and go and what is in the subrotuine sectic
Dim Strweekday As String * 10 '2 —a string holds texst so we can display the day of the week
Dim Bweekday as byte
Dim strmonth as String * 10
Date$ = "06/24/09"
Time$ = "23:59:56"
Cls
Cursor Off
Do
Locate 1,1
Led Time$ ;" " ; Date$
Locate 2,1

RINTH HO L]

Led _sec;” _min;”“; hour; day; month; year '3 —these are the other internal Bascom variables you can use

Bweekday = Dayofweek() '4 — this Bascom function gives us a number representing which day of the week a date is
Strweekday = Lookupstr(bweekday , Weekdays) '5 - WOW - a neat function to look up a table of values, so
Strmonth — lookupstr(_month, Months)

Locate 3,1
Lcd Bweekday ; " =" ; Strweekday '6 display the day of week, first the number of the day, then the string we looked up
Lcd _month ;" ="; Strmonth '7 display the month using lookup as well!

Loop

End

423



Sectic: '8 — every second your program will stop its noral execution of commands and come here

Toggle Grnled '9 Toggle means, change fromOto l1or1to0
Return
Weekdays: '10 — this is not program code but fixed data put into the flash program memory for the program to use
Data "Monday" , "Tuesday" , "Wednesday" , "Thursday" , "Friday" , "Saturday" , "Sunday"
Months:

Data “, “danuary”, “February’, ...

Other neat Bascom functions include:
' DayOfWeek, DayOfYear, SecOfDay, SecElapsed, SysDay, SysSec ,SysSecElapsed

424



Read a switch and change the time using our own simple debounce function

'SoftClockTrialDemoProgam4.bas
$crystal = 8000000
$regfile = "m8535.dat"

Config Porta = Output

Config Portb = Output

Config Portc = Output

Config Portd = Input

Red_sw Alias Pind.2

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs = Portc.0
ConfigLcd=20*4

Enable Interrupts

Config Date = Mdy , Separator =/
Config Clock = Soft

Date$ = "06/24/12"

Time$ = "23:59:56"

Cls

Cursor Off

Do
If Red_sw =0 Then Gosub Red_pressed 'lputthe code into a subroutine not in the main loop this makes the main loop easier to read
Locate 1,1
Led Time$ ;" " ; Date$

Loop

End

Red_pressed:
Waitms 25 '2 wait for any contact bounce to stop (these are cheap switches we use and can bounce a lot)
Do ‘3 wait for switch release
Loop Until Red_sw =1
Incr _min ‘4 note the position of this statement (the min increases after the switch is released)
If _min >59 then _min=0 '5if we increase the mins to 60 then it must go back to 0.
Return

425



43.2 Analogue seconds display on an LCD

"1. Title Block

" Author: B.Collis

' Date: 25 June 2009

' File Name: softclock4.bas

' 2. Program Description:

" declaration of subroutines and

' passing values to a subroutine

' 3. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000

$regfile = "m8535.dat"

$hwstack = 32

$swstack = 16 'needed to increase this from the default of 8
$framesize = 24

'4. Hardware Setups
Config Porta = Output
Config Portb = Output
Config Portc = Output
Config Portd = Input

Config Date = Mdy , Separator =/
Config Clock = Soft

'5. Hardware Aliases

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5, E = Portc.1 , Rs =
Portc.0

Config Lcd =20 *4

'6. initialise hardware
Enable Interrupts
Cls

Cursor Off

426



'"7. Declare variables
Dim Row As Byte

'8. Initialise variables

Date$ = "06/24/09" ‘start time and date
Time$ ="23:59:56"
Row =2 ‘row of Icd to display bar graph on

' subroutine that accepts 2 values, the x=number of lines to draw, y=row)
Declare Sub Displaybars (x As Byte , Y As Byte)

'10. Program starts here
Do
Locate 1,1
Lcd Time$ ;" " ; Date$
Call Displaybars(_sec , Row)
Loop
End

'11. Subroutines
Sub Displaybars(x As Byte , Y As Byte)

'this generic routine displays vertical bars along the Icd
"1 bar per digit from 1 to 100

" every 5th and 10th bar is bigger

" Special LCD Characters

Deflcdchar 1,32 ,32,16,16,16, 16,32, 32
Deflcdchar 2,32 ,32,24,24,24 ,24,32,32
Deflcdchar 3, 32,32, 28,28, 28,28,32, 32
Deflcdchar 4, 32,32,30,30,30,30,32,32
Deflcdchar5,32,1,31,31,31,31,1, 32
Deflcdchar6,1,1,31,31,31,31,1,1

'variables needed within this sub
Local Lines As Byte
Local Fullblocks As Byte
Local Temp As Byte
Local Flag As Byte
Lines=0
Fullblocks = 0
Temp =0
Flag=0

'start at beginning of the line
Locate Y, 1

'‘Check If Data is within limits (1-100)
If X > 100 Then
Lcd " PROBLEM:DATA>100 "

Flag=1 'problem so don'’t display

End If

If X =0 Then
Flag=1 'zero so don’t bother to display
Lcd Spc(20) " just put in 20 spaces

427



End If

If Y >4 Then

Flag=1 'problem so don’t display
End If
If Flag = 0 Then 'no problem so display

find out how many display blocks need complete filling
Fullblocks = X - 1
Fullblocks = Fullblocks / 10
fill up the full blocks
For Temp = 1 To Fullblocks
Lcd Chr(5)
Lcd Chr(6)
Next

find out how many more lines to display
Temp = Fullblocks * 10
Lines = X - Temp
‘draw the partial block bars
If Lines < 6 Then '
Select Case Lines
Case 1: Lcd Chr(2) ‘draw 1 line
Case 2 : Lcd Chr(2) 'draw 2 lines
Case 3 : Lcd Chr(3) ‘draw 3 lines

Case 4 : Lcd Chr(4) ‘draw 4 lines
Case 5: Lcd Chr(5) ‘draw 5 lines
End Select
Led "™
Else
Lcd Chr(5) 'draw 5 lines

Select Case Lines
Case 6 : Lcd Chr(2) ‘draw 1 line
Case 7 : Lcd Chr(2) ‘draw 2 lines
Case 8 : Lcd Chr(3) ‘draw 3 lines
Case 9: Lcd Chr(4) ‘draw 4 lines
Case 10 : Lcd Chr(6) ‘draw 5 lines

End Select

End If

fill to the end with spaces
Incr Fullblocks
Incr Fullblocks
While Fullblocks < 11
Led™ "
Incr Fullblocks
Wend
End If
End Sub

428



43.3 LCD big digits

In the exercise above large text was to be displayed on the LCD, however it was static, i.e. it wasn’t

changeable using the program. To display large text on the LCD that is changeable by the program we

need to be able to create any character at any location on the display.

This does not mean that we have to setup the letter A at 1,1 in one subroutine and 1,2 in the next and 1,3
in the next. That would be very inefficient; we will ue a variable to determine where on the display the A

will be. So in a program we might have the code

Digitpos=1
Gosub dispA
and

digitpos =5
gosub dispT

Show_
bigtime

get tens of
hours

digitpos=1

v

gosub
show biadigit

get units of
hours

digitpos=5h

v

gosub
show biadigit

get tens of
minutes

digitpos =11

v

gosub
show biadigit

get units of
minutes

digitpos=15

v

gosub
show biadigit

([ rem )

If we wanted to display the time on the LCD this subroutine might be
used. First the program must extract the digits from each of hours and
minutes. e.g. 23:57 is made up of 2x10 hours and 3 hours, and 5x10
minutes and 7 minutes.

Using knowledge of maths with byte type varibles (there are no fractions)
we can divide the variable _hour by 10, to get the value we want.

Dim | as byte ‘ a temporary variable

| = hour/10 ‘e.g. if _hour =23 then | will be 2

To get the units of hours we use the mod command, which gives us the
remainder of a division in byte math.

I=_hour mod 10 ‘e.g. if _hour =23 then | will be 3

Show bigtime:
'find the digit in the tens of hours position
I = hour / 10 'e.g. 19/10 = 1 (byte math!!)
Digitpos = 1
Gosub Show bigdigit
'find the digit in the units of hours position
I = hour Mod 10 'e,g. 19modl0 = 9 (finds remainder)
Digitpos = 5
Gosub Show bigdigit
'find the digit in the tens of minutes position
I = min / 10 'e.g. 21/10 2 (byte math!!)
Digitpos = 11
Gosub Show bigdigit
'find the digit in the units of minutes position
I = min Mod 10 'e.g 21modl0 = 1 (finds remainder)
Digitpos = 15
Gosub Show bigdigit
'display the seconds in the bottom corner of the display
Locate 4 , 19
If sec < 10 Then Led "O"
Led sec
Return

429



show_
bigdigit

This routine doesn’t have all 10 digits shown in the flowchart, however it
would need all of them as in thelisting below

Show bigdigit:

If T = 0 Then Gosub DispO
If T = 1 Then Gosub Displ
If T = 2 Then Gosub Disp?2
If T = 3 Then Gosub Disp3
If T = 4 Then Gosub Disp4
If T = 5 Then Gosub Dispb
If T = 6 Then Gosub Dispb6b
If T = 7 Then Gosub Disp7
If T = 8 Then Gosub DispS8
If T = 9 Then Gosub Disp?9
Return

430



we have 8 user defined symbols plus a full block, plus

displ: a space we can use to create large digits
chr(0) I chr(4) [ chrizss)
; chr(1) [Flchr®) e
locate 1, digitpos D chr(2) D Chl‘(ﬁ) .
; chr(3) [Ichrm
draw the top
three blocks of
=L - top row - 3 different symbols
g, . . next row - 2 different symbols (inc space)
locate 2. next row - same as above
diqii:us bottom row - 3 different symbols
draw the next DispO:
three blocks of 'line 1
the O Locate 1 , Digitpos
; Led Chr (1)
ol Lcd Chr (2)
mqiué Lcd Chr (3)
i 'line 2
Locate 2 , Digitpos
draw the next Led Chr (255)
three blocks of Led " "
the 0 Led Chr (255)

; 'line 3

Locate 3 , Digitpos

iocate 4. Led Chr (255)

Lcd " "
Lcd Chr (255)

draw the bottom "line 4

three blocks of .

the 0 Locate 4 , Digitpos

Lcd Chr (4)
Lcd Chr (6)

( Return ) Led Chr (0)

Return

Full Listing of the test program
'Title Block
'"Author: BCollis
'Date : May 2010
'File name: BigDigitTest.V3
Scrystal = 8000000 'speed of processing
Sregfile = "m8535.dat" 'our micro
L,
'setup/configure hardware
Config Porta = Input
Config Portb = Input 'switches connected here
Config Pina.4 = Output 'backlight

'bascom internal features and functions to make a clock in software

431



'requires 32,768 Hz crystal on PortC.6 and PortC.7
Config Date = Dmy , Separator = /
Config Clock = Soft , Gosub = Sectic 'with 1 second interrupt configured

Enable Interrupts

'starts the clock

'setup connection of LCD to micro

Config Lcdpin = Pin , Db4
Rs = Portc.O0

Portc.5 , E = Portc.l ,
Config Led = 20 * 4

= Portc.2 , Db5 = Portc.3 , Dbb = Portc.4 , Db7 =

'"these characters are used to build the bigdigits

Deflcdchar 1 , 32 , 32 ,

Deflcdchar 4 , 31 , 15 ,
Deflcdchar 2 , 32 , 32 ,
Deflcdchar 3 , 32 , 32 ,
Deflecdchar 5 , 1 , 3 , 7
Deflcdchar 6 , 31 , 31 ,
Deflecdchar 7 , 1 , 3 , 7
Deflcdchar 0 , 31 , 30 ,

! Harware Aliases

Lcdbacklight Alias Porta.

Piezo Alias Portb.0

Yel btn Alias Pinb.3
Red btn Alias Pinb.4
Blu btn Alias Pinb.5
Blk btn Alias Pinb.6
White btn Alias Pinb.7

'8. initialise hardware
Cls

Cursor Off

Set Lcdbacklight

' Declare Constants
Const Delay time = 100

' Declare Variables

Dim Digitpos As Byte
Dim Seccount As Word
Dim I As Byte

' Initialise Variables
Dates = "22/07/10"
Time$ = "03:10:00"
Digitpos = 1

32,1, 3, 7, 15, 31
‘1, 3,1, 32, 32, 32
32, 31, 31, 31, 31 , 31
32, 16 , 24 , 28 , 30 , 31
, 15, 31, 32 , 32 , 32
3, 31, 31, 32, 32 , 32
, 15, 31, 31 , 31 , 31
28 , 24 , 16 , 32 , 32 , 32

'Clears screen
'no cursor to be displayed on lcd
'turn on LCD backlight

'preset time on powerup

432



' 12. Program starts here

Do
Digitpos = 1
For T = 0 To 9
Gosub Show bigdigit
Waitms 100
Next
Gosub Show smalltime
Wait 1
Gosub Show bigtime
Wait 1
Loop
' Subroutines
Show smalltime: 'Display time in small digits so that title
Locate 2 , 4 'and the time can fit in to the lcd.
Led "Time: "
Lcd Times ; "V
Return

Show bigtime:
'find the digit in the tens of hours position
I = hour / 10 'e.g. 19/10 = 1 (byte arithmentic!!)
Digitpos =1
Gosub Show bigdigit
'find the digit in the units of hours position
I = hour Mod 10 'e,g. 19modl0 = 9 (finds remainder)
Digitpos = 5
Gosub Show bigdigit

Locate 2 9

Led Chr (6)

Locate 3 , 9

Lced Chr (2)

'find the digit in the tens of minutes position

I = min / 10 'e.g. 21/10 = 2 (byte arithmentic!!)

Digitpos = 11
Gosub Show bigdigit
'find the digit in the units of minutes position
I = min Mod 10 'e.g 21modl0 = 1 (finds remainder)
Digitpos = 15
Gosub Show bigdigit
'display the seconds in the bottom corner of the display
Locate 4 , 19
If sec < 10 Then Lcd "O"
Led sec
Return

433



Show bigdigit:

Return

DispO:

If T = 0 Then Gosub
If T = 1 Then Gosub
If I = 2 Then Gosub
If T = 3 Then Gosub
If T = 4 Then Gosub
If T = 5 Then Gosub
If T = 6 Then Gosub
If T = 7 Then Gosub
If T = 8 Then Gosub
If T = 9 Then Gosub
'line 1

Locate 1 , Digitpos
Lcd Chr (1)

Lcd Chr (2)

Lcd Chr (3)

'line 2

Locate 2 , Digitpos
Lcd Chr (255)

Led " "

Lcd Chr (255)

'line 3

Locate 3 , Digitpos
Lcd Chr (255)

Led " "

Lcd Chr (255)

'line 4
Locate 4 ,
Lcd Chr (4)
Lcd Chr (6)
Lcd Chr (0)

Digitpos

Return

Displ:

'line 1

Locate 1 , Digitpos
Led " "

Led Chr (1)

Led " "

'"line 2

Locate 2 , Digitpos
Lcd Chr (5)

Lcd Chr (255)

Led " "

'"line 3

Locate 3 , Digitpos
Led " "

Lcd Chr (255)

Led " "

'"line 4

Locate 4 , Digitpos
Lcd Chr (6)

DispO0
Displ
Disp?2
Disp3
Disp4
Disp5
Disp6
Disp7
Disp8
Disp9

Lcd Chr (6)
Lcd Chr (6)
Return

Disp2:
'"line 1
Locate 1 ,
Lcd Chr (1)
Lcd Chr (2)
Lcd Chr (3)
'"line 2

Locate 2 , Digitpos

Lcd Chr (6)
Led " "

Lecd Chr (255)
'"line 3
Locate 3 ,
Lcd Chr (7)
Lcd Chr (6)
Lecd Chr (0)
'"line 4
Locate 4 ,
Lcd Chr (6)
Lcd Chr (6)
Lcd Chr (6)

Return

Disp3:
'"line 1
Locate 1 ,
Lcd Chr (1)
Lcd Chr (2)
Lcd Chr (3)
'"line 2

Locate 2 , Digitpos

Led " "

Lcd Chr (2)
Lcd Chr (255)
'"line 3

Locate 3 , Digitpos

Led " "
Led " "
Lecd Chr (255)
'line 4
Locate 4 ,
Lcd Chr (4)
Lcd Chr (6)
Led Chr (0)
Return

434

Digitpos

Digitpos

Digitpos

Digitpos

Digitpos



Disp4:
'line 1
Locate 1 ,
Lcd Chr (2)
Led " "
Led " "
'Line 2
Locate 2 ,

Digitpos

Digitpos

Lecd Chr (255)

Lcd " "

Lcd Chr (255)

'line 3
Locate 3 ,

Digitpos

Lcd Chr (255)
Lcd Chr (255)
Lcd Chr (255)

Locate 4 ,

Led " "

Lcd Chr (o)
Return

Disp5:
'line 1
Locate 1 ,
Lcd Chr (2)
Lcd Chr (2)
Lcd Chr (2)
'line 2
Locate 2 ,

Digitpos

Digitpos

Digitpos

Lcd Chr (255)

2)
Lcd Chr (2)
'line 3
Locate 3 ,
Lcd Chr (2)

Lcd " "

(
Led Chr (
(

Digitpos

Led Chr (255)

'line 4

Locate 4 ,

Lcd Chr (4)

Lcd Chr (o)

Lcd Chr (0)
Return

Disp6:
'line 1
Locate 1 ,
Lcd Chr (1)
Lcd Chr (2)
Lcd Chr (3)
'"Line 2
Locate 2 ,

Digitpos

Digitpos

Digitpos

Lcd Chr (255)

)

(
Led Chr (2
(3)

Lcd Chr

'line 3

Locate 3 , Digitpos

Led Chr (255)

Led " "

Lcd Chr (255)
'"line 4
Locate 4 ,
Lcd Chr (4)
Lcd Chr (6)
Lcd Chr (0)

Return

Disp7:
'line 1
Locate 1 ,
Lcd Chr (1)
Lcd Chr (2)
Lcd Chr (3)
'"line 2

Locate 2 , Digitpos

Lcd 1A} 1A}
Lcd Chr (255)
'"line 3

Locate 3 , Digitpos

Lcd " "
Lcd Chr (255)
'line 4

Locate 4 , Digitpos

Lcd 1A} 1A}
Led Chr (4)
Return

Disp8:
'"line 1
Locate 1 ,
Lcd Chr (1)
Lcd Chr (2)
Lcd Chr (3)
'line 2

Locate 2 , Digitpos

Lcd Chr (255)
Lcd Chr (2)
Lcd Chr (255)
'line 3

Locate 3 , Digitpos

Led Chr (255)
Led " "

Lcd Chr (255)
'"line 4
Locate 4 ,
Lcd Chr (4)
Led Chr (6)
Lcd Chr (0)

Return

435

Digitpos

Digitpos

Digitpos

Digitpos



Disp9:
'line 1
Locate 1 ,
Lcd Chr (1)
Lcd Chr (2)
Lcd Chr (3)
'"line 2
Locate 2 , Digitpos
Lcd Chr (255)
Led " "
Lcd Chr (255)
'"line 3
Locate 3 ,
Lcd Chr (4)
Lcd Chr (6)
Lcd Chr (25
'"line 4
Locate 4 ,
Lcd Chr (4)
Lcd Chr (o)

(0)

Digitpos

Digitpos

S)

Digitpos

Lcd Chr
Return

Sectic:

Incr Seccount
Return

436



44 Resistive touch screen

The resistive touch screen is made of several layers all transparent.

There are two resitive layers that when pressed
together conduct. The resistance is measured

passing a current through one layer and
measuring the voltage on the other layer.The
stage is to wire the 4 connections to the
microcontroller, at least two adjacent pins must

connected to the ADC input pins. ,:‘"’

ADCO

1
—_
1 ADCA1
1
—_
| —|
—_

Connect the 4 wires of the touch pad to the micro

At least 2 of these must be ADC so they can be read

the others can be ordinary ifo pins

the 4 resistors limit the current and can be approx 100R

437

by
first

be



5V

ADCO
— <
g

1 ADCA1

oV

set 2 pins as ifp, 2 as olp,
put a high on 1o/p and a low on the other ofp {(set and reset)
read one of the inputs e.g. getadce(1)

the input reading will represent the vertical position

> ADCO
ADC1
\ | —|

[

ﬁ

reverse the 2 ifp and 2 ofp pin configurations

put a high on 1o/p and a low on the other ofp (set and reset)
read one of the ilp e.g. getadc(0)

the value represents the horizontal position

Following are the flowcharts for the routines to read the touch screen coordinates and then convert these
to a grid position.

438



Read
Touchpad
Coordinates

1st pair i/p

Y

2nd pair o/p
1 high
1 low

Y

get the analog value
for one of the i/p's

Y

2nd pair i/p

Y

1st pair o/p
1 high
1 low

Y

get the analog value
for one of the i/p's

Convert Touchpad
Coordinates to Grid Position
X_coords =grid pos 0 Y
N

X_coords=gridpos 1 Y
N

X_coords =grid pos 2 Y
N

grid x=0

grid x=1

grid x=2

grid_x=8

grid x=9

Y_coords =grid pos 8 Y
N

Y _coords = grid pos 0 Y

grid_y=0

grid_y =10

grid_y =20

grid_y =70

grid_y =80

Y
grid_pos = grid_x+grid_y

439




" 1. Title Block

" Author: B.Collis

' Date: April 2008

' File Name: touchscreen_V2.bas

' 2. Program Description:

' Touch Screeen on PortA.5 to PortA.7

' 3. Compiler Directives (these tell Bascom things about our hardware)

$map
$crystal = 8000000 'the speed of the micro
$regfile = "m8535.dat" ‘'our micro, the ATMEGA8535-16PI

' 4. Hardware Setups

' 5. Hardware Aliases

' 6. initialise ports so hardware starts correctly

' DDRA is the internal register that controls the ports

Ddra = &B00000000 ‘all pins set as inputs

'LCD

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3, Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs = Portc.0
ConfigLcd =20*4 ‘configure Icd screen

'ADC

Config Adc = Single , Prescaler = Auto

Start Adc

' 8. Declare Variables

Dim X_coord As Word

Dim Y_coord As Word

Dim | As Byte

Dim J As Byte

Dim Gridposition As Byte
Dim Character As String * 2
' 9. Initialise Variables

' 10. Program starts here

Cursor Off
Cls
Do
Gosub Readtouchcoords 'get the values for the touch area
Locate1,1
Led "x="; X_coord ;" " 'display x-coordinate
Locate 2,1
Led"y=";Y_coord;" " 'display y-coordinate
Gosub Getgridposition 'turn coordinates into grid
Locate 3,1
Lcd ™ !
Locate 3,1
If Gridposition < 90 Then ‘only if valid press
Lcd Gridposition ;" "
If Gridposition < 40 Then ‘only lookup if valid character

Character = Lookupstr(gridposition , Characters)
Lcd Character ;" "
End If
Waitms 500 'holds the value on the screen a bit
End If
Loop

440



'11. Subroutines

Getgridposition:

‘returns a grid number from 0 to 89

‘depending on where touch is within the touch area
‘otherwise returns 90

1 0] 1] 2| 3| 4] 5] 6] 7] 8] 9
'|10]11]12|13|14|15|16|17|18|19|
'|20[21]22|23|24/|25|26|27]28| 29|

'|70|71|72|73|74|75|76|77|78|79)
'|80|81|82|83|84|85|86|87|8889)

‘the values below were worked out by trial and error!

Select Case X_coord
Case 100 To 170 :
Case 171 To 270 :
Case 271 To 360 :
Case 361 To 450 :
Case 451 To 530 :
Case 531 To 610 :
Case 611 To 700 :
Case 701 To 790 :
Case 791 To 870 :
Case 871 To 999 .
Case Else : 1 =90

End Select

Select Case Y_coord
Case 100 To 240:J =80
Case241To320:J=70
Case 321 To410:J=60
Case 411 To500:J=50
Case 501 To580:J=40
Case 581 To670:J=30
Case 671 To750:J=20
Case 751 To850:J=10
Case 851 T0920:J=0
Case Else : =90

End Select

Gridposition =1+ J

If Gridposition > 89 Then Gridposition = 90

Return

1 1 I 1 O VO A A |
Co~NoOOP~,wWNEO

441



Readtouchcoords:

‘finds the position of a touch on a 4 wire resistive touch pad
'first by making 1 pair of wires outputs and measuring

‘one of the others as an analogue to digital input

‘then swaps the 2 i/p's for the 3 o/p’'s and repeats the process

Ddra.4 =1 ‘output

Ddra5=0 'input

Ddra.6 =1 'output

Ddra.7 =0 ‘input

Set Porta.4 '1=5V

Reset Porta.6 '0=0V

Waitms 10 'short delay to settle pins

X_coord = Getadc(5) 'somevalue from 0 & 1023

Ddra.4 =0 ‘input

Ddra5=1 'output

Ddra.6 =0 'input

Ddra.7=1 ‘output

Set Porta.5 '"1=5V

Reset Porta.7 '0=0V

Waitms 10 'short delay to settle pins

Y_coord = Getadc(4) 'somevalue from 0 & 1023
Return

‘each character below maps to one of the grid positions in the first 4 rows
Characters:

Data "q", "w","e","r", "t","y","u","i","0", "p"

Data "a","s","d","f","g","h", """, "k","I",""
Data"","z","x","c","v","b","n", "m" """ ""

Data 0", "1","2","3","4","5" K "6","7","8","9"

442



45 Sounding off - loudly

45.1 Attaching a speaker to a microcontroller

We generally do not connect a speaker directly to a microcontroller output port, the resitance of the
speaker winding is too low and it can be destroyed easily we use some form of amplifier circuit.

The circuits below have large capacitors between the amplifier and the speaker which block DC to the
speaker and stop it from burning up!

Note the second circuit has a potentiometer to control the volume, you canadd one to the first circuit as
well.

+9

470
2N3853

1N4148 X

11 0 8 Ohm
o Speaker

10k

2ZN23985f

http://ourworld.compuserve.com/homepages/Bill_Bowden/page8.htm#amp.qif
or use a dedicated amplifier chip like the LM386 circuti above.

Ve = +9V to +28V

+Vee
R1 10K
AN
T Bias R2 _J: c2
J:_ Adj. 50Q  “Trazou
” 10W —
C3
D = (—O Output
Q1 220uf
C} G | —4— IRF510
Input O—J\ &
S =Heat sink required for 01
10uf
Input Impedance 2K Adjust Bias to allow 1/2 of Vce
at drain of Q1.
Quiescent Current 130ma
Power Output 5 to 1.5 Watts N1HFX
1/15/98

443


http://ourworld.compuserve.com/homepages/Bill_Bowden/page8.htm#amp.gif

45.2 Audio amplifier subcircuit

Just as with using LCDs sometimes it is convenient to use an audio amplifier subcircuit that some else
has not just designed for you but made for you as well.

Sure Electronics make a 2W mono audio amplifier, that runs off 2.5V to 6V, and is easy to add to a
microcontroller.

Vee (5V)

N

d

Ground/0OV

vccC

10k to 100k LOG pot Speaker (2W)

Sure Electronics 2Watt

Mono Audio Amplifier sub circuit
Ground

Note that it uses a LOG pot, this type of pot has a value stamped on it and the letter A as well, as opposed
to a LINEAR pot has the value and the letter B. We use a pot which varies logarithmically over its range
rather than linearly over its range because our hearing is logarithmic.

444



46 System Design

46.1 Understanding how systems are put together

A product or device is not just a collection of components, it is much more, the inventor of the device didn’t
just combine some parts together, they created a system. They envisaged it as a whole system where all
the parts have a unique purpose and together they function to make the product complete.AND they
developed it as part of a bigger process.

An example is a food processor.
To analyse the system
1. Draw a system block diagram identifying and describing all
the inputs and outputs of the system
a. Motor — 3 speed
b. Motor driver electronics
c. speed control — 4 position switch
d. bowl safety switch
e. Power LED, Bowl Lock LED (not shown in picture)
2. Describe in words how these interact with each other, use
logic descriptors such as AND, OR and NOT.
3. Design the flowchart to represent the operational logic

46.2 Food Processor system block diagram
PSU
A
B Motor motor
Bowl Driver
Safety - -
Switch
Off controller ’ Power
O———> LED
Speed Low
Control —O/': Med
Setting . High Bowl
—»N Lock
LED

46.3 Subsystems

Note that some of the items in the above system are systems themselves. The motor driver, the PSU, the
motor and the controller are all systems (the LEDs and switch are components). When we use a system
within another system we call it a subsystem.

46.4 Food Processor system functional attributes- algorithm

e When power is applied the power LED goes
e When power is applied AND the bowl is securely fitted the Bowl lock LED is on.
e When power is applied AND the bowl is securely fitted AND the speed control is set above zero the
motor will run.
e The motor has 2 inputs:
e When no power is applied to either the motor is off.
e When power is applied to A it goes slow.
e When power is applied to B it goes medium speed.
e When power is applied to both it goes fast. When the speed control is varied the motor
445



46.5 Food Processor system flowchart

Here is a first pass at a
flowchart for the system. It does
however need work as there
are a number of problems with
it.

Food
Processor

power LED on
MotorA off
MotorB off
BowlLockLED off

Can you identify any?

1. It can be turned on but
when the speed switch is
turned off, the motor does
not turn off.

2. If the bowl is removed
while turned on then the
motor does not turn off.

3. The BowlLockedLed can
never be turned off.

1Y

o

N bowl locked?

BowlLockedLed on

Speed1l Y MotorA on
P N Develop a better flowchart for a
program for the food processor.
Speed2 Y MotorB on
N
MotorA on
Spe(la\ld 3 Y MotorB on

A

446




46.6 Toaster Design
A toaster is another good example of a system.

Identify all the parts of the toaster and draw a system block
diagram

Describe the system operation — how the parts of the system
interact with each other

Design the flowchart

46.7 Toaster - system block diagram

Heating elements

PSU |
Left
Sto >| Relay 1
Toast setting % .
Frozen Right Relay 2
Toast down —
T T - - Hold down
controller solenoid
yud

co%e >
—N Normal LED
@ —N Crumpet LED
Toast cooked sensor —N Frozen LED

> Piezo Beeper

Y

46.8 Toaster Algortihm

Initially: the solenoid is off, the LEDs are off,the piezo is quiet and the elements are off
When the toast lever is pressed down the solenoid is activated to hold the toast down
If the setting is normal both the elements turn on
and the normal LED comes on
for the time set by the cook control
If the setting is crumpets, the left comes on max and the right comes on at half power
and the crumpet LED comes on
for the time set by the cook control
If the setting is frozen the time is extended by 1 min (either crumpet or normal)
and the frozen LED comes on
If the sensor detects smoke the solenoid is released and the piezo beeps quickly 4 times
If the time is up the the solenoid is released and the piezo beeps twice

447



46.9

Keeping control so you dont lose your ‘stack’

As students begin to develop projects they seldom take a big picture approach to what is required; often a
system’s components are seen as separate objects that will just fit together and the important
relationships (interdependencies) between these objects are missed. In practice this is seen when a
project is started with a simple or familiar I/O component such as an LCD and code is written for that
device. Then another I/O device is added to the project such as a temperature sensor or a switch and
more code is written; then another I/O device is added; at some stage though the programming begins to
break down. Many of the 1/O functions may be coded at this stage but there is little appreciation for the
overriding control nature of the system as it has not been planned from the beginning.

Often around this stage the project will have a number of subroutines, and a problem arises where the
program crashes after it has been running for a short time or after a certain number of things have

Program
Main Loop

RAM

VARIABLES
X
Y
temperature
position

A
%)
c
(S)
1
NP
1
1
1
|
o
4
1<
I D
Ia
1
|
v/

STACK

address in main loop

happened such as switch
presses. A common fault that
causes this is treating subroutine
calls (GOSUBS) in a similar way
to GOTO statements (which are
not allowed). In a microcontroller
there is a portion of the RAM set
aside by the compiler as the
STACK, it is used by the
compiler to manage program
flow. It exists as a portion of
RAM after the variables and may
grow downwards towards the
end of RAM. When a subroutine
Is entered, the stack is used to
remember the address in main
memory where code was running

so that when the subroutine exits the program may restart at the correct address in the main code.

Program
Main Loop

~

sub 2 S S
program crashes! AN h

X

RAM

A

When a program

leaves a subroutine

VARIABLES
X
Y
temperature
position

STACK

address in main loop

address in main loop

address in main loop

address in main loop
no room on stack so it writes
over the variables in RAM

for another
subroutine the
stack grows,
ultimately however
when too many
subroutines are
called the stack
overflows around
into the top of RAM
overwriting
variables.

After some time helping students with their code | have recognised this as “my program crashes after |
press the switch 6 times” or “after a while it just stops working”. It is before this stage that the designer
needs to step back and redesign the control process for the project.

448



47 System Design Example — Temperature Controller

Here is a more complex system that we will develop the software for
1. Define a conceptual statement for the solution to the problem, e.g.
The system will monitor temperature inside a room and display it on an LCD, an alarm will sound
for 45 seconds if it goes below a user preset value. A light will stay flashing until reset. If not reset
within 5 minutes the alarm will retrigger again. If the temperature rises at any time then the alarm
will automatically reset.
2. Draw a system block diagram of the hardware (identi

all the major sub-systems

3. Research and identify the interfaces to the system e.g.
a. An LM35 temperature sensor
b. A 2line x 16 character LCD
c. A flashing light that can be seen from 6 meters away
d. A speaker with sufficient volume to be heard in the next room
e. A keypad for entering values
4. Draw interface circuits for each of the interfaces
5. Build the interfaces one at a time, design test subroutines for them and test them thoroughly

449



6. Problem decomposition stage: break the software for the system down into successive sub-
systems, until the sub-systems are trivial (simple) in nature. In this diagram the systems function
has been broken down into 4 parts of which one has been broken down further.

Temperature Alarm Program

7. Design the logic flow for the solution using flow or state diagrams
Test your logic thoroughly! If you miss an error now you will take 219.2 times longer to fix it than if
you do not fix it now!!!




Here is a possible flowchart for the temperature system.

start

-
ot

|
alarm and light off

True

keypad w—*

= display old setting

= enter new setting
¥
measure and display temp.

temp < setting False
True ¥
light and alarm on
True

alarm reset?

[ True 45 seconds passed?

alarm off

True

5 minutes passed?

This is a small but very complex flowchart and it is not a good solution for a number of reasons:

A. ltis difficult to manage all the relationships to get the logic absolutely correct, it took a while to think
it through and it may not be exactly right yet!

B. Because the loops in the flowchart overlap it is not possible to write a program without the use of
goto statements which are poor (terrible, abysmal, horrible) programming practice and not a feature
of the higher level languages you will meet in the future.

C. Once the code is written it is difficult to maintain this code as it lacks identifiable structure

It is OK to use flowcharts for small problems with only a few variable tests but by attempting to put too
much logic into a flowchart you astronomically increase the difficulty of turning it into program code; if
a flowchart has more than 3 or 4 loops or the loops cross over each other as above use an alternative
method!

451



48 State Machine diagrams

State machines are very different to flowcharts; a flowchart looks primarily at the process operating within
a system a state machine looks primarily at the state the system is in and then the processes that support
those states. These diagrams have been used extensively in industry for modelling systems and software
behaviour for a long time. They are one of the 7 behaviour modelling diagrams in the UML (unified
modelling language) specification from OMG (Object Management Group — a consortium of software
organsiations). State machines are much better at modelling software than flowcharts because our
systems react to inputs and events that can vary at anytime whereas a flowchart is not as responsive to
this type of behaviour. Note in UML specification 2.2 OMG have changed the name from statechart back
to state machine diagram so if you hear the term statechart it means the same thing.

48.1 Daily routine state machine

Earlier we looked at a flowchart for a daily routine. Lets develop a state machine for a school day.
Here are some different states you might be in.

You transition from one state to another as the day progresses, The black circle represents which state
you start the day in.

States with TRANSITIONS

452



Transitions normally occurred when triggered by some event or condition. Here is one possible transition
condition and an associated transition action.

The transition condition is time=6:45 AND day=school day.
The transition actions are throw alarm clock across room and stay in bed.
If we develop this a little further we might see the following state machine develop.

{
A

Now although this is a state machine it is not necessary to use a state machine to develop this system;
you can see that there are no choices in it so a simple flowchart would be just as useful. It does however
show how to start using state machines.

453




48.2  Truck driving state machine

Lets look at a second example for a state machine based system and introduce how a state machine is
more suitable for reactive systems and so much easier than a flowchart.

Think of a truck driving around town and its speed as it moves from one set of traffic lights to another.
It could be represented by a graph of speed versus time. The truck has 4 states:

A: stationary

B: accelerating

C: constant speed of 50km/hr

D: decelerating

A speed

Here is the beginning state machine, note how some state actions have been added. There may be
others of course.

454



Here is the state machine with transitions, some conditions and their associated actions.

It is now that we will explore what a state machine can do for us that a flowchart cannot!

A flowchart is ok for routine systems which have fixed choices, however they are not useful for what
embedded systems such as microcontrollers are used for: REACTIVE systems. Flowcharts cannot
handle reactive systems very well. In our case what happens if while the truck is accelerating the driver
sees another red traffic light ahead. According to our state machine he must continue unitl 50Km/hr and
then he can react to another red light. We can easily modify our state machine with another transistion to

add this detail.




The same exists if during the state of decelerating for a red light the light changes to green. According to
our state machine he must stop first. Another transition will fix this easily.

These two example systems we have looked might be described as a macro view, what people and
devices are doing. We are interested in a micro view, what is actually happening inside an electronic
black box, for us that means modelling what software is doing in our microcontroller.

456



48.3 Developing a state machine
Developing States
To identify the different states for your machine, identify the different states of the various output devices
e.g. temperature alarm system outputs:
e LCD - displays temperature / displays setting of the temperature alarm value
e Light—on/ off
e Alarm —on/ off

If you have an LCD, you might plan each different screen of the LCD (which could include instructions)

. Dlsplaylng the temperature e Modifying the temperature alarm
[ Temperature_now_22° ] |Alarm on below 18° ]
{#_to_set alarm 1 A€o increase I
L_to_reset alarm ___ d | B_to decrease _____ ]
LIest Azlight B=sound | 1 Dzsavesexit C=cancel |

(Note that if you hear the word ‘mode’ this also means the state of a device)

Developing Actions, what are the actions the device needs to carryout e.g.
e Control output devices
o turn light on
turn light off
sound alarm
display temperature
show main instructions screen
o show temperature setting screen
e Monitor input devices
o Read a keypad
o Read the temperature sensor
e Control functions
o start the timer
o stop the timer
o zero the timer

o O O O

When do these actions have to take place?
e Repeated all the time within a state
o Read keypad
o Read temperature
o Display temperature
e Only once in the transition between states
o Turn LED on
o Turn LED off
o Save a new setting
Some actions could be put into either category, but some couldn’t e.g.
e What is the effect of putting the action clear_the_lcd inside a state compared to inside a transition?
e What is the effect of putting the action led_on inside a state compared to inside a transition?
e What is the effect of putting the action zero_timer inside a state compared to inside a transition?

Developing Transitions
e Testing inputs and variables to see if some condition is true or not
o Was a particular key or button pressed
o Has a variable reached a particular value

457



48.

4 A state machine for the temperature alarm system

Here are the 4 states for the temperature controller and a diagram representation of it

st_maodify_tempr_alarm

action

display tempr setting

action

dispay tempr sefting instrs

action

read_kevpad

"

st_light_on

action

read Im35

action

display_tempr

action

read kevp

ad

r,

st_displ_tempr

State 1: measure and display

action

read_|Im35

action

dizplay_tempr

action

display_instrs

action

read_keypad

temperature

State 2: light and alarm are both on

State 3: light only is on

A

lightalamon ) Stat_e 4: modify the preset temp alarm
action |[read Im35 m
action |display_tempr
action |[read kevpad

Each state includes the names of ations(subroutines) that will be called to do different things. It is good
practice not to put code into the state, so that the control structure is not confused with control of 1/0
devices. Also if any subroutine is complex it may require a flowchart or even another state machine to

plan it.

The second part of the process is to build the transitions between the states and what conditions cause

*

State

st_displ_tempr

action

read_lm35

action

display_tempr

action

display_instrs

action

read_keypad

Transition with

1 second interrupt

: [tempr < setTemp]/
start_timerl
Zero_sec _count

condition and
2 actions

£
st_light_alarm_on
read_Im35
display_tempr
read kevpad

action
action

action

L,

(though not all) transitions will have conditions

458

them to occur. The
black circle indicates the
starting state for when
power is applied.

Here one transition is
shown for when the
temperature reading has
fallen below the set
level.

A condition is in square
brackets [ ], it looks like
any test that would be
part of an if...then,
while... wend or do loop
until...

Along with the condition
are the actions you want
the program to carry out
after one state has
stopped execution and
before the next state
starts executing. An
action could be a call to
a subroutine or a very
short one or two lines of
code. Actions are
optional, but almost all



Here are all the states and transitions for our temperature system.

State 1: display temperature

Conditions: temp < setting, keypad to change setting
State 2: light and alarm are on

Conditions: reset pressed, temperature <= setting, 45 second time out
State 3: light on

Conditions: reset pressed, temperature <= setting, 5 minute time out
State 4: modify temp setting

Conditions: finished changing setting

: [key = set_tempr_key] / \r - _,
clear_led st_displ_tempr

action |read_Im35

action [display_tempr
action [display_instrs
action |read_keypad

L
st modify_tempr_alarm ] % g [
a@on :!splay lempr set!mg : : [key = save_tempr_key] / : [tempr {s_e-tTemp].n’
ac‘t!on Ispay_tempr_setting_instrs save_tempr_setfing start_timerl
action  [read_keypad Eear e zero_sec_count
: [tempr = setTempr OR key = reset]/
light_alarm_off

. [key = reset OR secs > 300 OR tempr > SetTempr] /

light_off
L

=t_light_alarm_on

= : [sec_count > 45]/ —= A =

st_light on alarm. off action |read Im35
action [read Im35 zerD_sec:c:Dunt action |display tempr
action |display tempr =1 action |read keypad

action [read kevpad

Note that this state machine has a central state and it can be seen that there are a transitions into and
out of this state. Not all systems will have a central state like this.

This style of problem solving overcomes the issues identified relating to flowcharts

They are intuitive — in fact clients can easily understand them

Errors are seen easily as the relationships between states are logically laid out.

It is actually very easy to write the code to match this diagram using if-then and while-wend statements
The code is easily maintained in the future and flows logically when it is written making it easier to
remember what you did or for others to read and maintain.

Students can very easily develop quite sophisticated software solutions using this process.

If you closely follow the structure using subroutine names then you can use the software | have
developed to create your code for you in BASCOM_AVR!!!

459



States
Each unique state of your device is represented by a block in a state machine diagram
To identify the different states for your machine, identify the different states of the various output devices
e.g. temperature alarm system outputs:
e LCD - displays temperature / displays setting of the temperature alarm value
e Light—on/ off
e Alarm —on/ off

If you have an LCD, you might plan each different screen of the LCD (which could include instructions)
e Displaying the temperature

'} to_set alarm
'* to reset alarm !
[Test A=Tight_s=sound |
. Modifying the temperature alarm
[Alarm on below 18° ]
|A_to increase ______ 4
| B_to decrease ______ 4
L D=savesexit C=cancel |

(Note that if you hear the word ‘mode’ this also means the state of a device)

Actions, what are the actions the device needs to carryout e.g.
e Control output devices
o turn light on
turn light off
sound alarm
display temperature
show main instructions screen
o show temperature setting screen
e Monitor input devices
o Read a keypad
o Read the temperature sensor
e Control functions
o start the timer
o stop the timer
o zero the timer
When do these actions have to take place?
e Repeated all the time within a state
o Read keypad
o Read temperature
o Display temperature
e Only once in the transition between states
o Turn LED on
o Turn LED off
o Save a new setting
Some actions could be put into either category, but some couldn’t e.g.
e What is the effect of putting the action clear_the lcd inside a state compared to inside a transition?
e What is the effect of putting the action led_on inside a state compared to inside a transition?
e What is the effect of putting the action zero_timer inside a state compared to inside a transition?
Transitions
e Testing inputs and variables to see if some condition is true or not
o Was a particular key or button pressed
o Has a variable reached a particular value

o O O O

460



48.1 Using System Designer software to design state machines

esigner - RightSideup Software (2011 V[1.0.14) qm After opening System

Project Prqed Mmdmap Project Timeline  System Context Diagram  System Block Diagram  Algorithm  State Machine Flowchart Subroutine DeSIQ.ner add a state
5 machine, then some states
pecual Hardware About

SM_3 |

ﬂ bookStateMachn m 1] Alg1] sM1] sm2 and then transitions.
1 e
‘.. Add State . Start . Stop ’ Add Interrupt _i—:ff Add Note

‘ g = e t:_ | g LXK ? Adding transitions by clicking
- ' - || on a state and drawing with
the mouse (make sure the

state is not selected first)

Identify the transition arrow
that indicates program flow
outwards towards the state
ModifyTemprSetting.
Having drawn the transition
line between the two states,
double clicking on the line
allows the user to add
conditions that trigger the
transition and any actions
that might need to be
performed between state
changes. In this case the
state change is triggered
when a keypad is read and
the value setTemprbtn is

ot light 60 _stlight_slarm_on retqrned. Key will be a

read I35 Son. [iaad : variable and setTemprbtn
display_tempr_ action |[display tempr | will be a constant in our
read keypad ion _read kevpad | program.

As seen in this diagram
colours and even fonts can
be changed (by right clicking
on the
diagram/state/transition)

st modlfy tempr_: sethng
. 1d 1 ;

461



Transition conditions and actions are edited by double clicking on a transition

Project Project Mindmap. Project Timeline  System Context Diagram  System Block Diagram  Algorithm  State Machine  Flowchart  Subroutine
pecial Hardware  About

é Add State Q Start ’ Stop ’ Add Interrupt g Add Note | ;

Transitions that don’t change state are common in state machines




48.2 State machine to program code

Once the initial logic of the state machine is planned the program code can be written. To write the code in
BASCOM a state variable is dimensioned and each state is assigned a value as a constant.

dim state as byte

Const st_light_alarm_on =1

Const st_Light On =2

Const st_displ_tempr =3

Const st_modify_tempr_setting = 4

Using constants rather than values within program code makes the code so much easier to read.

The starting state is determined by initialising the state variable
state = st_displ_tempr

In the main body of the code a do-loop is used to enclose all the states, which are coded using while-
wend statements.

Do
while state = st_light_alarm_on
wend

while state = st_light_on
wend

while state = st_displ_tempr
wend

while state = st modify_tempr_setting
wend

Loop

Note: so far we have predominantly used do-loop-until as a looping control in our programs.
The while —wend is a little easier to follow in this instance but both do exactly the same thing.
So we could replace the the while-wend'’s above with

Do

Loop Until state <> st_Light On

463



Program flow is controlled by the value of the variable state.
When the value of state is 4 (St_measure_displ_tempr) the code within that while wend will be executed.

If the value of state changes then a different section of code will be executed.

dim state as byte

Const st_light_alarm_on =1

Const st_light_ on =2

Const st_displ_tempr =3

Const st_modify_tempr_setting =4

state = st_measure_displ_tempr

€ -——mmmmm e — e =

\4

Do

while state = st_light_alarm_on
wend

while state = st_light_on
wend

while state = st_displ_tempr
wend

A

while state = st modify _tempr_setting
wend

A
<

Loop

464



The next stage is to add calls to subroutines within each state, for example:
while state = st_Measure_displ_tempr

gosub ReadlLM35

gosub DisplayTempr

gosub ReadButtons
wend

Next the code for the transitions is written, these have conditions (if-then-end if) tests that trigger or cause
one state to transition to the next:

while state = st_displ_tempr
gosub ReadLM35
gosub DisplayTempr
gosub ReadButtons
If btn = setTempr then
state = st_modify_tempr_setting
end if
If tempr < setTempr then
state = st_Light_Alarm_On
GOSUB startTimer

end if
wend

When a condition or trigger for a state change has occurred, the state variable takes on a new value, the
currently executing while-wend will continue on to completion, then from within the main do-loop the new
state is identified and the appropriate while-wend is entered.

In this example there are many shortcuts that proficient and competent programmers could take; however
using a very structured process means that novice student programmers begin good practices early on
with strong naming conventions and logical practices. It makes my job as teacher less difficult as | can
debug code more easily and will therefore grow gray less quickly.

465



48.3 The power of state machines over flowcharts

Having coded the system and got it working any changes or new features are easily implemented. In the
current state machine a user can only exit ModifyTemprSetting state by saving the change. What if the
client adds the specification that the user should be able to either save or exit without saving. A cancel or
nosave button could be implemented very easily? This is shown via the change in this version .

A user could add this code to the state machine program very easily.

while state = st_ modify_tempr_setting

gosub DisplayOldTempr

gosub DisplayNewTempr

gosub ReadButtons

gosub ModifyTempr

if btn=setTempr then
state = st_measure_dspl_tempr
GOSUB SaveNewTempr

end if

if btn = cancel then
state = st_displ_tempr
end if
Wend

466



The Bascom Program for our temperature alarm system

Const st Light Alarm On = 1
Const st Light On = 2

Const st measure displ tempr = 3
Const st Modify Tempr Setting = 4

Do
while state = st Light Alarm On
gosub ReadLM35
gosub DisplayTempr
gosub ReadButtons

used for states
rather than

\\ numbers to

Labels are

facilitate
program
readability

if secs > 45 then
state = LightOn
GOSUB AlarmOff
end if
if tempr > setTempr then
state = St displ tempr
GOSUB LightAlarmOff
end if
if btn=reset then
state = St measure displ temp

GOSUB LightAlarmOff
end if
wend

while state = st Light On
gosub ReadLM35
gosub DisplayTempr
gosub ReadButtons

The state
variable is used
to manage
which code
segment is
executed

if btn-reset then
state = St measure displ temgr
GOSUB 1ightOff

end if

if tempr>setTempr then
state = St displ tempr
GOSUB 1ightOff

end if

if secs>300 then
state = St measure displ/tempr
GOSUB 1ightOff

end if

wend

Loop

Changing to

happen.

another state only
occurs when
specific conditions

VA A A I A A XA A AR A AR A A A A A A A A A A A A A A Ak kK

subroutines

ReadLM35:
Return

DisplayTempr:
Return

ReadButtons:

Return

The rest of the
program controls
allthe /O and is in
subroutines which
are then easier to
write and check
individually

DisplayOldTempx
Return

DisplayNewTempr
Return

startTimer:
Return

lightOff:
Return

AlarmOff:
Return

SaveNewTempr:
Return

LightAlarmOff:
Return

467




48.4 Bike light — state machine example

These rear lights for bicycles have different modes of operation. In
this example they are called states:

Statel: LEDs OFF

State2: LEDs_ON

State3: ALL_FLASH

State4:SEQUENCE_FLASH (1-2-3-4-1-2-...)

The light ‘transitions’ between the 4 states every time the
‘condition’ occurs (button is pressed).

—<¢
S — ' -

uci‘

L
>

First press of button
- all leds come on
2nd press
- all leds flash together

3rd press

- sequence pattern
4th press
- leds off

System Block Diagram

Here is a first state machine to describe the process

This needs some further development and subroutines have been added to each state to handle the
various activities.

468



: [button=0]/

: [buttgn=0]/

There is an issue with transitioning between states as microcontrollers are very quick and our button
pressing skills by comparison are very slow! So we need to wait during the transition from one state to
another so that the micro will not skip states. We setup an’ action’ to wait for the button to be released,
and every state transition needs it.

; [tl’:dﬁgn:g] I  [button=0]/
wait_for_buttar ait_for_button_up

: [bytton=0]/
leYs_off
wait_for_button_up

The actual code for the routine might look like

Waitforbuttonup:
Do
Waitms debouncedelay
Loop until button=1
Waitms Debouncedelay
Return

469



48.5 Bike light program versionlb

Using system designer the following code was produced
Dim State As Byte
'REMEMBER TO DIMENSON ALL YOUR VARIABLES HERE
Const st LEDs off =1
Const st LEDs_Sequence_Flash =2
Constst LEDs On=3
Const st LEDs Flash=4
'REMEMBER TO DEFINE ALL YOUR CONSTANTS HERE
state = st_ LEDs_off
Do
while state = st LEDs_off
gosub LEDs_Off
if button=0 then
state = LEDs_On
GOSUB waitforbuttonup
end if
wend

e > State 1

while state = st LEDs_On

gosub LEDs_On DU .| state2
if button=0 then
state = LEDs_Flash
GOSUB waitforbuttonup
end if
wend

Loop

470



ThkkkkkkkhhkhhkhhhhhhhhrhhhhrhhhkIzhrx
'subroutines \
LEDs_Off:

Return All these
subroutines

LEDs_On: need code to

Return be written for

them

LEDs_Flash:

Return BUT WAIT A
SECOND!!

LEDs_sequence_Flash:

Return

waitforbuttonup:

Return

Seeing the code led me to the realisation that during the subroutine sub_LEDs_sequence_Flash the
micro needs to check for a button press from the user or it is possible that it might miss it while it is doing
the full sequence of flashing each LED individually.

There are no delays in sub_LEDs_Off and sub_LEDs_On as they have no need for them.
However sub_LEDs_sequence_Flash and sub_LEDs_Flash need some form of delay. During
sub_LEDs_Flash if the delays are short enough then we can get away without checking the switch.
However during sub_LEDs_sequence_Flash we will need to check the switch .

Bike light state machine V2 solves this by introducing some new states for the sequence flashing.

st_leds_flash
leds on
short wait
leds off
short wait

See how easy the state machine is to modify; and the code is not hard to modify either.

471



48.6 Bike light program version2

'State Variables
Dim state as byte
Const st leds on = 0

Const st leds off =1

Const st leds flash 2

Const st F1 = 3

Const st F2 = 4

Const st F1 = 5

Const st F4 = 6

State = st leds off 'set the initial state

Do

LR b d b b b b I b b b b I b g 4 state st leds on IR R b b b I b b I b b b b i

While state = st leds on
If button=0 Then
state = st leds flash
Gosub wait for button up
End If
Wend

LIS 2 S IR IR Ib ab I b b b b g Y state st leds Off RR i 2 dh dh db Ib I b b b 4

While state = st leds off
If button=0 Then
state = st leds on
Gosub leds on
Gosub wait for button up
End If
Wend

LR b ab b b b b d b b b b i b g 4 state st leds flash AR b b b b I b b I b b b b i

While state = st leds flash
Gosub leds on
Gosub short wait
Gosub leds off
Gosub short wait
If button=0 Then
state = st F1
Gosub wait for button up
End If
Wend

Thdxxkkhdxkk *x*x**x gtgte gt F1 *** *x*xxkxrxxkhxx%
While state = st F1 a
Gosub ledl on
Gosub short wait
state = st F2
If button=0 Then
state = st leds off
Gosub wait for button up
End If
Wend

L 2 I g dh a2 i b b b i i b I Y state st F2 KAk kA Ak AKX A AKX K KXk %

472



While state = st F2
Gosub ledZ on
Gosub short wait
state = st F1
If button=0 Then
state = st leds off
Gosub wait for button up
End If
Wend

LI 2 2 g dh db g ab b b b i b g 4 state st Fl R A g dh dh  db Ib b i b b 4

While state = st F1
Gosub ledl on
Gosub short wait
state = st F4
If button=0 Then
state = st leds off
Gosub wait for button up
End If
Wend

T Xk, khkhkkk khkhkkk,khkkx*k% state st F4 KKkk Kk hkkk khkhkkk kKkx*k%
While state = st F4 a
Gosub led4 on
Gosub short wait
If button=0 Then
state = st leds off
Gosub wait for button up
End If
state = st F1
Wend a

Loop
End

LED b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b g
'Subroutines

wait for button up:

Return

leds on:
Return

short wait:
Return

leds off:
Return

ledl on:
Return

led2 on:
Return

led4 on:
Return

473



49
Alarm clock project
Let’s try building a digital alarm clock.

49.1 System Designer to develop a Product Brainstorm
Start with a brainstorm of the milestones (major steps) that you will need to carry out

There are some important attributes (characteristics) of the system to describe that will make designing
the hardware and software easier later on.

Build a simple picture of the device with all its inputs and outputs

A conceptual statement gives a one line overview of what is to be designed

Physical Attributes: these describe a bit more detail about what the device looks like

Operational Attributes: these describe how a user operates the device.

Conceptual Statement:
A digital alarm clock for personal use with three different alarm times

Physical Attibutes:

L Line LCD to display time

piezo for alarm sounds

three buttons to set the time and different alarms.

474



A button on the toolbar in system designer will generate a written brief built from the information in the
diagram.

System Description (Brief)

Conceptual Statement:
A digital alarm clock for personal use with three different alarm times

Physical Attibutes:

4 Line LCD to display time

piezo for alarm sounds

three buttons to set the time and different alarms.

Physical Attributes for Digital Alarm Clock
It contains:
-red btn
-LCD
-yel btn
-blu btn
-Piezo

Digital Alarm Clock interactions with Normal user are:
-The piezo will sound a tune when the clock reaches the set alarm time
Normal user interactions with Digital Alarm Clock are:
-The red button is used to select which setting will be changed
The Blu button will increase the setting
The Yellow button will decrease the setting

475



49.2 Initial block diagram for the alarm clock

Using System Designer the block diagram is created to express the electrical connections to the microcontroller but without full detail of the schematic
diagram which includes things like current limit resistors and pullup resistors.

Note the following
devices:

LM35 -a
temperatiure sensor
— produces an
analog rather than
binary signal and
requires an ADC
input.(ADC inputs to
the microcontroller
have yellow pins)

LDR — produces an
analog rather than
binary signal and
requires an ADC
input.

The xtal32 is a
32.768Khz crystal
for making a clock,
when it is added the
variables
associated with it
are automatically
created in Bascom
and are also shown
in the table.




The BasicCode button in System Designer will generate the following code setup for your program, which
is taken directly from the various parts of the block diagram.

' Project Name: AlarmClock

' created by: B.Collis - first created on Mon Aug 15 2011

' block diagram name: BD 1

' Date:8/22/2011 8:49:15 PM

Code autogenerated by System Designer from www.techideas.co.nz
Thhkkhkhhhkhkhhhhhhhkhhkhkhkhbhhkhhhhkhkhhkhkhkhrhrhhhhkhkhhkhkhrkhrrhkhhkhkhkhkkkx*x*x

'Compiler Setup

$crystal = 8000000

Sregfile = "mlodef.dat"

IR S S S SR SRR R R SRR R SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S S
'Hardware Configs

Config PORTA = Output

Config PORTB = Output

Config PORTC = Output

Config PORTD = Output

Config PINB.2 = Input 'blu btn

Config PIND.2 = Input 'red btn

Config PIND.3 = Input 'yvel btn

Config PINA.0 = Input 'LM35

Config PINA.1 = Input 'LDR

'ADC config

Config Adc = Single , Prescaler = Auto ', Reference = AVCC/internal/...
Start Adc

'bascom internal features and functions to make a clock in software

'uses 32,768 Hz crystal on PortC.6 and PortC.7

Config Date = Dmy , Separator /

Config Clock = Soft , Gosub = sectic 'with 1 second interrupt configured

'Character LCD config
Config Lcdpin=pin , Db4 = PORTB.4 , Db5 = PORTB.5 , Db6 = PORTB.6 , Db7 = PORTB.7 , E = PORTB.1 , Rs = PORTB.O
Config LCD = 20 * 2

R R R TR R R L T R

'Hardware aliases
'inputs

blu btn Alias PINB.2
red btn Alias PIND.2
yel btn Alias PIND.3
LM35 Alias PINA.O

LDR Alias PINA.1
'outputs

lcd Alias PORTB

Piezo Alias PORTD.4
grn_led Alias PORTA.7
blu led Alias PORTA.6
red led Alias PORTA.5

Thkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhx

477



49.3 A first (simple) algorithm is developed

It is important to understand some of the things the device will have to be doing ‘inside’.

Note that this is an initial algorithm without a great deal of features, it is a good idea to build your ideas up
as you go as they will be easier to develop.

The inputs and outputs you have created in the block digram will appear here making it easier to think
about the functions you need to describe.

If you are aware of any Variables you will need to keep data then add them as well at this time.




49.4 A statemachine for the first clock

When starting out using state machines it is important that you take on a little piece of advice!

It doesn’t take long to gain a lot of confidence and understanding in using statecharts and it wont be
long before you are producing large ones.

THEN you want to turn them into program code and you end up in a heap on the floor cursing your
teacher because your compiler just told you that your code has 1,967 errors in it!

| have seen it before where students look at this, throw their hands up in horror and go back to trying
to rescue their old program because it only had one error in it (even though I told them it would never
work)
SO START WITH LITTLE STEPS - your very first real program should have only lor 2 states in
it!!

YOU HAVE BEEN WARNED!

Here the statemachine consists of only one state.




The code for this state is very straightforward

Note:

There is an overall do-loop

A state consists of a While -Wend loop.

There is a variable named state to store the current state in.

To change state the process is simple, change the value of the state variable!
Code has been added to one of the subroutines to make it work as needed

VAR AR AR KA A KR AR A AR AR A A KA AR AKRAA KA RA AR AR A AR A A AR A KA KK

'State Variables

Dim state as byte

Const st disp time = O

State = st disp time 'set the initial state

Do

T kxxkkxxk*k*xx*x**x gtgte st dlSp tlme RR i A A dh dh  db Ib b b b b 4
While state = st disp time
Gosub Display time on lcd

If red btn = 0 Then Gosub increase hours
If yel btn=0 Then Gosub increase minutes
Wend
Loop
End

LR b ab b b b b I b b b b d b b I b g b b b b b b b A b b b b d b b I b b b b d b b b b i b b Y

'Subroutines

Display time on lcd:
Return

increase hours:

incr hour //increase by 1

if hour > 23 then hour = 0 //fix rollover of hours

waitms 150 //delay between increments
Return

increase minutes:
Return

AR A A A A A AR A A A A A A A A AR KA A A A A A AR AR A A A A AR A AR kK

'Interrupt Routines

480



49.5 Alarm clock state machine and code version 2

ThA A A A A A A A A A A A A A A A A A A A A A A A A A Ak Ak Ak kA Ak kA Ak kA k ok kK%

'State Variables

Dim state as byte

Const st powerup = 0
Const st display time = 1
State = st powerup 'set the initial state

Do

Th,hkhkhkhkhkhkkkkkkk*k State St powerup R R R R
While state = st_powerup N

Gosub display instructions

If sec _count>5 Then st display time
Wend

Thxkkxxkkxkxkxx**x gtgte st dlsplay tlme khk Kk Kk khkkhkkkkkkkxk
While state = st _display time h

Gosub disp_current_time

If yelbtn=0 Then Gosub increase minutes

If red btn=0 Then Gosub increase hours
Wend

Loop
End

T A Ak kA A A A A A A A A A A A A A A kA A kA Ak Ak Ak kA kA Ak Ak Ak kA kk kK%

'Subroutines
display_ instructions:
Return

disp_current time:
Return

increase minutes:
Return

increase_hours:
Return

T AR A AR A A AR A A A AR A A A A A A A A A A A A A A A A A A A A A A A Ak A A A,k k

'Interrupt Routines
sectic:

incr sec count
Return

These are the first 2 stages of development
of a state machine for an alarm clock, only 2
states and some transitions have been
added.

Students must keep progressive versions of
plans such as state machines to show their
ongoing development work.

481




49.6 Token game — state machine design example

BRIEF: The game starts with a welcome screen then after 2 seconds the instruction screen appears. The
game waits until a button is pressed then a token T is randomly placed onto the LCD. 4 buttons are
required to move the player P around the LCD: 8(up), 4(left), 6(right) and 2(down) to capture the token.
Note that the player movements wrap around the screen.

When the player has captured a token, another is randomly generated. After capturing 5 tokens the time
taken is displayed, after capturing 10 tokens display the time taken.

Here is the state machine for this game (note in this version after collecting 10 tokens nothing happens).

5 UML Pad - State Diagram: Untitled E]
File Project View Options Help
5% Di i = =
i e UBDh $BE < Qe [
=[] dass
= ighScores |« 7
=5 ate _
Untitled [9903;:2]
B Untitled B 3
Untitled [TokenCount=10]
' v
2 B pn.tzﬂed Instructions Soaien
[ Activity

Displnstructions
/MakeAToken 8
[btn=start]

/startTimer
InPlay

refreshDisplay
) ReadButtons

[xPos=TokenX and yPos=TokenY]

HitEnemy

[TokenCount=5]

\ [btn=start]

[btn=left]
) /MakeAToken

/Goleft

level2Instructions

[btn=\right]
/GoRight
9 [btn=Up] [btnigown]-
./thUp /GoDown

Zoom 100%

T Slate = MEasure Uispiay. = ”

( UMLPAD)

In the program there is a state variable that manages the current state and controls what the program is
doing at any particular time. This state variable is altered by the program as various events occur (e.g. a
token has been captured) or by user input (pressing a button to restart the game).

482



dim state as byte

'REMEMBER TO DIMENSON ALL YOUR VARIABLES HERE
Const gotStokens = 1

Const HitEnemy = 2

Const YouLose =3

Const InPlay = 4

Const HighScores = 5

Const level2Instructions = 6

Const got10tokens = 7

Const gotltoken = 8

Const YouWin =9

Const Welcome =10

Const Instructions = 11

'REMEMBER TO DEFINE ALL YOUR CONSTANTS HERE
state = Welcome

Do
while state = gotbStokens

gosub DispScore

state = level2Instructions In the main do-loop
wend Remember the
subroutines to run are
within the While-Wend

while state = HitEnemy statements

state = YoulLose

wend

while state = YoulLose
state = Welcome
wend

while state = InPlay
gosub refreshDisplay
gosub ReadButtons

if xPos=TokenX and yPos=TokenY then

state = gotltoken
end if
if btn=right then
state = InPlay
GOSUB GoRight
end if
if btn=left then
state = InPlay
GOSUB GolLeft
end if
if btn=down then
state = InPlay
GOSUB GoDown
end if
state = HitEnemy
if btn=Up then
state = InPlay
GOSUB GoUp
end if

To change what a program is doing
you don'’t Gosub to a new
subroutine. You change the state
variable to a new value, the current
subroutine is then completed.

The While_Wend statements
detect the state change and control
which new subroutines are called.

The variable state is a 'flag’, 'signal’
or 'semaphore’ in computer
science. ltis a very common
technique. We set the flag in one
part of the program to tell another
part of the program what to do.

Notice how the reading of buttons
and processing of actions relating
to the buttons are different things

wend
while state = HighScores

483



state = Welcome
wend

while state = level2lnstructions
if btn=start then
state = InPlay
GOSUB MakeAToken
end if
wend

while state = got10tokens
gosub DispScore
state = YouWin
wend

while state = gotltoken
gosub DispScore
if TokenCount=10 then
state = gotl10tokens
end if
state = InPlay
GOSUB MakeAToken
if TokenCount=5 then
state = got5tokens
end if
wend

while state = YouWin
state = HighScores
wend

while state = Welcome
if secs>2 then
state = Instructions
end if
wend

while state = Instructions
gosub Displnstructions
if btn=start then
state = InPlay
GOSUB startTimer
end if
wend

Loop

Thkkkkkkkkkhkhkhkhkhkkkkkhkkhhkhkhkhkhkhkkkxx

subroutines

484



Disp_welcome:

Locate 1,1
LCD" Welcome to the TOKEN GAME"
Wait 2
State = Instructions
Cls
Return

Disp_instrustions:

Cls

State = Instructions
Return

Disp_instructions:
Locate 1,1
LCD "capture the tokens
Locate 2,1
LCD "4=left, 6=right"
Locate 3,1
LCD "2=up, 8=down "
Locate 4,1
LCD "D to start"

Return

Gotl:
Cls
Incr Tokencount
Select Case Tokencount
Case 1 To 4.
Locate 1, 10
LCD "you got " ; Tokencount
number of tokens
Waitms 500
Cls
State = Inplay
Gosub Makeatoken
Case 5:
State = Gotb5tokens
End Select
Return

‘display
‘wait

‘restart play

Got5:
Cls
Locate 1, 2
LCD " YOU GOT 5 TOKENS"
Locate 2, 1
Seconds = Hundredths / 100
LCD" in"; Seconds ; "."
Seconds = Seconds * 100
Hundredths = Hundredths - Seconds
LCD Hundredths ; "seconds"
State = Gameover

Return

'seconds

485

Got10: ’nothing here yetl!!
Return

Makeatoken:
'puts a token on the Icd in a random position
Tokenx = Rnd(rhs) ‘get a random
number from 0 to Xmax-1
Tokeny = Rnd(bot_row)
number from 0 to Ymax-1
Incr Tokenx
display columns
If Tokenx > Rhs Then Tokenx = Rhs
check for errors
Incr Tokeny
disp rows
If Tokeny > Bot_row Then Tokeny = Bot_row
'dbl check for errors
Locate Tokeny , Tokenx 'Y.X
LCD "T" '‘Chr(1)
Return

'get a random
'to fit 1 to Xmax
'dbl

'to fit 1 to Ymax



Go_left:
Select Case Xpos
Case Lhs:
Oldx = Xpos
Xpos = Rhs
Oldy = Ypos
Case Is > Lhs
Oldx = Xpos
Xpos = Xpos - 1
Oldy = Ypos
End Select
Return

Go_right:
Select Case Xpos
Case Is < Rhs:

Oldx = Xpos
Xpos = Xpos + 1
Oldy = Ypos
Case Rhs:
Oldx = Xpos
Xpos = Lhs
Oldy = Ypos
End Select
Return
Go_up:

Select Case Ypos
Case Top_row :

Oldy = Ypos
Ypos = Bot_row
Oldx = Xpos
Case Is > Top_row
Oldy = Ypos
Ypos = Ypos - 1
Oldx = Xpos
End Select
Return
Go_down:

Select Case Ypos

Case Is < Bot_row :

Oldy = Ypos
Ypos = Ypos + 1
Oldx = Xpos

Case Bot_row :
Oldy = Ypos
Ypos = Top_row
Oldx = Xpos

End Select

Return

‘at left hand side of Icd
‘remember old x position
‘wrap around display
‘remember old y position
'not at left hand side of Icd
‘remember old x position

'move left
‘remember old y position

These routines keep track of player movements.
We always know the current position and the old
position for the refresh display routine.

This gets a little complicated when the player
moves off the screen, e.g. when going from left
to right it wraps around to the left hand side.

486



50 Window controller student project

One of my year13 students found a client who wanted an automatic window controller for their classroom.
Here is the system block diagram

12V DCin
> sv Regulator
123A
456B Y
ZS’E |(3: H Bridge
ATMEL
AVR
O=7 ©
window is open switch ATMEGA32 LCD
O—7 O0—F+— .
window is closed switch Classroom Window Controller
tempr > openTempr then windows open

tempr < closeTempr then windows close
only works Monday-Friday
only works from 8AM to 4PM
after 4PM Mon-Fri windows close

50.1 Window controller state machine #1

opened

measureTermp
readTime
(SwitchOpent——" |sehr e
T <18, Time = 3:10PM
Led "Opened” [Temp e !

sub Motoroff
N~/

clasing

readTime
dizplayTirme
readkeypad

sub Motorreverse

opening

readTime
displayTime
readkeypad

sub Motorforward

closed [SwitchClozed]

[Temp = 25 | Time = 8:304AM)] meas!_lreTemp
readTime

displayTime
readkeypad
Led "Closed”
sub Motoroff




opened

measureTernp
displayTemp
readTime

/

[switchopened = 1]

readTirme

digplayTime
readkeypad
sub Motorforeard

[ternp = 25 | time > B:30AM)

manualopen

sub Motarforward
measureTemp
displayTernp
displayTime

[switchopened = 1]

Led "Opened”
[fmanualo enhtn]"’f

manualopened

< [autobtn]

displayTime
readkeypad

[ternp < 18 | time = 3:10FM]

sub Motoroff

[ranualopenbtn]

manualclosebtn]

[rmanualopenbtn]

sub Motaroff

Lcd "Manual Open”
readTime
displayTime
measureTemp

dizplayTernp
e -~ -

[manualclosebtn)

manualclosed

kdisplayTemp

sub Motoroff

Led "Manual Closed"
readTime
displayTime

measureTemn [switchclosed = 1}

ranualclose

sub Motorreverse

[autobtn]

closed

[manualclasebtn]

measureTemp
displayTermp
DizplayTime

[autobtn]

measureTermp
displayTemp
readTime
displayTime
readkeypad
Lcd "Closed”
sub Maotoroff

“400

J readTime

- [manualclosebtn]

clasing

displayTime
readieypad
sub hiotorreverse

[switchclosed = 1]

50.2 Window
controller state
machine #3.

It has grown in
complexity as he realised
that he needed to add
more states for the motor
while it was on and in the
process of closing and
opening. The window He
also added controls at his
clients request for
manual open and close.



f~rtn_state = st_opened-—=
A subbieasureTemp = =28 subReadKeypad

subDisplayTemp
subReadTime

subDisplayTime
subReadKeypad

subAdjustOpenTim
| subiirite Time \
subAdjustCloseTim [key=setTime and

[switchopened = 1]
subWritaTime

st_opening

subReadTime
subDisplayTims
subReadKeypad

hhdatorf

2, —setTlme and tn

[key=sefTime and rtn_state = st_manualopen]\

Miey=manualopen] [key=manualopen]

[key=setTime]
3
I~idfi_state = st_manualope

[key=manualopen]

subledOpenad
. 7 .
i § e ~§ [key=manuy S " \
: and minute>70 aHiualelose]imrtn_ “ctate —;t_;nanualclosed
7 =3

SK 2008

This program controls a motor
to automatically open and close
a classroom window

st_closing

subReadTime
subDisplayTim¢
subReadKeypar

Lveaa.

2 state = st_| manualslacadl

50.3 Window
controller state
machine #5

st_manualclose dim key 35 byte

dim temp as byte
dim hour as byte
dim minute as byte
dim rtn_state as byte

key=manualc| o)
P

“|subMotorreverse
key=setTime] = subMeasureTem
f subDdisplayTem
ubDisplayTime

const manualopen = 10" Keypad A
const manualclose =11 "' Keypad B

5N

" and final state
machine for the project.
Allowed control of the

\ key=sefTime]
’ R RN = ct{manualananad
key2qutal _state = st_manualopened]
\
st_manualopenad

key=manualclose] const setTime =12 ' Keypad C

const adjustTime =13 ' Keypad D
const auto = 14" Keypad ®
const setDeg =15 'Keypad #

awitchOpened alias pina.1

time and temperature
settings AND IT
WORKED!

[key=adjusttime and rtn_state = g

ey=setDeq]
2
d ate = st_gp€ned

s

t_opened)]

key=setTime and nn _state = st_opened]
Mev=adjustTime and rtn_state=st opened]

subhotaroff
9 subledianualCpe
subReadTime

™ subDisplayTime
subMeasureTemp

awitchClosed alias pina.2

. . ey=setTime and 3te = st_c|osed
st_m, [key=setDeg and rtn_state = st_opened] ey= o 7 o ] itchelosed = 1] (
key=setTime] 7

subhdotofonvard srartny.-etat L soelasai =manualélose]

subMeasuraTemp A Sy e [key=auto]

subDisplayTemp 7 [key=adjustTime and rtn_state = st_manualopened]

bDisplayTime key=adjustTime]
tn_state = st_manualopkned
[temp>25 and hour>2~agqd minute>30] [key=setDeg and rtn_state = st_manuglspened]
/ ey=sstDeg]
mrtn_statp = st_manualopened s [awitchclosed = 1]
_adjustfindowTime
= |
Key=nianualopen] subReadKeypad
subAdjustTime
[key=manualopen] ublifriteTime
‘ Key=adjustTime]
f, state = st_closed
key=adjustTime and rtn_state = st_manugafclosed]
: 4
| ev=adjustTime and_tn_state = st et6sed) key=adjustTime]
=t_setDeq f~rtn_state = st_manualclosed
i
subReadKeypad [key-set[)e ]

subAdjustOpendeg——_________
subAdjustCloseded ™—____ key=setDed
\ /% [key=setDeg and rtn_state = st_closed

[key=setDeqg
Jrtn_state = st_closed

subDisplayTemp
subReadTime

subDisplayTime
subReadKeypad

Jrertn state =st_ma ualcosed
and rtn_state = st_manualelosed

subMeasureTemp,

st_manualclosed

subhiotoroOff
subledManualClose
wfsubReadTime
subDisplayTime
key=auto] ___————zubMeasureTemp

subDispla Smp

489

This is a very messy
diagram as it suffers from
‘state explosion’. Itis with
a diagram such as this that
we see the limitations of
our process; a true UML
statechart allows for
hierarchies of states (states
within states) and would
reduce the complexity of
this process immensely.

To learn about this read a
book on UML, unified
modelling language.

Have a look at...
http://www.agilemodeling.c
om/artifacts/stateMachineDi
agram.htm




'WindowControllerV5b.uss
‘Created using StateCharter
'13/09/2009 8:47:12 p.m.

'SK 2008

"This program controls a motor
'to automatically open and close
‘a classroom window

'COMPILER DIRECTIVES
$Crystal = 8000000
$regfile = "m8535.dat"

'HARWARE SETUPS
Config PortA=input
Config PortB=output
Config PortC=output
Config PortD=output
'HARWARE ALIASES
switchOpened alias pina.l
switchClosed alias pina.2

'VARIABLES

dim state as byte
dim key as byte

dim temp as byte
dim hour as byte
dim minute as byte
dim rtn_state as byte

Window controller program

'REMEMBER TO INITIALISE YOUR VARIABLES HERE

'STATE CONSTANTS
Const st_ manualopened = 1
Const st_adjustWindowTime = 2
Const st_closed =3

Const st_setDeg =4

Const st_closing =5

Const st_setTime =6

Const st_opening =7

Const st_manualopen = 8
Const st_opened =9

Const st_manualclose = 10
Const st_manualclosed = 11
'OTHER CONSTANTS

const manualopen = 10 ' Keypad A

const manualclose =11 ' Keypad B
const setTime =12 ' Keypad C
const adjustTime =13 ' Keypad D
const auto = 14 ' Keypad *

const setDeg =15 'Keypad #

490



'PROGRAM STARTS HERE
Do
while state = st manualopened
gosub subMotoroff
gosub subLcdManualOpen
gosub subReadTime
gosub subDisplayTime
gosub subMeasureTemp
gosub subDisplayTemp
If key=adjustTime then
state = st_adjustWindowTime
rtn_state = st_manualopened
end if
If key=setTime then
state = st_setTime
rtn_state = st_manualopened
end if
if key=setDeg then
state = st_setDeg
rtn_state = st_manualopened
end if
if key=manualclose then state = st_manualclose
If key=auto then state = st_opened
wend

while state = st_adjustWindowTime
gosub subReadKeypad
gosub subAdjustTime
gosub subWriteTime
if key=adjustTime and rtn_state = st_closed then state = st_closed
if key=adjustTime and rtn_state = st_manualopened then state = st_manualopened
if key=adjustTime and rtn_state = st_manualclosed then state = st_manualclosed
if key=adjusttime and rtn_state = st_opened then state = st_opened
wend

491



while state = st_closed
gosub subMeasureTemp
gosub subDisplayTemp
gosub subReadTime
gosub subDisplayTime
gosub subReadKeypad
gosub subLcdClosed
gosub subMotoroff
if key=setDeg then
state = st_setDeg
rtn_state = st_closed
end if
if key=manualclose then state = st_manualclose
iIf key=manualopen then state = st_manualopen
if temp>25 and hour>8 and minute>30 then state = st_opening
If key=adjustTime then
state = st_adjustWindowTime
rtn_state = st _closed
end if
if key=setTime then
state = st_setTime
rtn_state = st_closed
end if
wend

while state = st_setDeg
gosub subReadKeypad
gosub subAdjustOpendeg
gosub subAdjustClosedeg
if key=setDeg and rtn_state = st_closed then state = st_closed
if key=setDeg and rtn_state = st manualopened then state = st_manualopened
if key=setDeg and rtn_state = st manualclosed then state = st manualclosed
if key=setDeg and rtn_state = st_opened then state = st_opened
wend

while state = st_closing

gosub subReadTime

gosub subDisplayTime

gosub subReadKeypad

gosub subMotorreverse

if switchclosed = 1 then state = st_closed

if key=manualopen then state = st_ manualopen

if key=manualclose then state = st_ manualclose
wend

492



while state = st_setTime
gosub subReadKeypad
gosub subAdjustOpenTime
gosub subWriteTime
gosub subAdjustCloseTime
gosub subWriteTime
if key=setTime and rtn_state = st_closed then state = st_closed
if key=setTime and rtn_state = st_ manualopened then state = st manualopened
if key=setTime and rtn_state = st manualclosed then state = st manualclose
If key=setTime and rtn_state = st_ manualopen then state = st manualopen
if key=setTime and rtn_state = st _opened then state = st_opened

wend

while state = st_opening

gosub subReadTime

gosub subDisplayTime

gosub subReadKeypad

gosub subMotorforward

iIf key=manualopen then state = st_manualopen

if switchopened = 1 then state = st opened

If key=manualclose then state = st_ manualclose
wend

while state = st_ manualopen
gosub subMotorforward
gosub subMeasureTemp
gosub subDisplayTemp
gosub subDisplayTime
If key=setTime then
state = st_setTime
rtn_state = st_manualopen
end if
if switchopened = 1 then state = st_manualopened
wend

493



while state = st_opened
gosub subMeasureTemp
gosub subDisplayTemp
gosub subReadTime
gosub subDisplayTime
gosub subReadKeypad
gosub subLcdOpened
gosub subMotoroff
if key=setTime then
state = st_setTime
rtn_state = st_opened
end if
if key=setDeg then
state = st_setDeg
rtn_state = st_opened
end if
if key=manualclose then state = st_manualclose
if key=adjustTime and rtn_state=st_opened then state = st_adjustWindowTime
if temp<18 and hour>3 and minute>10 then state = st_closing
if key=manualopen then state = st_ manualopen
wend

while state = st_manualclose
gosub subMotorreverse
gosub subMeasureTemp
gosub subDisplayTemp
gosub subDisplayTime
if switchclosed = 1 then state = st manualclosed
If key=setTime then
state = st_setTime
rtn_state = st_manualclosed
end if
if key=auto then state = st_closed
wend

while state = st manualclosed
gosub subMotoroOff
gosub subLcdManualClosed
gosub subReadTime
gosub subDisplayTime
gosub subMeasureTemp
gosub subDisplayTemp
if key=adjustTime then
state = st_adjustWindowTime
rtn_state = st_ manualclosed
end if
if key=setDeg then
state = st_setDeg
rtn_state = st_ manualclosed
end if
if key=manualopen then state = st_manualopen
if key=auto then state = st_closed
wend

494



'SUBROUTINES

subAdjustClosedeg:
Return

subAdjustCloseTime:
Return

subAdjustOpendeg:
Return

subAdjustOpenTime:
Return

subAdjustTime:
Return

subDisplayTemp:
Return

subDisplayTemp:
Return

subDisplayTime:
Return

subLcdClosed:
Return

subLcdManualClosed:

Return

subLcdManualOpen:
Return

subLcdOpened:
Return

subMeasureTemp:
Return

subMotorforward:
Return

subMotoroOff:
Return

subMotoroff:
Return

495



subMotorreverse:

Return

subReadKeypad:

Return

subReadTime:
Return

subWriteTime:
Return

496



51 Alternative state machine coding techniques

The While wend method of coding a state machine is not the only option available to you. Here is an
alternative code segment for control of states using a Select-Case-End-Select methodology

Do
Select Case State
Case State_1

Gosub Actionsla
Gosub Actionsl1b
Gosub Actionslc

Case State_2: Gosub Actions2

Case State_3:

Gosub Actions3a
Gosub Actions3b
Case State_4 : Gosub Actions4
Case State_5: Gosub Actions5
Case State_6: Gosub Actionsb

End Select
Loop

This code is similar to the previous examples using while wend in that you can still have multiple
actions within states. The difference though is that there are no actions perfomed between states.
In code like this if you want to perform an action between two states you need to implement another
state inbetween the two states as in the example below.

State

State

state1_actions

[Cundltinnﬂ]
fAction_1

[Condition=3]

State2

state2_actions

[Condition=2]

State3

[Condition=3]

state_1_actions ] [condition=1]

State Action_1

actions

State?

state_2 actions

[Condition=2]

(_St ate3

state3_actions |

state 3 actions

In the state machine above there is an action
ACTION_1, that must happen between states,
(remember an action is code that will be run only
once between states)

In this second state machine Action_1 has been
replaced by a state state_action_1, and a
second transition that has no condition attached
to it.

While Statel is executing once condition_1 is
met the state will change to Action_1. This code
will be executed only once and the state will
change automatically to State2.

497




Statel

Statel

state1_actions

[Cundltinnﬂ]
{Action_1

[Condition=3]

State?

state2_actions

[Condition=2]

State3

state_1_actions | [condition=1]

State_Action_1

actions

[Condition=3]

State?

state_2 actions

[Condition=2]

(_ State3

state3_actions |

state 3 actions

Do

while state_; Statel Action_1 will
If Condition =1 Then run between
State = Sta'ge2 statel and
C_Eosub Action_1 state2, once
end if condition =1
wend has happened

while state = State?
If Condition = 2 Then State = State3
wend

while state = State3
If Condition = 3 Then State = Statel

Loovr\)/end Condition
testing is
v e,
'actions for this state
Return

Statel actions:
'actions for this state
Return

State2_actions:
‘actions for this state
Return

State3_actions:
'actions for this state
Return

Do
Select Case State
Case Statel: Gosub Statel actions
Case State_action_1: Gosub Actions
Case State2: Gosub State2 actions
Case State3: Gosub State_3_actions
End Select
Loop

Action_1lis a
state on its
own

State_1 actions:

‘actions for this state

If Condition = 1 Then State = State_action_1
Return

Condition testing
has moved to the
subroutines to keep
the select case
code tidy, note
there is no
condition testing in
sub actions: for
state_action_1

Actions:
‘actions for this state
State = State?
Return

State 2 actions:
‘actions for this state

If Condition = 2 Then State = State3
Return

State_3_actions:

‘actions for this state

If Condition = 3 Then State = Statel
Return

498




52 Serial communications

Parallel communications is sending data all at once on many wires and serial communications is all
about sending data sequentially using a single or a few wires. With serial communications the data
is sent from one end of a link to the other end one bit at a time. There are 2 ways of classifying
serial data communications.

1. as either Simplex, half duplex or full duplex
And 2. as either synchronous or asynchronous

52.1 Simplex and duplex

In serial communications simplex is where data is only ever travelling in one direction, there is one
transmitter and one receiver.

In half duplex communications both ends of a link will have a transmitter and receiver but they take
turns sending and receiving. A combined transmitter and receiver in one unit is called a transceiver.

In full duplex both ends can send and receive data at the same time.

52.2 Synchronous and asynchronous

Imagine sending the data 1010 serially, this is quite straight forward, the sender sends a 1 ,then a 0,
then a 1, then a 0. The receiver gets a 1, then a 0, then a 1, then a 0; No problems.

Now send 1100 the sender sends a 1 then a 1 then a 0 then a 0, the receiver gets a one then a
zero, hey what happened!!

Sender Receiver

|1o1o.%|1010

[T 1]oe 0 —> v o]

The receiver has no way of knowing how long a 1 or 0 is without some extra information. In an
asynchronous system the sender and receiver are setup to expect data at a certain number of bits
per second e.g. 19200, 2400. Knowing the bit rate means that the spacing is known and the data is
allocated a time slot, therefore the receiver will know when to move on to receiving the next bit.

data|1100%|1100

timeslot 1 2 3 4 1 2 3 4

Synchronous communications is where a second wire in the system carries a clock signal, to tell
the receiver when the data should be read.

data|1100 %|11‘00
dock [111M M — JULILII

499




Every time the clock goes from 0 to 1 the data is available at the receiver. Now there is no confusion
about when a 1 is present or a zero. The receiver checks the data line only at the right time.

52.3 Serial communications, Bascom and the AVR

The AVR has built in serial communications hardware and Bascom has software commands to use

it.

USART: (universal synchronous and asynchronous receiver transmitter), which when used
with suitable circuitry is used for serial communications via RS232. It has separate txd
(transmit data) and rxd (receive data) lines, it is capable of synchronous (using a clock line)
and asynchronous (no clock line), it is capable of full duplex, both transmitting and receiving at

the same time.

Computers have RS232 (or comm) ports and the AVR can be connected to this (via suitable
buffer circuitry)

TXD

w
sane o RXD /
3
Buffers

SPI: (serial peripheral interface) which has 2 data lines and 1 clock line, these are the three
lines used for programming the microcontroller in circuit as well as for communications
between the AVR and other devices. This is a synchronous communications interface, it has a
separate clock line. Itis also full duplex. The 2 data lines are MISO (master in slave out) and
MOSI (master out slave in) these are full duplex, because data can travel on the 2 lines at the
same time.

Bascom also has libraries of software commands built into it for two other communications protocols

I2C: (pronounced | squared C) this stands for Inter IC bus, it has 1 data line and 1 clock line.
Because it has only 1 data line it is half duplex, the sender and receiver take turns, and
because it has a clock line it is synchronous.

Dallas 1-Wire: this is literally 1 wire only, so the data is half duplex, and asynchronous.

500



52.4 RS232 serial communications

RS232/Serial communications is a very popular communications protocol between computers and
peripheral devices such as modems. It is an ideal communication medium to use between a PC and
the microcontroller.

The different parts of the RS232 system specification include the plugs, cables, their functions and
the process for communications. The plugs have either 9 or 25 pins, more commonly today the PC
has two 9 pin male connectors.

There are two data lines one is TXD (transmit data) the other RXD (receive data), as these are
independent lines devices can send and receive at the same time, making the system full duplex.
There is a common or ground wire and a number of signal wires.

There is no clock wire so the system of communications is asynchronous. There are a number of
separate control lines to handle 'handshaking' commands, i.e. which device is ready to transmit,
receive etc.

The AVR microcontroller has built in hardware to handle RS232 communications, the lines involved
are portd.0 (RXD) and portd.1 (TXD). These two data lines however cannot be directly connected to
a PCs RS232 port because the RS232 specification does not use 5V and 0V, but +15V as a zero and
-15V as a one. Therefore a buffer circuit is required, the MAX232 is a common device used for this.

HL
Ly

- [
T

A connector (DB9-Female) is required for the PC end and a simple 3 way header can be used on the
PCB (SV4 in the diagram)

TXD (PortD.1) will go through the buffer in the Max232 then the header to pin 2 of the DB9
RXD(PortD.0) comes from the buffer of the MAX232 which is connected to pin3 of the DB9

501



The ‘MAX232’ is a common chip used; in the classroom we have the ST232, the capacitors we use
with the ST232 do not need to be polarised and 0.1uF values will do. It will give +/- 8V.

‘Y_L} ST232

5V POWERED MULTI-CHANNEL
RS-232 DRIVERS AND RECEIVERS

SUPPLY VOLTAGE RANGE: 4.5 TO 5.5V
SUPPLY CURRENT NO LOAD (TYP): 5mA
TRANSMITTER OUTPUT VOLTAGE SWING
(TYP): 7.8V

CONTROLLED OUTPUT SLEW RATE
RECEIVER INPUT VOLTAGE RANGE: +30V
DATA RATE (TYP): 220Kbps

OPERATING TEMPERATURE RANGE:
-40 TO 85°C, 0 TO 70°C

s COMPATIBLE WITH MAX232 AND MAX202

DESCRIPTION
The ST232 is a 2 driver, 2 receiver device ’%
following EIA/TIA-232 and V.28 communication
standard. It is particularly suitable for applications
where +12V is not available. The ST232 uses a
SOP Large TSSOP

single 5V power supply and only four external
capacitors (0.1uF). Typical applications are in:
Portable Computers, Low Power Modems,
Interfaces Translation, Battery Powered RS-232
System, Multi-Drop RS-232 Networks.

+5V INPUT
Cs ' Cs

- e v1ov The ST232 (and MAX232) have two sets of buffers so two

°'£ vormaor. ooomeR separate devices can be connected to the AVR at the same

1 C oy time. Some ATMega chips have two UARTSs and if your
N S I ATMega has only one that is ok as BASCOM has the
1 vormse kR T ) software built into it to handle software UARTS.

+5v
ﬁ
TN Dc THouT [ 14
TTL/CMOS v

5
INPUTS ﬁ‘m RS232 OUTPUTS

10 frz {>c rrrrr
12 |R1OUT O@ RIN[13
TIL/CMOS -
OUTPUTS RS232 INPUTS
| R2ZOUT o@ R2I
Q Sk

502



52.5 Build your own RS232 buffer

Why do we need a buffer again?

RS232 is designed to send data over reasonable distances

#3t+15  petween different devices that might run on different voltages.

To do this the designers of the specification decided that a

oV transmitter could send up to +/- 15VDC and a receiver should be

able to reliably detect signals if the voltages were as low as +/-

3VDC.

-3to-18Y

Note that a ‘1’ is 5V for a microcontroller and -3 to -15 for a

RS232(it is inverted).

RS5232 Levels
AVR Microcontroller
v (TTL) Levels

AVR Microcontroller

J
1

N/
A
= 02
s-";;‘:
Inverting Buffer
o
P A
RAC | 4
5 I
22 B £ _ .
Inverting Buffer r.l y ~ :

2 Fﬁ

503

It is easy to build a simple
transitor circuit to achieve
this buffering for us (it is
however not a perfect
circuit).

AVR to RS232

When the AVR transmits it
switches from OV to 5V and
the output to the RS232
actually only switches
between 5V and 0V, this is
outside the RS232
specification of -3V, but it
seems to work OK most of
the time.

RS232 to AVR

The input to the AVR is
more accurate as it
converts the +V input to OV
and the -V to 5V (note the
diode protects the transistor
by not allowing the base
voltage to go below -0.6V).




52.6 Talking to an AVR from Windows XP
There are several different software options for communicating over rs232 from the AVR, the simplest

is the print statement.

print "hello” will send the ASCII text string to the pc. At the pc end there must be some software
listening to the comport, Windows has HyperTerminal already built in to do this.

Open HyperTerminal (normally found in programs/accessories/communications).

Start a new connection and name it comm1

Connection Description

e

% Mew Connection

Enter a name and choose an icon for the connection:
Name:
 Comm1 [

lcon:

[ 0K ” Cancel ]

On the next screen make sure you select comm1 as the port.

Connect To

% Comm1

Enter details for the phone number that you want to dial:

Countrp/region: | e cealand [B4)

Area code: | 3

Phone number: ‘ |

1}

Connect using: ] COM1 7!

[ 0K ][ Cancel ]

504



Then setup the following properties, 9600,8, none, 1, none

Part Settings [
Bits per second: l ”E
Data bits: ‘8 v!
Parity: !None in
Stop bits: ‘1 vi
Flow control: INone vE
[ Restore Defaults
l 0K ] [ Cancel ] g

When you click on OK HyperTerminal can now send and receive using comml1.

& Comm1 - HyperTermi

File Edit iew Call Transf

S

connect/

\ If nothing happens make sure the communications is connected.
disconnect

There are many many different communication programs on the internet to try, Termite is one that is
useful.

505



52.7 Talking to an AVR from Win7

Hyper terminal no longer exists in Windows7, but there are many useful applications that we can use.
Bascom has abuilt in terminal under the options menu.

5 BASCOM-AVR Terminal emulator B

|COI"-.’11:9600,N,8,1

b -

use the menu (options then communications) to set it up
BASCOM-AVR Opticns

Compiler| Communication| Epyironment | Simulator | Programmer | Monitor | Printer

COM port [CoM1  w|  Handshake  [jone - |
Baudrate (9600 w| Emudstion  [nONE - |
Pariy Nore  ~| ATS

Diatabits B~ ™ | Fent |

Stopbits (1 »|  Backcolr [N Naw -

K.eep Teminal emulatar open

Default o Dk |x LCancel |

506



Termite 2.6 is a comprehensive free program

-
E Termite 2.6 (by CompuPhase) = d

___COM1.96 8N1,not ) | Settings | [ Clear | | &bout || Close |

00:02:00
00:02:00
00:02:00
00:02:00
00:02:00
00:02:00
00:02:00
00:02:00
00:02:00

-
Serial port settings
Port configuration Tranzmitted text Options
Port - @ Append nothing [ Stay on top
(71 Append CR Cloze on cancel
Gty 9500 v (") Append LF Autocomplete edit line
Data bitg (71 Append CR-LF [ Close part when inactive
F'ert_'r' Recersed text D Funchion KE_','S -
Flows conbral Font | default - [] Hex "-.-'jiew |ﬂ
[]'word wrap [ Log File
Forward — [none] d [ Status LEDs -
[ Cancel ] i k. ]

507



52.8 First Bascom RS-232 program

' Hardware Features:

' MAX232 connected to the micro TXD and RXD lines. then wired to a DB9F.
' LCD on portc - note the use of 4 bit mode and only 2 control lines

" Program Features:

' print statement

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the speed of operations inside the micro
$regfile = "m8535.dat" ' the micro we are using

$baud = 9600 'set data rate for serial comms
' Hardware Setups

' setup direction of all ports

Config Porta = Output ‘LEDs on portA

Config Portb = Output ‘LEDs on portB

Config Portc = Output 'LEDs on portC

Config Portd = Output 'LEDs on portD

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5, E = Portc.1 , Rs
= Portc.0

Config Lcd =40 * 2 'configure Icd screen

' Hardware Aliases

' Declare Constants
Const Timedelay = 500
' Declare Variables
Dim Count As Byte
" Initialise Variables
Count=0
' Program starts here
Print "Can you see this"
Do

Incr Count

Cls

Lcd Count

Print " the value is " ; Count

Waitms Timedelay
Loop
End 'end program

508



Another useful interface (if you have easy access to the IC) is the DS275. No capacitors just the IC
and a three pin header. | always wire up the three pin headers with ground in the middle, it means
that if you get the wiring wrong all you have to do is unplug it and try it in reverse!

d.0 RXD——21 Ve ] | [

[
d.1 TXDf—u]]

ey
D@-
)

)
cre

GND GNDE DTK:::LH
| 222 @) =
e @:} =
é - ﬂ : : : TX0| im-:n GHD
bs ZEEEEK \C = DREOE
Bl | | S ®00@
Es.f. ;:
e @0 =
3'3 = — e
B.Z@ . . . :
J e @ U 8 :‘ —

52.9 Receiving text from a PC
' Hardware Features:
' DS275 connected to the micro TXD and RXD lines. then wired to a DB9F.
" Program Features:
" input statement
' string variables
" Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the crystal we are using
$regfile = "m8535.dat" 'the micro we are using
$baud = 9600 'set data rate for serial comms

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5, E = Portc.1 , Rs
= Portc.0

Config Lcd = 40 * 2 'configure lcd screen
' 7. Hardware Aliases

Cls

Cursor Noblink



' 9. Declare Constants
Const Timedelay = 2
' 10. Declare Variables
Dim Text As String * 15
' 11. Initialise Variables
Text=""
' 12. Program starts here
Print "Can you see this"
Do
Input "type in something” , Text
Lcd Text
Wait Timedelay
Cls
Loop
End 'end program

' 13. Subroutines

52.10 BASCOM serial commands

There are a number of different serial commands in Bascom to achieve different functions, find these
in the help file and write in the description of each one.

Print

PrintBin

Config Serialln
Config SerialOut
Input

InputBin
InputHex
Waitkey

Inkey
IsCharWaiting
$Seriallnput2LCD
$Seriallnput
$SerialOutput
Spc

Some AVRs have more than one UART (the internal serial device) and it is possible to have software
only serial comms in Bascom and use

Serin, Serout,

Open

Close

Config Waitsuart

510



52.11  Serial 10 using Inkey()

\/
Compilersetup |
Hardware setup

Variables setup ' Title Block
: " Author:  B.Collis
' Date: 22 Aug 03

" Program Description:

' This program receives characters from the
RS232/comm/serial port of a PC

"and displays them on the LCD

' Hardware Features:

" MAX232 connected to the micro TXD and RXD
lines. then wired to a DB9F.

" LCD on portc - note the use of 4 bit mode and
only 2 control lines

" Program Features:

' print statement

' message buffer

' inkey reads the serial buffer to see if a char has
arrived

' note that a max of 16 chars can arrive before the
program

"automatically prints the message on the LCD

" Compiler Directives (these tell Bascom things
about our hardware)

$crystal = 8000000 'the crystal we
are using
$regfile = "m8535.dat" 'the micro we
are using

g $baud = 9600 'set data rate for

serial comms

' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output
Config Portb = Output
Config Pinb.0 = Input
Config Pinb.1 = Input
Config Portc = Output
Config Portd = Output
Config Pind.2 = Input
Config Pind.3 = Input
Config Pind.6 = Input

511



ConfigLcd =40*2 ‘configure Icd screen
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1,
Rs = Portc.0

Config Serialin = Buffered , Size = 20 'buffer the incoming data
' 7. Hardware Aliases

Sw_1 Alias Pinb.0

Sw_2 Alias Pinb.1

Sw_3 Alias Pind.2

Sw_4 Alias Pind.3

Sw_5 Alias Pind.6

' 8. initialise ports so hardware starts correctly

' 10. Declare Variables

Dim Count As Byte

Dim Char As Byte

Dim Charctr As Byte

Dim Message As String * 16

"11. Initialise Variables

Count=0

" Program starts here

Enable Interrupts ‘'used by the serial buffer

Print "Hello PC"

Cls

Lcd "LCD is ok"

Wait 3

Do
Debounce Sw_1, 0, Sub_sendl, Sub ‘'when switch pressed
Debounce Sw_2, 0, Sub_send2 , Sub ‘'when switch pressed

Char = Inkey() 'get a char from the serial buffer
Select Case Char ‘choose what to do with it
Case 0: 'no char so do nothing
Case 13 : Gosub Dispmessage '‘Ascii 13 is CR so show
Case Else : Incr Charctr 'keep count of chars
Message = Message + Chr(char) ‘add new char
End Select
If Charctr > 15 Then 'if 16 chars received
Gosub Dispmessage 'display the message anyway
End If
Loop
End ‘end program

512



' 13. Subroutines

Sub_send1.:
Print "this is hard work" 'send it to comm port
Return

Sub_send2:
Print "not really" 'send it to comm port
Return

Dispmessage:
Cls
Lcd Message
Message = "
Charctr =0
Incr Count 'send some data to the comm port
Print "you have sent =" ; Count ; " messages"”
Return

"14. Interrupts

Inkey allows you to manage the input of characters yourself, but you have to poll (check ) regularly
that a character is there and process it or it will disappear when a new one comes in (the AVR’s
have a USART with error detecting that can inform you if you have missed reading the buffer, you
might want to get to understand that if you are going to do commercial programms). There are
also interrupts built into the AVR for serial USART comms, but these are not implemented in
BASCOM.

513



52.12  Creating your own software to communicate with the AVR
Several student projects have incorporated PC based software that communicates with an AVR.

In this project CZL built a unit that informed remote users in the building that a gateway was on, the
internet was connected and that the wireless network was up.

Gateway PC
A D
\ [ [
Dialup Modem %Z — =

; ateway on
. accessibie & 3 ‘
intemet @

wireless @

Intemet: Connected Undate and
ks rr aa Transti
Vrsless LaN: Active Informat How | ahott | B

Last Transmit: 2:32:25pa,
TestRadotnk | Show Optons

The receiver consisted of a single box of receiver, decoder and AVR.

&
»
intormet [
' -
[ power |

At this point we are interested in the PC software. It is written in Visual Basic 6. There isn’t much point in
going into VB6 as it has been superceeded by Visual Studio (currently 2010) and the Expres edition is

available freely from Microsoft.

514



52.13  Microsoft Visual Basic 2008 Express Edition

To begin you must understand just a little about how Windows based programs work, their different
parts and what they are called.

Programs you write for a pc make use of the software already on the PC, this way you don’t have to
figure out how to draw lines on the screen and check where the mouse is and how to read and write to
hard drives etc etc.

AVR Simple Comms D@@

l

Open Comrnl, 3600,8.M.1 l

autgoing

incoming

J

Your program code

J

Mic

rosoft dotnet frameworks

J

Microsoft Windows operating system

J

Hardware

PAGES)

What we think of a program is a GUI (graphical user
interface) to...

Your_ functions(subs or subroutines) in your program code
which is written in Visual basic (or C#) which uses ...

Microsoft dotnet functions within which use...

Windows operating system functions which requires...

Drivers and hardware such as a PC with an Intel or AMD

microprocessor.

(THIS ISNT THE HARD BIT; THAT COMES IN A FEW

The actual program is called a form, with controls on it.

A Windows 'form’ is a GUI (graphical user interface)
to the underlying code.

( Open Comm, 3600, N1 |

incaming ‘
textbox buttons
textbox, button, property and function.

Textboxes and buttons are examples of
controls on a form

Controls have properties such as a ‘name’
property and a ‘text’ property (things written on
the control) as well as many other properties

Take note of the words GUI, form, control,

515



First make sure you have installed the latest version of Microsoft Visual studio and dotnet (free from
www.microsoft .com)

& Start Pege - Microsofl Yivoal Besic 2008 Express Edition

» MM - x| Sckiion -3 x

Dowrdsad the latest wdirmost s bar develupers b the Mart

Clek hoew b0 amabie o RS Fomd that peovades regulety updeted et
wcut reen bchrokgren, prodet bps and treka, ard spcoming wverts
ow fondd abio echuch rformaaton sbodt servics packs, comrunity
Lachnokgy previows, and St e reloaes of Meroealt peoducts snd
tedeckapes. To viw e Miczcsclt Prrsacy Policy, g to
TookiOptoes [ rmarar st el Ondne snd then Sk Nead the prvac
stabavert

< >

Errir Lst
L N
Destrgtion

i Lre Coma  Pawt

‘olnalht a Taib it

Peody

52.14  Stage 1 - GUI creation
From the menu select file then new ...

: New Project
Templates: ||

¥isual Studio installed templates

@ N

WPF WPF Browser Console
Application Application Application

Application

Search Online
Templates. ..

A project For creaWh a Windows user interface (.MET Framewark 3.5)

Y
Marme: Q AYRSimpleComms ) |
"‘llq.._‘_'__-l-"/

L Ok J[ Cancel ]

Select Windows form application and name it AVRSimpleComms

516



B AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition

File Edit Miew Projeck Buld Debug Data  Tools  Window  Help

,r\-.g:ljﬁl_l'lﬂﬁ % Ga 3| : T = I = N T = =

Forml.vb [Design]  Stsrt Page

il
2l
Ly
)
>
Y
[

Solution Explorer

=2 & £ E

@ A¥RSimpleComms

= Sill] W I
@ Formi.wh

XOgoo | .{;{.

|L-_§E|Solutiu:un Explarer |.5:|Data SoUrces

Properties - 0 X

Form1.vb File Properties

2151 | 2
Build Action Campile
Copy bo Qubput Direckory Do nok copy
Custom Toal
Blank Form Custom Tool Mamespace
{Window} File: Mame Forml . vb
Error Lisk - 1 X
|Q 0 Errors | |_;‘_~.. 0 Warnings | (i) 0 Messages
L File Line Calurnn Project
Build Action
< | # || How the file relates to the build and deployment processes.
|_-a Error Lisk |§Z] Task List
Ready

A blank form will appear where you can add controls.

If you cannot see the form or it disappears at any stage behind new strange looking windows with code

in them, then click on Form1.vb in the solution explorer on the right hand side or select the
Form1.vb(Design) Tab.

Adding a control is easy click on the Toolbox popup on the very left hand side of the screen...

517



B AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition

File Edit “iew Project Build Debug Data Tools ‘Window  Help
=Ry~ I N REEREN =) Rw=RN=N N TR R R R i =
>3': + = | Solution Explorer - ~ 01 X
éi = all 1-|'|I'induw5 Forms i & E = =
g K Pointer E% AYRSimpleComms
E Backaroundwworker =d| My Project
‘_,—'l BindingMawvigator =] Form1.vhb
DS aUrCe
| Button )
0
[B7 cCheckedListBox
%] ColorDislog
=% ComboBox
[£ CankextMenuStrip
3 Datacridview |¢:ﬁ§50lution Explarer |5:|Data Sources
|=%] Dataset Properties +~ 0 X
T DateTimePicker Forml.¥b File Properties -
E DirectoryEntry B
ﬂ DirectarySearcher
% DemainUpDawn Build Action _ Compile
pyay Copy ko Output Directary Do nak copy
i) ErrorProvider Cuskamn Tadl
1| EventlLog Custorn Tool Mamespace
i3l FilleSystemwatcher File Mame Forml.vb
== FlowLayoutPanel
| FolderBrowserDialag
47 FortDialog
[*] GroupBox v I X
HelpProvider L ages
€® HscrollBar
(5] Tmagelist Colurmn Project
A Label
A LinkLabel
=3 ListBox
237 ListWiew
[#_] MaskedTextBox Build Action
2 MenuStrip # || How the File relates ta the build and deplayment processes.
A MessageQueus b
Ready

Select the Button control and double click it or drag it onto your form.

518



B AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition

File Edit W“iew Project Build Debug Data Format  Tools  Window  Help

065 i 1% GG R =R R A A Y =
Form1.vb [Design]*  start page + ® | Solution Explorer ~ 1 x

el el

Form1 lI=1(E"d 2| A¥RSimpleComms
et =d| My Project

0 O j Faorml.vb
Button u]
O

d
‘--.______‘__—__ ___,_,_.-—-"'""'_’

VAN

'—Hf‘é Salution Explarer jData Sources

Properties ~ 0 X
btnOpenPort System. Windows,Forms, Button -
®== A& =

e #

(ApplicationSettings) s

B w =l | g T :I
1. cLick on the button to highlight It/_% w
2. find the buttons Name property Arressiniebescription
3. give it a name btnOpenPort \_;W
AccessibleRol Defaulk
awCirop False

anchor Top, Left
AutoElipsis False

Error List - 1 X AukoSize False

|Q 0 Errors | |_;3 0 ‘Warnings | \i) 0 Messages AutaSizeMade GrowOnly
BackColor [] contral

[ File Line Colurmn Project BackgraundImage |:| {none)
BackgroundImagelatyout Tile
Causesyalidation True
ContextMenuStrip none)
Cursar Default
DialnnR esnle Mrne: %
(Name)
£ * | | Indicates the name used in code ko identify the object,

_—“5' Ertar List 21 Task, List

Ready

Controls such as buttons have lots and lost of properties.

Click on the button to highlight it, change its size by dragging the corners and locate it in the upper area
of the form.

On the left hand side you should see the properties, find the Name property the default name Buttonl
is no use to us when programming so change its name to btnOpenPort

We will follow the same simple convention for naming every control, the first three letters tell us what
type of control it is btn for button, this is always in lower case.

The next part of the name tell us a short description of what it is used for OpenPort, we use uppercase
letters to separate the words not spaces.

Remember the whole name btnOpenPort has no spaces in it, starts with lowercase 3 letters to tell us
what sortof control it is.
519



File Edit W“iew Project Build Debug Data Format  Tools  Window  Help

55]5nlution Explorer |L-‘]:|Data Sources

MinimumSize
Modifiers
Padding
RightToLeft Mo
i Size 268, 2
TabIndex

1. find the buttons text property
2. enter into it what you want on the button

Error Lisk

|Q 0 Errars | |_:3 0 Warnings | [i) 0 Messages

Creerlay

L File Lire Colurmn Project oMibatibleTextRendering  False
UselMnemanic True
UsevisualStyleBackColor True
UsetaitCursor False
Wisible True
Text

£
|j$ Error Lisk |;a Task List

e

The text associated with the control.

B AVRSimpleComms - Microsoft ¥isual Basic 2008 Express Edition |Z||E|E|

=A™ W= R TECERENE Y € . SRR A R e B A Y =
p. = Form1.vb [Design]*  start page + ® | Solution Explorer ~ 1 x
. 2 31/ L@
§ Form1 |T||E|r5_(| 2| A¥RSimpleComms
— i=d| Mw Project

0 . O =] Forml.vhb

d ( Opeh EDmmLSBDD,B,NJ‘) ol

O ul

"-..._________,..--""

Propet! ~ 0 X
btnOpenPor skem, Windows,Forms, Buttan -
®== A& =

e #

MaximumSize o0 T

£

Ready

The button btnOpenPort has another property its Text property. Find this and type in
Open Comm1, 9600,8,N,1 — spaces are fine in this.

You can experiment with other properties like colors and fonts as well.

520




B AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition

File Edit “iew Project Build Debug Data Tools ‘Window  Help
DS dd %GR R A RN AR NP Y =
>f‘.": ol + = | Solution Explorer ~ 01 X
é' [ ProgressBar L .5' E E E
g 7 Propertytrid @ 2| A¥RSimpleComms
(%) RadioButton =d| My Project
ﬂi RichTextBox o 5] R
B0 ]
5 SaveFileDialog )
f SerialPork
'—.'5" ServiceCantroller
[T] splitcontainer
+|+ Splitter
| statusstrip
|7 TabCantral |q§50lution Explarer |L-‘]:|Data Sources
ablekayoutPanel
=S '\l Properties ~ 0 X
£ Time : btnOpenPort System. Windows,Forms, Button -
am ToalSkrip %: E=
T_{ ToalStripConksiner MasimumSize 0,0 A
l%____, ToolTip MinirmumSize o, 0 ]
TrackBar \\dﬂ'ume click to Modifiers Friend
- add to the form Padding 0,0,0,0
Eé_ vscrolBar Right Toleft Na
Size 268, 23
__’j ‘ebBrowser Tahlndex 0
Common Controls TabStop True
Containers Tag
Menus & Toolbars - I x| Text Open Comm1, 9600,8,N,1
Data I Textalign MiddleCenter
Components 23952 TextImageR elation Orvetlay
Printing Colurmn Project UseCompatibleTextRendering  False
Dialogs IseMnernonic True
WPF Interoperability sevisualstyleBackCalar True
¥isual Basic PowerPacks LseWaitCursar Falsa
= General Yisible True —
b
There are no usable controls in Text
thl:e?ciatl;pégdr?tgtan:I:t:TDE:-I;t;xt.hls # | | The text associated with the contral.
v
Ready

Add another control, a TextBox control.

521



B AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition |Z||E|E|
File Edit “iew Project Build Debug Data Tools ‘Window  Help

[EXNr=REER™ W= N WEEN - E- LN IR RN ST N A Efgf“ﬂ%ﬂlji
}35‘ Form1l.vb [Design]* ~ start Page + ® | Solution Explorer «~ 0 X
& Balla
g ™ Form (28| AVRSImpleComms

=l My Project
[=] Farm1.vb

.[ __DpenComml SE00BN.1 ]

| et [V

Q=

L= Solution Explarer |@Data Saurces

txtSend System.Windows, Forms, TextBox -
®== A& =
e z.8

/ licationSettings) *
1. Highlight the textbox control - |:. el
2. Find its name pmperty\/; P
3. name is txtSend EcceptsTah
Accessibleliess
AccessibleRole Default
AllowDrop False
Error List - 1 X anchor Top, Left
|Q 0 Errore | |_:L e | (Dlihessaoe: AutoCompleteCuskomSource {Collection)
AutoCompleteMode Mone
L File Lire Colurmn Project SutoCompleteSoorce Mane
Backrolor [ windoe
Borderstyle Fixed3l
Causeshalidation True
CharacterCasing Maormal
CiantexHen Shin frnne b
(Name)
£ | [¥| Indicates the name used in code to identify the object,

|§$ Error Lisk |ij Task List

Ready

Change the Name property to txtSend, txt tells us it is a TextBox control and Send is its purpose, text
to send! We follow the naming convention 3 lower case letters for the type, capital letters for the
following words in the name and NO SPACES!

522



B AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition

B=1E3

File Edit “iew Project Build Debug Data Tools ‘Window  Help

DS - dd % @l g o &5 asEE QARG
?3_ Form1.vb [Design]*  start page + ¥ | Solution Explorer +~ 0 X
2 &2 E
g Form1 | D@ 122 a¥RsimpleComms
[ =l My Project

[=] Farm1.vb
[ Qpen Comm . 9600.8 .M .1 ]
] |Dutguing |
= =
r;a Solution Explorer @Data Sources

\
1. Add another textbox
2. change its name to txtReceive

. change the other
textbox text as well

Errar List

|Q 0 Errars | |_:L 0 Warnings | [i) 0 Messages
L File Lire

<

|£ Error Lisk |Qj Task List |

Colurmn

3. Find its TEXT property and put it as incoming

Project

further down the list

|

Properties

txtReceive System.windows,Forms, TextBox -

{ApplicationSettings)

A
PraTEEmings)

AccepksTab False

AccessibleDescription

AccessibleMame b

AccessibleRole Default

AllowDrop False

anchor Top, Left

AutoCompleteCuskomSource {Collection)

AutoCompleteMode Mone

AutoCompleteSource Mone

Backrolor [ windoe

orderstyle Fixed3l

ausesialidation True

haracterCasing Maormal

riF e HrEn 1SR frnne b

(Name)
Indicates the name used in code ta identify the object,

Ready

Add a second TextBox control and change its name size, position and text.

523



& AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition |Z||E|r5__(|

File Edit iew Project Buld Debug Data Format  Tools  Window  Help

AR W= I SR oG- E-5 b ou @ SE (= | Ol Ey

Forml.vb [Design]* " Formi,vb* | AYRSimpleComms | Start Page w X Solution Explorer * 1 X
=2 F | E B

AVR Simple Comms =13 2 AYRSimpleComms
——— =d| My Project

=] Forml.vb

[ Open Commi, 9500,8.M.1 | | solution Ex... [F]Data sources

Xooo0 ]

[ ]

|oLtgaing || Send | Properties >+ 1 X

| incoming | SerialPortl Swstem. IO Ports, S -

sl][=]y O

. (Application3e
In the toolbox double click on o) e

serialport to add it to your form BaudRate 9600
Dratabits i

check the properties are 9600,8,M,1 Discardull  False
B DkrEnable False

GenerateMem True
Handshake  Mone
Modifiers Friend
Parity Mone
ParityReplace 63
Error List - 1 X Porthame COM1

|Q 0 Errors | |_ﬂ, 0 ‘Warnings | [ i) D Messages ReadBufferSiz 4096
ReadTimeout -1

De...  File Line: Column Project ReceivedByte: 1

REksEnable False
StopBits one
WriteBufferSiz 2048
WriteTimeout -1

(Mame}
Indicates the name used in code ko
|—E Errar Lisk |i| Task List idenkify the object,

Ready

The last control to add is a hidden one (the user cannot see it). It is a SerialPort contol.
We wont bother to change its name from SerialPortl as we only need one of these for the whole
program. But do check its properties are correct.

524



B AVRSimpleComms - Microsoft Visual
File  Edit Build

1 i - oo | & Ga 5

Wigw  Project Debug

Basic 2008 Express Edition
Tools

o

Data  Format

X Start Page | AYRSimpleComms - Forml.vb [Design]

5 S—

] AVR Simple Comms |'-_||'E|[z|
3 0 '
d Open Comml, 9500811 u|
(
|Dutguing | [ Send
|incoming

The GUI is finished!!! But the program isn't.
You can run your program (in debug mode) by pressing F5 or the green play button.

E% AYRSimpleComms
=d| My Project
=] Form1.vhb

B(=1E3

Your program will run, you can select buttons and type in text but nothing will happen yet as you have

not written any code.

52.15

Programs in windows
are not sequential as
they are in BASCOM,
they are event driven.
This means that you
write a whole bunch of
what looks like
disconnected functions
(subroutines) without
any overriding control
structure.

Its just that windows
handles all the calling
of these routines.

This means that
nothing happens in
your program until the
user interacts with it.

This is called an event.

An event might be a
mouse click on a
Button or the user
changing textin a
TextBox.

AVR Simple Comms

[ Dpen Comm1, 9600,8N.1

I

‘ outgoing

Send ]

|incoming

i. Software developer creates GUI.

Stage 2 — Coding and understanding event programming

2. Software developer
creates functions which

are registered with Windows

4. Windows invokes
(runs your code)

/

Windows

Windows event handlers

btnOpenPort_Click
btnSend_Click
/ -

Microsoft dotnet frameworks
Microsoft Windows operating system

| outgoing

|incoming

3. User clicks button causing event

525




To add code to your program double click on the Open Port button in the designer and this new window

will appear.
Note the title of of it. Form1.vb
Also the method (function, sub or subroutine) has been started for you, you just add code within it.

3 AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition

Fle Edit ‘“ew Project Build Debug Data  Tools  Window Help

ST L IR N VA BRSNS Te AL L e F A N =
AYRSimpleComms™® Forml.vh [Design] Form1.vb* “Etart Page + X | 5olution Explorer > 1 X
— v| 2| & Fl|EE

| o BtnOpenPark V|| # dlick

O Public Class Forml 22| AvRsimpleComms
“ =d| My Praject

i =] Forml.vh

wOoo | %

Private Sub™ptnOpenPort Click (EyWal sender As Systew.Object, ByVal e As Zystem.Eve

Visual studio is very helpful with the next steps as well, as it has a fantatstic autocomplete feature.
Type ‘if s’ and the drop down menu will appear.

B AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition

File Edit Mjew Project Build Debug Data Tools ‘Window  Help
HEiE-Hd | R R =2 9-0-8-E b 0@ SE(= ol = EY st

>f.’ Start Page | Forml.vb [Design]* - Forml.wb® " aupsimpleComms
=
=1
o
[=]
=

| " btnOpenPork V||-f Click
B Public Class Forml

Priwvate Sub btnOpenPort Click(ByVal sender As System.Object, ByVal £ L=

If =
End f:' ScrollStatesutoScrolling Protected Const ScrollStatesutascrolling As Integer = 1
-f:l serollstateFullDrang Determines the value of the System. \Windows, Forms, ScrallableCor

= serolistateHscrallvisible =
End Clas =2 serollstatelserHasscrolled

= serollstatevscrallvisible

3% ScrollToContral

=F SearchbirectionHink

“% searchForvirtualltemEventArgs

% Second

{7} Security “

Common All

Continue typing ‘if ser’ and the box will show you just a few options.

File Edt “iew Project Build Debug Data  Tools  Window  Help

A -l BRI == (9-o-E-5 p g @S

% 1
Il

Il
I
|

start Page | Forml.vh [Design]* - Formilwb® © avpsimpleComms

‘ " bEnOpenPort - ‘ ‘ # li

OG0 | Q{‘

[ Public Class Forml

Private Zub btnoOpenPort Click(ByVal sender As System.Ohject, By
If.351

End “# SerializableAttribute
=F SerializationFaormat

[Friend WithEvents SerialPortl &s System,Io . Parts.SerislPart|

—————  Commaon Al

526



Click on ‘SerialPort1l’ and then press the fullstop ‘.’ This will give you the different properties you can
access for the serialport, choose ‘IsOpen’.

B AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition

File Edit Wiew Project Build Debug Data  Tools  window  Help
A -l & E =29 -E

Start Page | Formil,wh [Design]* -~ Forml.wb™ ° avpsSimpleCamnms

| o bknOpenPort

KO0 |

EHPublic Class Forml

FPrivate 3Sub btnopenPort Click(ByVal sender A
If SerialPorti.|
End Sub fHandshake A

= InfiniteTimeout
9 InitializeLifetimeService

End Class [y I=0pen Fublic Froar
5 Mewline |Gets & valu
W Open
= I —

Finish typing the full line of text and the comment above it.
MAKE SURE YOU PUT () at the end of the line.
‘IsOpen’ is a property so no (), ‘Open’ is the name of a function, subroutine or method so it has ().

B AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition

File Edit Miew Project Build Debug Data Tools  Window  Help
AEE-D S ERR =29 - S p g oa SE(E D

Start Page | Forml.vb [Design]® - Forml.wb™® ° avRsSimplecomms

| " btnOpenPort V|| # Clicl

HOOI00 |

F Public Class Forml

Friwvate Zub btnoOpenPort Click(ByVal sender Ais System.Cbject, EByV
'"if the port is not open already then open it
If ZerialPortl.I=Cpen = False Then SerialPortl.Openi)

End 3ub

It would be useful to show users of the program if the port is open or not so add some more code.

B AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition

File Edit Wiew Project  Build Debug Data Tools  Window  Help

AS - BB =29-0-F-2 by ouSEE G
>§ Stark Page | Forml.vb [Design]* - Forml.wyb® © avRSimpleComms
i
2 | 2% btnopenPort VH # Click
o
2 g Public Class Forml
J—] Frivate Zub htnOpenPort Click(ByWal sender Ls System.Chject, ByW

'if the port is not open already open it

If ZBerialPortl.Is0pen = False Then SerialPortl.Openi)

' indicate the state of the port

If SerialPortl.Is0Open = True Then
btnOpenFort.BackColor = Color.LightGreen

El=se
bthnOpenPort.BackColor = Color.LightPink

End If

- End 3ub

“End Clas=s

527



You can run this program now, and if your computer has a Com1 then it should work (if not, it will
crash).

Double click on the other button in the GUI the SEND button, then add the following code. Use Visual
Studio’s autocomplete to help you enter the code.

Private Zub btnfend Click(EyVal sender Az Fystem.Object, ByVal e As System.EventlArgs) Handles btnifend.Click
'if the phrt iz open then =zend the text from the textkhox with & linefeed [(Ascii #10) on the end of itc.

If ZerialPortl.Is0open = Truse Then SerialPortl.lrite(tcxtSend.Text + Environment.Newline)
End Sub

End Class

'if the port is open then send the text from the textbox with a linefeed (Ascii #10) on the
end of it.

If SerialPortl.IsOpen = True Then SerialPortl.Write(txtSend.Text + Environment.NewLine)

The next step is to add code that will allow your program to display incoming text.
This is more tricky. Click on the SerialPortl control and then on the lightning symbol, this will then list all
the available events for the control. Double click on the DataReceived event.

& AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition : E'E'

File Edit Miew Project  Build Debug  Data  Tools  Window  Help

e E- | %R ; 8 - B @ 5 (= s |l A i
| Start Page * FormL.vb [Design]| Form1.vb ¥ X Solution Explorer 1 X
g B 3]

g e AvRSimpleComms

=d| My Project
=] Forml.vb

[ Open Comm1, JE00,8N,1 |

| autgaing | [ Send ]

| incoming |

|f_-§| Solution Explorer

Iﬁj Data Sources |

Properties

orkl
BFi vugbern, IO, Ports, SerialPort -

DataReceived

Errar Lisk >R X ErrorReceived

|ﬂ 0 Errors | |_ﬂ.‘ 0 ‘Warnings | [ i) 0 Messages FiniZhanged

528



The code window will appear

I AVRSimpleComms - Microsoft Visual Basic 2008 Express Edition

File Edit ‘iew Project Buld Debug Data  Tools  Window  Help

AEE- e %5an R =2 9 -5 b 0 g

(o= Qe @8,

= Start Page | Forml.vb [Design]* - Forml.wb™ © awRsimpleComms * X
I
= |V}L$Furml v||i§j(Declaratiuns) v
o
2 htnOpenPort.BackColor = Color.LightPink B
End If
- End Zub
=] Private Sub btnfend Click(EyVal sender Az Zystem.Cbject, ByWal e As System.Eventirgs) Handles bond

'if the port is open then send the text from the texthox with a linefeed (Ascii #10) on the em
If SerialPortl.Is0Open = True Then JerialPortl.lrite (cxtiend.Text + Environment.NewLine)
- End Zuk

=] Private 3Jub SerialFortl DataReceived(ByVal sender As Jystem.Object, ByWal e As 3Jystem. IO.Forts.3er

- End Zub

“End Class

Then enter the code below. This code is very complex to understand, but it is necessary because of
how Windows multitasks everything. We will not try to understand how it works, just why it is required
and a bit about what it is doing.

Our program must monitor the serialport as well as our Form at the same time because data could
come in while someone was typing text into a textbox. To do this windows creates two threads (parallel
running tasks which are part of the same program) one to monitor the serialport and one for our form.
When we want to pass something from the serial port to the form it must go from one thread to another,
to do this the code below is required.

g Private Zub JerialPortl DataReceived (BEyVal sender Az System.Chject, ByVal e Lz Jystem.I
|HE.InVDkE(New Mylelegate | Lddress0f processtextin) . SerialPDrtl.ReadLinei]H
o End Sub

Fublic Delegate Sub MyDelegate (EvyWal textin As String)

= FPriwvate Sub processtextin(ByVal textin Az 3tring)
txtReceive.Text = textin

o End Sub

“End Class

The program now works!
This is a very short introduction to Visual Basic, we will go on to develop a larger program as well, but if
you are interested in learning more get a book out of the library or jump on the wen and learn more.

Having created this program in Visual Basic, we can also create itin ...

529



52.16  Microsoft Visual C# commport application

Here is the same application developed in Visual C# 2008 Express Edition

YRR R - NP TN T e = st I W @ 5553 AEe e e P N R
5|  StartPage v x| Solution Explorer > B X
press Editio
§| MSDN: Visual C# Express Edition

XNA Game Studio 3.1 is Herel ~ ‘
Tue, 28 Jul 2009 22:30:06 GMT - XNA Game Studio 3.1 makes it even easier for you to build
areat games and distribute via Xbox LIVE, This latest version introduces avatar support, LIVE
Party suppott, video playback, audio API impe its and more., Download 3.1 and start
building your game today. ]
Attention Yisual Studio 2005 Express Edition Users 1 ‘ m - 3%

Mon, 24 March 2009 18:44:13 GMT - On March 31st the Microsoft Visual Studio 2005 Express
Edition peaducts il be discontinued and removed from weww, microsoft . comfexpress, You can

Leam C#

MSDN ims
Vigual C# Devaloper Center

Fti, 14 Nov 2008 18:44:13 GMT - XNA Game Studio 3.0 appess to game developers of every
level and now enables commercial commurdty games to be written for Xbox LIVE, XNA Game
Studio 3.0 supports C# 3.0 and Visual Studio 2008, giving developers more options than ever
before, while continuing to provide easy-to-use, approachable tocks for hobbyists, academics
and indie game developers,

20069 NCWIT Award for Aspirations in Computing

Open: Prosact, continue working on your current projects with the Visual Studio 2008 Express Editions (with n
Create: Proact,., SP1), available for Free on wwaw microsoft.comfexpress, If you havent aready, upgrade =i
Small Basic ¥0.2 is Now Avallable!
Man, 05 Jan 2009 18:44:13 GMT - You asked and we hstened. The latest version of Smal Basic, ‘
Getting Started version 0.2, is now available for download. This version contains some of the most requested
features by members of the community - inchuding & ton of bug fixes, suppert for non-US
Creake Your Frst Application regional settings, a smarter editor with auto-indent, and many useful addrions to the API set.
Yideo Feature Tour XNA Game Studio 3.0 Launches

Mon, 03 Nov 2008 18:44:13 GMT - Calling all tech-savvy girls, coders, gamers, and Web divas,
‘Error List - v Ix
[ @ oerors | [ 3\ awarnings | (i) 0 Messages|
Description File Line Column Project
Ready

File-New Project

New Project

Templates:

¥isual Studio installed templates

Class Library W

Windows
Farms &...

My Templates

Search online
Templates. ..

& Fa

Application

Empty Praject

Console
Application

PF WPF Browser
Application

A project For creating an application with a Windows Forms user interface (.NET Framework 3.5)

Mame: AVRSimpleComms

Ik

] [ Caniel

]

530



Having created the form, change its Text

property to AVR Simple Comms

EX AVRSimpleComms - Microsoft Visual C# 2008 Express Edition

File Edit “iew Project Build Debug Data  Tools  Window  Help
DE-SHe ¥BR9-c 55 b ) i
?3_ Formi.cs [Design]* ' start Page w ¥ | Solution Explorer - AYRSimpleComms ~ 4 X
3 Salls
g AVR Simple Comms '_: Salukion 'AYRSimpleCarmms' {1 praject)
- = EA?RSimpIEEumms
=d| Properties
[+3] References
-=| Forml.cs
'iﬁl Program. cs
False
MainfMenustrip {none)
MaximizeBox True
Maximumsize o0
MinimizeBox True
Mininmurm3ize 0,0
Opaciky 100%:
Padding 0,0,0,0
RightToLeft Mo
RightToLeftLayaout False
ShowIcon True
ShowInTaskbar True
Size 300, 300
Fm—— -1 X SizeGripSlt.',-'Ie F'.L.Itl:l .
SkartPosition WindowsDef aultLocation
|@ 0 Errors| |_;‘_\,D Warnings| |\1) 0 Messages Tag
L File Line Column Project AYR Simple Comms
TopMosk False
Transparencykey |:|
UsewaitCursor False
WindowState Marmal 2
Text
The kext associated with the control.
£ g
Ready

531



Add the two buttons, two textboxes and serialport

& AVRSimpleComms - Microsoft Visual C# 2008 Express Edition

File Edit Wew Project Build Debug Data Tools  Window  Help
-5l d@ | % 53 =RA=Y N ] ”
X'- Toolbox ~ ¥ | Solution Explorer - A¥RSimpleComms + 0 x
é‘ = all \I'J'indows Forms -~ i 2 [F] | E B
g R Pl @ J Solution 'AYRSimpleCornms' {1 project
{5} Backoroundworker : = (=] A¥RSimpleComms
f_‘.—” Bindinghavigator =d| Properties
2% BindingSource al References
| Rt | E Forml.cs
Lon C"_:] Prograri.cs
CheckBox
CheckedListBox
%] ColorDislag
omboBo
[E ConkextMenuStrip Properties N R
1 DataGridvi
J_-l a5 Form1 System.Windows,Forms, Form -
|| Dataset
ﬂ DateTimePicker 0 -
%] DirectoryEntry Locked False e
{fll DirectorySearcher Maln.MfanuStrlp {none)
. ] MaximizeBox True
L AR MaxirmumSize 0,0
ErrorProvider MinimizeBox True
3| EventLog MinimumSize 0,0
FileSysteriWatcher Opacity 100°%
* FlowLayoutPanel Padding 0,0,8,0
Right ToLeft Mo
j FolderBrowserDialog .g
) Right ToLeftLayout False
A FontDialog Shawlcon True
[ ShawInTaskbar True
HelpProvider Size 300, 300
€13 HscrollBar SizeGripStyle Auka
v X it indowsDeFault ozt
(5P ImageList StartPosition WindowsDefaultLocation
Tag
Label
A fa i alumn Praject Text AYR Simple Comms
A LinkLabel TopMost False
| ListBox Transparencykey [
* ListWiew Usett'aitCursor False
askedTextBox windowState Mormal 2
= Menustrip Text
A MessageQueus The text associated with the contral,
T MonthCalendar v | ¥
Ready

Call the buttons btnOpenPort and btnSend, change their text properties.

Call the textboxes txtSend and txtReceive and change their text properties as well.

Form1.Text

btnOpenPort.Text

AVRSimpleComms

S[(=/e3

[ Open Caram ,EIEdEI,E,N,'I ]

ljnu:u:uming

| Sendq-—
D

Cj:ln:-utgn:ning . _LI:I
—
N
txtReceive Text txtSend.text

532

FbtnSend. Text




C# Events

As with VB when you double click on a control, you will then go to the code window and can add code to
the control. The serialport control is different, you must select events in the properties window and add
the DataReceived event.

AVRSimpleComms - Microsoft Visual C# 2008 Express Edition : E|fz|
File Edit ‘iew Refactor Project Buld Debug Data  Tools  Window  Help

HiEp-E e @B 9--F-5 b i

T

Forml.Designer.cs -~ Forml.cs® * Forml.cs [Design]* | Start Page « x| Solution Explorer - AVRSimplec, . - § X

2 btnCpen_Click{object sender, Eventirgs &) v| & 2] [
'_; Solution 'AYRSimpleComms' (1 project)
= .E AYRSimpleComms
|=d| Properties
|+3l References
[E] Forml.es
‘lg Program.cs

| vfg.f'.'-.-'F'\Sirm:ulelCu:un'ums.Forrn.f'.'-.-'RSir|'||:|IEC|:|r|'|r|'|s W |

XOH00 ] Q{‘

Flusing Svstem: TI
using System.Collections.Generic: —

using System.ComponentModel:;

using Svstem.Data:

using Svstem.Dbrawing:

using Svstem.Ling:

using Svstem. Text:

us] i =.Forms;
C:liing System. I0.Ports;: 2 Add this line!

[ namespace AVEIimpleConrns

{ < | »

J—] public partial class formdWESimpleComms @0 Form — —

; Propetties - 0 X

= public formdVWRSimpleCommns () -
{

A=

InitializeComponent ()

private void btnoOpen Click(d t sender, Eventlirgs e

i double click on the control
to add this event

—me void btnend Click

i
( double click on the control

\ to add this event
- H
[—:I//’"pﬁxjg;void serialPortl DataReceive

{ add this event by selecting the control and in the

wies window select events (the lightning bolt)
- }

= }
Ly

t sender, Eventlirgs e

£ sender,

£

<

K

Error List « 0 X
|a 0 Errors | |J‘_\I 0 Warnings | |\!,) 0 Messages

Descripkion File Line Column Project

Mediz Player T IntroToPracticalElectr, .,

533



Here is all the code for this program. Add the parts in yellow after you have added the events (don't try
and add the event code directly, it wont work if you do)

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

using System.IO.Ports;

namespace AVRSimpleComms

{

public partial class formAVRSimpleComms : Form

{
public formAVRSimpleComms ()

{

InitializeComponent () ;

}

private void btnOpen Click(object sender, EventArgs e)

{

if (serialPortl.IsOpen == false)
{
serialPortl.Open() ;
}
if (serialPortl.IsOpen)

{

btnOpen.BackColor Color.LightGreen;
}

else

{

btnOpen.BackColor Color.LightPink;
}

}

private void btnSend Click(object sender, EventArgs e)
{

if (serialPortl.IsOpen)//can only write out if the port is open

{

serialPortl.WriteLine (txtSend.Text + Environment.NewLine) ;
}
}

private void serialPortl DataReceived(object sender, SerialDataReceivedEventArgs e)

{
txtReceive.Invoke (new EventHandler (delegate
{processtextin (serialPortl.ReadExisting()); }));

}

private void processtextin(string txtstring)

{

txtstring = txtstring.Replace('\n', ' "); //remove newline
txtstring = txtstring.Replace('\r', ' "); //remove carriage return
txtReceive.Text = txtstring; //display received data

Things to note with C# (also C and C++) there is a semicolon at the end of each line

534



52.17 Microcontroller with serial 10.

32.768 kHz _
/Crystal m
4 ' L ) ’
red push button switch ——— = | B.0 C.6 C.7 / /R8232 toPC
green push button switch———{ | B.1 A4 ’
blue push button switch—— | B.2 A5 \
yellow push button switch ——> | B.3
white push button switch ——— [ B.4
PortC
LDR & _  _llao -
B.5 Speaker
LM35 B.6
Tempr ‘ B.7
Sensor ' A2
A.l PortD
. J
&
Potentiometer

Keypad

This AVR based system monitors some input devices and outputs the data from them to the local LCD
as well as via the RS232 port to a PC. It also monitors the serial input to see if there are ant messages
to display on the LCD or to decode to do certain tasks.

Note that the analog inputs are not read and sent all the time just every % second. This is achieved
through setting up a counter and counting up to 65000 before reading and sending.

535



(EZND

¥
Compiler setup
Hardware setup
Variables setup

send Temp erature
send Ljghtlevel

reset count

536




In this case the Bascom program monitos the LDR, LM35, and two switches.
' Title Block

"Author: B.Collis

‘Date:  Feb 08

' File Name: SerialioSoftUARTver2.bas

' Program Description:

' Hardware Features:

" LCD on portc

" 5 buttons on pinb.0,1,2,3,4 , red, yellow, green, blue, white

' 3LEDs on B5,6,7 , green, yellow ,red

' Buffer Transistors on for SW UART A.5(TXD), A.4(RXD)

' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the crystal we are using

$regfile = "m8535.dat" 'the micro we are using

' Hardware Setups

' setup direction of all ports
Config Porta = Input
Config Porta.5 = Output ' software UART TXD
Config Portb = Input

Config Portb.5 = Output '

Config Portb.6 = Output '

Config Portb.7 = Output '

'LCD

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs =
Portc.0

Config Lcd =20*4 ‘configure lcd screen

'ADC

'know about the different references or possibly damage your chip!

Config Adc = Single , Prescaler = Auto , Reference = Avcc

Start Adc

' software UART
Open "comA.5:9600,8,n,1" For Output As #1| The internal UART is on D.0 and D.1,
Open "comA.4:9600,8,n,1" For Input As #2 which are in use for the keypad.

A software UART using A.4 as input
"hardware aliases and A.5 for output is configured .
Red_sw Alias Pinb.0
Yel _sw Alias Pinb.1
Grn_sw Alias Pinb.2
Blu_sw Alias Pinb.3
Wht_sw Alias Pinb.4
Set Portb.0 ‘enable pullup resistors
Set Portb.1

Set Portb.2

Set Portb.3

Set Portb.4

Grn_led Alias Portb.5

537



Yel_led Alias Portb.6
Red_led Alias Portb.7

" ADC Constants

Const Pot=0 ‘getadc(pot)
ConstLm35=1 ‘getadc(Im35)
Const Ldr=2 ‘getadc(ldr)

Const False =0

Const True=1

' Variables

Dim Tempr As Word

Dim Lightlevel As Word

Dim Potval As Word

Dim Buffer As String * 20
Dim Inputstring As String * 20
Dim Char As Byte

Dim Received As Bit 'flag used to signal a complete receive
Received = False

Dim | As Word

‘constants

Const Timedelay = 1000
'program starts here

Cls

Cursor Off

Lcd "AVR Data Program"
Print "AVR Data Program"

Do
'reads all the data coming in to the micro's software uart into a buffer
" a buffer is a portion of memory

Char = Inkey(#2) 'see if there is a character
If Char >0 Then 'if there is
If Char =13 Then 'if its a Carriage return
Nop 'ignore it
Elseif Char = 10 Then 'if Linefeed (signals end of message)
Inputstring = Buffer ‘copy to output
Buffer ="" 'release the buffer
Received = True 'signal we have the complete string
Else

Buffer = Buffer + Chr(char) 'add new char to buffer
End If
End If

If Received = True Then
'display the incoming message on the LCD
Locate4,1
Lcd Spc(20)
Locate4,1
Lcd Inputstring
'Print Inputstring ‘echo the message back to the PC

538



'process the incoming messages
If Instr(inputstring , "grnled”) > 0 Then Toggle Grn_led
If Instr(inputstring , "redled") > 0 Then
Set Red_led
Waitms 50
Reset Red_led
End If
If Instr(inputstring , "yelledon") > 0 Then Set Yel_led
If Instr(inputstring , "yelledoff') > 0 Then Reset Yel_led
Received = False 'signal we have processed the message
End If

'send switch press
If Red_sw =0 Then
Waitms 30 ‘debounce
Do
Loop Until Red_sw=1
Waitms 10 '‘debounce
Print #1 , "RED" ‘send the message to the PC
End If
If Yel sw=0 Then
Waitms 30 ‘debounce
Do
Loop Until Red_sw=1
Waitms 10 ‘debounce
Print #1 , "YEL"
End If

‘only read the analogue pins occasionally
If 1 > 65000 Then

Tempr = Getadc(Im35) / 2 ‘approx conversion
Locate 2,1
Lcd "temperature="; Tempr ;" "
Print #1 , "te="; Tempr '; at end means send no linefeed
Lightlevel = Getadc(ldr)
Locate 3,1
Lcd "lightlevel="; Lightlevel ; " "
Print #1 , "lI="; Lightlevel
=0
End If
Incr |
Loop
End ‘end program

" Interrupts

539



setup
the pc's

comm —

port

52.18

PC software (C#) to communicate with the AVR

temperature

AVYRComms

Serial Port Seftings

Senzor- B

lightlevel

Contral - Te

send messages to the AVR

Allincoming
data from

| AVR appears

here

COM Port I
il 24'deg C || | meo | | oen |
Baud R ate: B |
Data Bits: el Off ] el On
Send PC Ti ‘
Stop Bits: il o
| |
[ Clase Part | _ [ Send Text ] =
\ s,
/ .
port open switch press

This program monitrs the Comm port and allows the user to send messages (including the PCs time) to
the AVR.

using
using
using
using
using
using
using
using
using

System;

System.
System.

System.Data;
System.Drawing;
System.Ling;
System.Text;

System.

System.IO.Ports;

namespace AVRComms

{

public partial class Forml

{

public Forml ()

{

}

private void Forml Load(object sender, EventArgs e)

{

Collections.Generic;
ComponentModel;

Windows.Forms;
//added this to

Form

InitializeComponent () ;

//here are the default values,

cmbPortName.SelectedIndex =
cmbBaudRate.SelectedIndex =

cmbDataBits.SelectedIndex
cmbParity.SelectedIndex =
cmbStopBits.SelectedIndex

ol

0;
5;

1;

0;

use serialport

0 means the first in the collection

//coml
//9600
//8

//none

//1

540



private void btnOpenPort Click(object sender, EventArgs e)
{
if (serialPortl.IsOpen==false)
{
// Setup the port as per the combo box settings
serialPortl.PortName = cmbPortName.Text;
serialPortl.BaudRate = int.Parse (cmbBaudRate.Text) ;
serialPortl.DataBits int.Parse (cmbDataBits.Text) ;
serialPortl.StopBits = (StopBits)Enum.Parse (typeof (StopBits),
cmbStopBits.Text) ;
serialPortl.Parity = (Parity)Enum.Parse (typeof (Parity), cmbParity.Text);

// try to open the port,
try
{
serialPortl.Open() ;
}
catch (Exception ex)
//1if it cannot be opened then

MessageBox.Show (ex.ToString()) ;
//show us the exception that occurred

//1if it is open then show the dot in the radio button
if (serialPortl.IsOpen) radPortOpen.Checked = true;

private void btnClosePort Click(object sender, EventArgs e)
{
//if the port is open close it
if (serialPortl.IsOpen)
{
serialPortl.Close();
//1if it closed ok then remove dot from radiobutton
if (serialPortl.IsOpen == false ) radPortOpen.Checked = false;

private void serialPortl DataReceived(object sender, SerialDataReceivedEventArgs e)

{

txtDataRx.Invoke (new EventHandler (delegate

{

processtextin(serialPortl.ReadExisting());
1)

541



private void processtextin(string txtstring)

{

txtDataRx.AppendText (txtstring) ;
txtstring = txtstring.Replace('\n', ' ");
txtstring = txtstring.Replace('\r', ' ");
txtstring = txtstring.Trim();

if (txtstring.Contains("te="))

{

HH);

txtstring txtstring.Replace ("te=",
btnTempr.Text =txtstring + " deg C";

}

//display received data
//remove newline character
//remove carriage return
//remove spaces
//temperature reading

//get rid of the code
//add some text to the end

//lightlevel

//get rid of the code

H

}
Color.CadetBlue;
Color.DarkOrange

7}

Color.Sienna
Color.Blue;
}
7}
Color.DarkRed

//get rid of the code

Color.Red;

}

if (txtstring.Contains("11="))
{
txtstring = txtstring.Replace("11l=", "");
try
{
int lightlevel = Convert.ToInt32 (txtstring);
if (lightlevel < 20) {btnLDR .BackColor =
if (lightlevel > 100) {btnLDR .BackColor =
if (lightlevel > 200) { btnLDR.BackColor =
if (lightlevel > 400) {btnLDR .BackColor =
if (lightlevel > 500) {btnLDR .BackColor =
btnLDR.Text = lightlevel.ToString() ;
}
catch { }
}
if (txtstring.Contains ("pv="))
{
//txtstring = txtstring.Replace ("pv=", "");
btnPot.Text = txtstring;
}
if (txtstring.Contains("RED")) { btn Color.BackColor
if (txtstring.Contains ("YEL"))

{

Color.Yellow;

btn Color.BackColor

}

private void btnSendText Click(object sender, EventArgs e)

{
if
{

(serialPortl.IsOpen)

serialPortl.Write (txtDataTx.Text + "\r" + "\n");
//must send at least LF to remote so its know end of message

}
else {MessageBox.Show (" port not open");}

}

private void btnGrnLed Click(object sender, EventArg
{
if
{

(serialPortl.IsOpen)

serialPortl.Write ("grnled™ + "\r" + "\n");

s e)

//must send at least LF to remote so its know end of message

}
else { MessageBox.Show (" port not open");

}
}

private void btnRedLed Click(object sender, EventArgs e)

{
if
{

(serialPortl.IsOpen)

serialPortl.Write ("redled" + "\r" + "\n");

//must send at least LF to remote so its know end of message

542



}

else { MessageBox.Show (" port not open"); }

}

private void btnYelOff Click(object sender, EventArgs e)
{
if (serialPortl.IsOpen)
{
serialPortl.Write ("yelledoff" + "\r"™ + "\n");
//must send at least LF to remote so its know end of message
}

else { MessageBox.Show (" port not open"); }

}

private void btnYelOn Click(object sender, EventArgs e)
{ if (serialPortl.IsOpen)
{ serialPortl.Write ("yelledon" + "\r" + "\n");
//must send at least LF to remote so its know end of message
;lse { MessageBox.Show (" port not open"); }
;rivate void btnSendTime Click(object sender, EventArgs e)
{ if (serialPortl.IsOpen)
{ serialPortl.Write (DateTime.Now.ToString ("hh.mm.ss dd/MM/yyyy")

}

else { MessageBox.Show (" port not open"); }

543

+

n\nn) ;



52.19 Using excel to capture serial data

It is straightforward to use excel to look at data sent from the microcontroller. First download PLX-DAQ
from the net and follow the setup instructions.

Next write a program that sends the right commands out the comm. Port to PLX-DAQ.
$crystal = 8000000

Sregfile = "m8535.dat"

Open "comA.5:9600,8,n,1" For Output As #1

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 =
Portc.5 , E = Portc.l , Rs = Portc.0

Config Led = 20 * 4

! Declare Variables

Dim D As Single

Dim R As Single

Dim Sin x As Single

Dim H As Byte

! Program starts here

Wait 1

'put some labels in row 1 of the speadsheet

Print #1 , "LABEL, Degrees, Radians, Sin"

'send a message to the program message area

Print #1 , "MSG, Starting data plotting "

'put a label in a specific cell on the spreadsheet (can only be in column A
thru F)

Print #1 , "CELL,SET, E2, datal in"

Do
Print #1 , "CLEARDATA"
For D = 0 To 359
'calculate the values to send
R = Deg2rad (D)
Sin x = 8in (D)
'send values that will appear in sequential columns in the spreadsheet

Print #1 , "DATA," ; D ; "," ; R ; "," ; Sin x
'send data to a specific cell (can only be in columns A thru F)
Print #1 , "CELL,SET," ; "F2," ; Sin x

'display the values on the lcd
Locate 1 , 1
Led D
Locate 1 , 8
Led R
Locate 2 , 1
Led Sin x
Waitms 10
Next
Loop
End 'end program

544



Open "comA.5:9600,8,n,1" For Output As #1

This line sets up Bascom to know that you are going to send data out Porta.5, it will be at 9600 baud, 8
data bits, no paraity and 1 stop bit. It will be called #1 in the program.

Print #1 , "LABEL, Degrees, Radians, Sine"

This line sends the LABEL command out on #1 (portA.5). note that LABEL must be in capitals.
The words following LABEL will appear in excel cells, A1, A2, A3.... in that order.

Print #1 , "MSG, Starting data plotting "
send a message to be displayed in PLQ-DAX

Print #1 , "CELL,SET, E2, datal in"
Write a label in a specific cell in excel. Note this can only be in columns A,B,C,D, or F.

Print #1 , "CLEARDATA"
Clear all data from the cells we are controlling in spreadsheet (other cells contents will not be deleted)

Print #1 , "DATA," ; W ; "," ; X ; "," ; Sin x

Now send some data. Because there are three pieces of data they will automatically go into columns A,
B & C. The first time PLX-DAQ receives this command it will put the data into A2, B2, C2. The next time
it will put it into A3, B3, C3 and so on. This will create a data table.

Note that PLX-DAQ requires a comma between each piece of data.

In the code the data is sent 360 times (using the For W = 0 To 359)
This is the number of degrees in a circle.

The actual data are the sin values for each degree from 0 to 359, so we will get PLX-DAQ to plot the
data on a graph. Note that Bascom works in radians to do sin,cos,tan not degrees so we convert it to
radians with R = Deg2rad (D)

Print #1 , "CELL,SET," ; "F2," ; Sin x
If we want just a single piece of data then we can put it into a specific cell on the table.
This can be plotted by a line/bar/dot graph that will follow the changing value.

545



52.20 PLX-DAQ

Download and install PLX-DQA and run it.
Excel may complain about macros and ActiveX controls, you must allow these or it will not work.

To connect to the incoming data from your microcontroller you must setup the comm port and the baud
rate. You can try faster baud rates but 9600 is reliable in most instances for the AVR at SMHZ.

r N
Data Acquisition for Excel &=58/) The R will flash with incoming data so that you know it is all running
Control ok.
PLX-DAQ FH - . .
Settings e ﬁflﬁ‘m’mﬂ The data coming intot excel is plotted according to the commands
Port | 1 <l [ User2 sent my the microcontroller.
Baud: | 9600 vl Reset Timer
e | Note that PLX-DAQ will ony respond to data in the first sheet in a
- . multisheet spreadsheet!
v Reset on
Connect
[ Controller Messages |
| PLX-DAQ Status |
L
A B (& D E F GiHI IJ K L M N 0 P Q
1 Degrees Radians Sine
2 0 0.0000 0 datal_in  -0.707110104
3 1 0.0175 0.017449851
4 2 0.0349 0.034900243
5 3 0.0524 0.052339133 line graph with automatic axis
6| 4 0.0698 0.069761331 s =P et
7 5 0.0873 0.087161776 :
8 6 0.1047 0.10453498
9 7 0.1222 0.121876057 1
10 8 0139 0139179644 /\ i
11 9 0.1571 0.156440493
12 10 0.1745 0.173653539 05
13 il 0.1920 0.190813478 \\ G
14 12 0.2094 0.207915182 o
15 13 0.2269 0.224953469 28 55 82 109 136 163 1R0 217 244 271 298 325 352 :
16 14 0.2443 0.241923268 X 0 datat_in
17 15 0.2618 0.258819396 05
18 16 0.2793 0.275636551
19 17 0.2967 0.292369959
20 18 0.3142 0.309014256 -1 .
21 19 0.3316 0.325564501
22 20 0.3491 0.34201574 o i
23 21 0.3665 0.358362968 i B
24 22 0.3840 0.374601002
25 23 0.4014 0.390725134 =
26 24 04189 0.406730229 |
27 25 04363 0422611651
28 26 0.4538 0438364503
29 27 04712 0.45398384
30 28 0.4887 0.469465072
31 29 0.5061 0.484803257
32 30 0.5236 0.499993915
33 N 0.5411 0.515032347
34 32 0.5585 0.529914019
35 33 0.5760 0544634339
36 34 0.5934 0.559188841
37 35 0.6109 0.57357281
38 36 0.6283 0.587782379
39 37 0.6458 0.601812777
40 38 0.6632 0.615660007
41 39 0.6807 0.629319664
42 40 0.6981 0.642787631
43 4 0.7156 0.656059619
44 42 0.7330 0.669131991
45 43 0.7505 0.682000395
46 44 0.7679 0.694661076

Several different types of graphs have been created to plot the values. The line graph plots the values in
Column C and the other 4 graphs look only at the data in F2.

546



52.21  StampPlot

Another very useful (and exceedingly more comprehensive) data plotting program is StampPlot.
Initially lets start with a simple program to send data and plot it over time.

Do
For D = 0 To 359
'calculate the values to send
R = Deg2rad (d)
Sin x = Sin(r)
Print #1 , Sin x
'display the wvalues on the lcd
Locate 1 , 1
Lcd D
Locate 1 , 8
Lcd R
Locate 2 , 1
Led Sin x
Waitms 5
Next
Loop

the data is simple to send, just use the line Print #1 , Sin x

Start StampPlot and select Standard Plot.

¥ StampPlot - V4 Beta - SelmaWare Solutions -StampPlot Pro V3.9 ** Unregstered-@m

File Macros Logging Plot Axis View Register Defined Help
=|d|sla| N wB0f« +—|mldl +—]mlm B N\ S]E [ 2)
0,250 ~ User Status ] 0,60 —Z]

e

Standard Plot

- Selectable Plottin:

- Channel Values
Full user Interface

Four Dial Meters

- High Speed Plotting

I- Fully Adjustable Alarming Meters
- Full User Interface

Alarming Meters
- 2 Fully Adjustable Alarming
Meters

annel Selectable Plotting

{Standard Plot - High Speed
- High Speed Plotting

- Channel Values

- Full User Interface

&
New Meters anu"Sujects

*kkk

A

*hkkk *hkkhkk

Click a Plot Style to Begin

XY Plotting

- 3 Graphs Based on sets of X-Y
Data

- Channel Values

- Full User Interface

13:44:11

Five Gauges

- 5 Fully Adjustable Alarming
Gauges

- Min/Max/Ave Values

- Full User Interface

View Primer PDF

10 Bars

- Plots 10 Channels as Bars
- Selectable Bar Colors

- Full User Interface

Run V3 Plot Select Run No-Frills Plot

547



In the next screen start the comms (comm. Port 1 and 9600) in the bottom left corner and change the
scale in the top left corner to -1,1

£

W E

[

CIEFEEEEN
HERRRERE

Width

Snapshol
View

Fodes

StampPIot is hlghly conflgurable with alarms and meters

Ammwwhmw _ =5
&mmmmﬂmuwwm

=ea@s e« +—lau j:[—[qf:@-
S ST ek

Connect-#lot

548



52.22  Serial to parallel

We came across some bi-colour LEDs and wanted to add them to a circuit in a circular pattern.

portAd =0
When driven in one direction the LEDs glow red, when reversed they
Micro glow green. They could be driven directly from a microcontroller, but

would require two 1/O pins each as in this diagram
portdd =1

portAd =1

portAZz =10

This schematic shows the LS164 serial to parallel ICs used to implement control 16 LEDs and the 8 I/O
connections required to drive them . The ICs require a data line and a clock line (so it is synchronous
communication)

o
| T

Pava s ASv;
]

PAVLANVF AV AV

v avaAvisv,

AR A,

549



550






Program to show off the bi color LEDs and serial to parallel conversion
' Title Block

" Author:

' Date:

"Version: 1.0

' File Name: bicolourled_Verl.bas

' Program Description:

' This program flashes a bicolour continuously A.6 A.7

' Hardware features

' leds on portd

5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 "internal clock
$regfile = "'m64.dat" " ATMEGAG64-16Al
' 6. Hardware Setups

' setup direction of all ports

Config Porta = Output '

Config Portb = Output '

Config Portc = Output '

Config Portd = Output '

' 7. Hardware Aliases

Clk4 Alias Portc.7

Data4 Alias Portc.6

Clk3 Alias Portc.5

Data3 Alias Portc.4

Clk2 Alias Portc.3

Data2 Alias Portc.2

Clk1 Alias Portc.1

Datal Alias Portc.0

' 8. initialise ports so hardware starts correctly

' 9. Declare Constants

Const Timedelay = 500 " the timing for the flash
Const Pulse = 10000

' 10. Declare Variables

Dim | As Byte

Dim J As Byte

Dim Dat As Byte

| = 255

J =255

‘all leds off

Shiftout Datal , Clk1,1, 3,8, 32000 'shiftout 8 bits
Shiftout Data2 , Clk2 ,J, 3, 8, 32000 'shiftout 8 bits
Shiftout Data3, CIk3,1, 3,8, 32000 'shiftout 8 bits
Shiftout Data4 , Clk4 ,J, 3, 8, 32000 'shiftout 8 bits
Wait 3

Dat = &B00000001

'Initialise Variables

552



'‘Program starts here

Do
Rotate Dat, Left
| = Dat
J=0
Shiftout Datal , Clk1,1, 3
Shiftout Data2 , Clk2 ,J, 3
Set Porta.0
Waitms Timedelay
=0
J = Dat
Shiftout Datal , Clk1,1, 3
Shiftout Data2 , Clk2 ,J, 3
Reset Porta.0
Waitms Timedelay

Loop

End

‘end program

'shiftout 8 bits
'shiftout 8 bits

'shiftout 8 bits
'shiftout 8 hits

553



52.1 Keyboard interfacing — synchronous serial data

L A 4

T R [ [P (G O ) o P sy T s [ o i = [ SO B I

!
1
!
2

=

The computer PS/2 keyboard is an example of synchronous serial communication and can be
connected directly to an AVR microcontroller (synchronous means that a clock signal is sent as well as
the data signal to help the receiver know the timing for the data).

On the left is the PS/2 (or 6-pin mini DIN) plug on a cable, it is known as the male connector. The
socket on the right is as seen on a computer motherboard and is called the female connector. Note the
wiring on the socket is the mirror image of the plug, and that it is the socket we will be wiring to a
microcontroller.

1-data
— toD.7 00

5-clk l
o D.2 O o

554



The data from the keyboard has been captured using a Saleae Logic Analyser. These are the 2 lines, data and clock, from the keyboard; and the
horizontal scale is 0.1 seconds per division. Here is the result of pressing 3 keys one after the other, there are 3 sets of data
,.;{3' Saleae Logic 1.0.33 - [Scan s Only}

"‘ 7 10 20s

+0 Is +0.85 +0.9s +0.15 +0.25 +0.3$ +O.4s +0 55 +0.6s +07s +0.85 +095 +0.]s +0.25 +0.3s

e _LLLL —l—l—l—l—l—]—
‘Emmeses | ! 1 1 71 71T

(° | Saleae Logic 1.0.33 - [S

e
+O Is 4»0 e +0 3 +0.ls +(‘.25 +0.35 +0.4s +0 55 +0.6s +0 s +0v.85 +O.9‘ +U.1.> +0.25

e LT I SEETIE 1 Y TR e e T e
cEmesans . | | - 7 1 1T 17

Zooming in on one set of data it can be seen that it is actually 3 individual chunks of data

30ms +40ms +50ms +60ms +70ms +80ms
v v v v v v

+0.2ms +0.3ms +04ms +0.5ms +0.6ms +0.7ms +0.8ms
v v v v v v v

The clock is a regular alternating signal of eleven 1’s and 0’s, and indicates to us when the data is valid (can be read). The data must be read
along wth the clock so there are eleven bits of data even though it appears tere are fewer.

555



The data sequence is reguar it always consists of a start bit, followed by 8 data bits, then a parity error checking bit and finally a stop bit)
The data is sent LSB (least significant bit) first so when it is used by your micro it is binary 00010101 (which in hex is154)
The specification for data from a keyboard can be found on the internet and states that the data bit must be valid at least 5uS before the clock

goes negative. So we can read the data any time after the clock goes low.

- —_ 858.0ms
JAms +05ms +06ms +07ms +0.8ms +09ms +01lms +02ms +03ms +04ms +05ms +06ms +07ms  +0.8ms
v v v v v v v v v v v v v v v

o1 01010 00 01

start bit (always 0) e 8 data bit ___,...—-—-"" l
=== § data bits

parity bit

stop bit (always 1

The logic analyser has the ability to interpret the data for us , its just a matter of working out its speed (bits per second) which is around 12,000 bits
per second for the keyboard which we tested.

g e
Q Serial Analyzer Settings @‘

Bit Rate (Bits/S) #dusly B AutoBaud

‘‘‘‘‘ § Data Bits per Transfer {Standard) ~
1 Stop Bit {Standard) ¥

Cdd Parity Bit v

Least Significant Bit Sent First (Stancard)

Nen Inverted (Standard) ~

Once these settings are made the logic analyser software will show the hex code for the data.

556



-

Width: 40.5us
Period: 83us

Frequency: 12.0482KHz
TL: #8
T2: #2

B-@-

Each key of the key board has a unique scan code (some have a sequence) e.g. Ctrl is EO(hex) then 14(hex)
The key that corresponds to the scan code of 15(hex) is the letter ‘Q’

E=C F1 F2 F3 F4 Fa F& F? Fa Fa jfF107[F11)[F12
TH 04 ] 04 oc 0z 0B a3 0A 01 09 78 o7
- 11 2@ 4% 5% B Tel[ax][ 9l 03 — || *= [ —
0E 16 1E 26 25 ZE 36 D)1 3E 46 45 4E 54 5D 1]5]
TAB 0 Wy E I 0 F [4 1
oo 15 1D 24 43 44 40 1) 54 58

=

Party

Along with the data a single parity bit is sent; the parity bit is set (to 1) if there is an even number of 1's in the data bits or reset (to 0) if there is an
odd number of 1's in the data bits. In our case the data has 3 bits set to 1 so a 0 is sent. The purpose of parity is to help the receiver know if the
message was received correctly. At the receiving end the number of 1’s is added up and compared to the parity bit, if there is a match it was
assumed that the data was received correctly. However if a single bit of data was corrupted then the receiver could identify a problem (wouldn’t
this be useful when people are talking to each other!!)

The use of parity along with the use of a synchronous clock makes this communication protocol reasonable robust to interference.
Do note though that it is not completely immune to corruption as if 2 bits of thedata were corrupted then the parity bit might still be correct.

Lots more information about the data being sent (protocol) can be found at http://www.computer-engineering.org/ps2protocol/

557



There are a number of choices we have when we want to receive data fro the keyboard.

The first is to use the built in function in Bascom GETATKBD(). Along with this function we need to do a
conversion process. Microcontrollers don’t use scan codes for letters(and digits) they use the ascii code
so the received scan code is translated to ascii code using a lookup table.

< poll/check for keyboard data >

R

Y

do something

?
keyboard>0? Y depending upon the value

N
' Y e e o -V
'"Title Block
' Author: B.Collis
' Date: July 2010

' File Name: ps2kbVl.bas

' Program Description:

' Hardware Features:

' LCD on portc - note the use of 4 bit mode and only 2 control lines
' keypad connected as per R4R circuit on 1 ADC line

' 1m35 on adc

' AREF PIN32 disconnected - uses internal 2.56V reference

' Compiler Directives (these tell Bascom things about our hardware)
Scrystal = 8000000 'the crystal we are using

Sregfile = "m32def.dat" 'the micro we are using

'Hardware Setups

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =
Portc.7 , E = Portc.3 , Rs = Portc.2

Config Led = 20 * 4 'configure lcd screen

Config Keyboard = Pind.6 , Data = Pind.7 , Keydata = Keydata

Config Portd = Input

'Declare Variables

Dim Kb textstring As String * 20
Dim Kb character As String * 1
Dim Kb bytevalue As Byte

Dim Length As Byte

'Initialise Variables



'Program starts here

Cursor Off

Cls

Locate 1 , 1

Led "keyboard reader"

'here are 2 examples of what you can do with the keyboard

'read the keyboard
Kb bytevalue Getatkbd ()
'if a recognised key is pressed then do
If Kb bytevalue > 0 Then
Locate 2 , 1
Led "byte value=" ; Kb bytevalue ;
Kb character = Chr (kb bytevalue)

something

"

Locate 3 , 1
Led "ascii char=" ; Kb character ; " "
End If
Loop

'wait until a recognised key 1is pressed
Do

Kb bytevalue Getatkbd ()
Loop Until Kb bytevalue <> 0
Locate 2 , 1
Led "byte value=" ; Kb bytevalue ;
Kb character = Chr (kb bytevalue)

" "

Locate 3 , 1

Led "ascii char=" ; Kb character ; " "
Loop
End

'convert the data from the keyboard to an ascii character

'only ascii characters are here if you want other data to be recognised
! then change the table specific key below from a 0 to another number

Keydata:

'normal keys lower case

pata 0 , 0, 0, 0, 0, 200, 0, 0, 0,0, 0,0, 0, 0, &HSE ,
pata 0 , 0, 0, 0, O, 113, 49, O, O, O, 122 , 115 , 97 , 119

0

Data 0 , 99 , 120 , 100 , 101 , 52 , 51, 0, O, 32 , 118 , 102 , 11
, 53, 0

Data 0 , 110 , 98 , 104 , 103 , 121 , 54 , 7 , 8 , 44 , 109 , 106 , 1
, 56 , 0

Data 0 , 44 , 107 , 105, 111 , 48 , 57 , 0 , 0O , 46 , 45 , 108 , 48

43 , O

pata 0, 0, 0, 0,0, 9%9,0,0,0,0,13, 0, 0,92, 0,0
pata 0 , 60 , 0, 0O, 0, 0, 8,0, 0, 49, 0, 52, 55, 0, 0,

Data 48 , 44 , 50 , 53 , 54 , 5¢ , O, O, O, 43 , 51 , 45 , 42 , 57
0

0
’ 50 ’
6 , 114

17 , 55



'shifted keys UPPER case

pata 0, 0, 0, 0,0, 0,0,0,0,0,0,0,0,O0,0,°20

pata 0, 0, 0, 0, 0,88, 33, 0, 0, 0, 9% , 83, 65, 87 , 34 , O
Data 0 , 67 , 88 , 8 , ¢9 , 0 , 35, 0 , O, 32 , 86 , 70 , 84 , 82 , 37 ,
0

Data 0 , 78 , 66 , 72 , 71 , 89, 38, 0, 0, 76, 77, 74 , 85, 47 , 40 ,
0

Data 0 , 59 , 75, 73, 79 , 1 , 41 , 0, O, 58, 9 , 76 , 48 , 80 , 63 ,
0

pata 0, 0, 0, 0,0, %, 0, 0, 0, 0, 13, %4, 0, 42 , 0, O

Data 0 , 62 , 0, 0, 0O, 8, 0, 0, 49, 0, 52, 55, 0, 0, 0,0

Data 48 , 44 , 50 , 53 , 54 , 56 , O, O, O, 43 , 51 , 45

Now there is a slight problem with the Bascom Getatkbd() function and that is that once you enter it
there is no easy way out of it unless a key is pressed.

It is possible to get out of the routine by starting a timer before caling getatkbd(),and when the timer
timesout set the ERR flag; once that is set the getatkbd() routine will exit.

Do
'read the keyboard
Start timer
Kb bytevalue = Getatkbd ()
Stop timer
'if a recognised key is pressed then do something
If Kb bytevalue > 0 Then
Locate 2 , 1
Led "byte value=" ; Kb bytevalue ; " "
Kb character = Chr (kb bytevalue)
Locate 3 , 1
Led "ascii char=" ; Kb character ; " "
End If
Loop

Timer isr:
Err=1
Stop timer
return

Altough this is a for using a keyboard it is not really an elegant solution to crash out of a loop by creating
an error. We an write our own software.

Before we can go on though we need to know about the scan codes sequence. The keyboard sends (at
least) three characters everytime a key is pressed.

For an ‘a’ the codes 1C FO 1C will be sent,

For an ‘s’ the codes 1B FO 1B will be sent.

If we are to write our own handler for keycoodes then we must ignore FO and the repeated scan code.

560



52.2 Keyboard as asynchronous data
For a one-off project a simple method of dealing with a keyboard is to treat it as an asynchronous serial

data connection and to ignore the clock line.
+0.5ms +06ms +07ms +0.8ms +09ms = 0 +02ms  +03ms +04dms +05ms  +0.6
hd W v v v v v Y v v

. v v
oo LLLL )

05

o L L e e S S S
10 L[

8 Input 8 = = = =

The logic analyser was used to monitor the two input signals, clock and data, however it was also used
to analyse the data signal and it did this independently of the clock signal (or asynchronously). It can do
this because the data bits are all the same width.

Using the ‘soft’ UART features in Bascom we can open a channel for receiving serial data on any pin.

'Title Block

' Author: B.Collis

' Date: July 2010

' File Name: ps2kb-serialtrial-V1.bas

' Program Description:

' Hardware Features:

' LCD on portc - note the use of 4 bit mode and only 2 control lines
' AREF PIN32 disconnected - uses internal 2.56V reference

' make kb clock

' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the crystal we are using
$regfile = "m32def.dat" 'the micro we are using
L,
'Hardware Setups

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =
Portc.7 , E = Portc.3 , Rs = Portc.2

Config Led = 20 * 4 'configure lcd screen

Open "comd.3:12000,8,0,1" For Input As {1

'aliases

Kd data Alias Pind.’7

Kb clock Alias Pind.o6

Kb control Alias Portd.o6
'Config Kb data = Input
Config Kb clock Input

'Declare Variables

Dim Kb textstring As String * 20
Dim Kb character As Byte

Dim Kb bytevalue As Byte

561



Dim Kb bytevalue old As Byte
Dim Repeat As Bit
'Initialise Variables

'Program starts here
Cursor Off
Cls
Locate 1 , 1
Led " async keyboard reader "
Cls
Led "serial kb in"
Do
'"look for input
'the data is not sent as a single keycode for each character pressed
there are 3 data bursts
'e.g.'a’ sends 1C FO 1C ,so we ignore FO and respond to only the first 1C
Kb bytevalue = Inkey (#1)
If Kb bytevalue > 0 And Kb bytevalue <> &HFO Then 'ignore FO
If Kb bytevalue <> Kb bytevalue old Then 'only respond once
'remember char for next time thru loop
Kb bytevalue old = Kb bytevalue
'get the ascii value for the scan code value
Kb character = Lookup (kb bytevalue , Keydata)
'build a string of characters
Kb textstring = Kb textstring + Chr (kb character)
'display some stuff on the LCD for test purposes
Locate 2 , 1
Lcd Hex (kb bytevalue) ; " " ; Kb bytevalue
Locate 3 , 1
Led Chr (kb character)
Locate 4 , 1
Led " "
Locate 4 , 1
Lecd Kb textstring

Else
Kb bytevalue old = 0 'we repeat key presses
End If B
If Kb bytevalue = &H5A Then 'we got a return key
'do something with it?
End If
End If
Loop
|
End

'convert the data from the keyboard to an ascii character

'only ascii characters are here if you want other data to be recognised

! then change the table specific key below from a 0 to another number
Keydata:

'normal keys lower case

562



Data

Data
Data
Data
Data
Data
Data
Data

S O O O O OO

8

4

0,
99
110
44
0,
60
44

4

4

4

0

4

0

4

1

1

0

4

20
98
07

4

4

50

0

0

4
4

4

0

4

4

4

0
10
10
10

0

4

53

0
4
5

0

4

4

4

4

4

4

4

d
113

101
103
111

92
0
54

4

4

4

4

1
49 , 0, 0,
, 52 , 51, 0
, 121, 54 , 7
, 48 , 57 , O
o, 0, 0,0
49
56 , 0, 0, 0

[ee)
~

(@)
~

(@)
~

I 0 I 0 I
Z
0o, 122 ,
, 0, 32,
, 8, 44
’ 0 ’ 46 ’
’ 13 ’ 0 ’
, 0, 52
, 43 , 51

563

0

4

S

115

4

14

1

4
0

14

18

109

5

4

55

45

4

4

0

4

a

97

4

4

108

92

14

14

102

0

&H5E

4

106

4

42

14

4

0

1

4

0

14

W
19

116

4

48

4

4

4

0

117

0

4

2
50
, 1

4

112

14

14
55

4

0

14

4

43

53
56

4



53 Radio Data Communication

53.1 An Introduction to data over radio
Radio (electromagnetic) waves are used to transfer information from one place to another through the
atmosphere (that’s without wires) . A radio wave consists of two signals, a carrier wave and the
information to be sent called the modulating wave this wave could be audio or digital data.
These two are combined together to produce the radio signal. There are many different ways that the
carrier can be modulated. With audio signals this can be AM (amplitude modulation), FM (frequency
modulation), PM phase modulation.

Radio - Carrier Wave

w

Frequency Modulated Carrier Wave

i

In FM the carrier signal is
modulated by an audio signal.

If the carrier is 89.8MHz (Life FM)
and an audio tone is applied then
the signal transmitted will vary in
frequency depending upon the
frequency and amplitude of the
audio wave.

564



In Amplitude modulation the frequency of the carrier wave is fixed however its amplitude changes in
time with the modulating signa,. e.g National Radio 756Khz.

AM picks up interference from other electrical and electronic devices and is noiser than FM.

Radio - Carrier Wave

Audio Wave

Amplitude Modulated Carrier Wave

| | |

565



53.1.1 Pulse modulation
Data is often sent using some form of pulse modulation, pulses represent either a 1 or 0.

When sending data over any communication link it is important to realise that the system is
asynchronous (no clock) so the receiver relies solely on the incoming signal to rebuild the data. If we
want to send data then we need to send something for a ‘1’ and we need to send something for a ‘0’ We
canot rely on the absence of data to be a ‘0’ as in this diagram below.

,ﬂ\ NAANANAANRNNANN carrier
i VR { SEe N \ '\ LV BT \ Wave
CATERRL AW AR RNR AN IUE

B N

'n\ ‘; 'nl/ \'," i‘l "‘ .'1. ‘;' \ f” i'.i f \. '," \\ :' .'.l “f " /;' \
VY Y8 YUY Yy N \J \/

A receiver just cannot reliably determine a zero; as how can it determine that an absence of signal is a
zero or due to a lost or broken transmission? Also how longis a 1, if 111 is sent will the system geta 1,
allorlll?

Digital modulation systems range from very simple to highly highly complex.
OOK is ‘on off keying’ (keying is the term originally used to describe controlling a radio carrier wave with
a Morse key),

Using OOK the signal is turned on and off in patterns to send 1’s and 0’s. This is asynchronous, which
means that the receiver has to figure out from the transmitted signal what is a 1 and what is a 0. The
sequence is very easy to receive though as the overall length of a 1 and O is the same, the difference is
the length of time the transmitted signal is present.

566



434MHz is a frequency that can be used in many countries for free (unlicensed) radio transmission and
is commonly used in systems such as remote controlled garage doors.

There are a large range of transmitters, receivers and tranceivers (a device which both transmits and
receives) available in 434Mhz.

There are also simple encoder and decoder ICs to help with the modualation of the signals. Here is a
block diagram of a student (PB) radio system that was designed to send messages from loation to
another.

Transmitter

Encoder

=

Receiver

Decoder

567



The transmitter has a built in antenna, the receiver has a wire soldered to it as an antenna (green wire
currently cable tied in the picture). This needs to be 16.4cm long, if you were making your own PCB you
make it a track, or you could also wind 24 turns of 0.5mm wire around something 3.2mm in diameter.

568



In this partial schematic the HT12Encode receives 4 bits of data from the microcontroller and sends it
along with the 8 address bits serially to the transmitter. The speed of the data is set by the value of the
resistor. Also any convenient pins can be used on the microcontroller.

Tx
Address=11001011 D
5V
ma0 ~ voolg— svjov
mAa1 DoOUTH Data
0]A2 OSC1
= N
—i0|A4 TE[IE
—{0] A5 AD11 :l( 1B.0 ]
[As  AD10[1& 8.1 ]
A7 AD9[1€ B2 D.2
—{|vSS  AD8[& B3 n
ov HT-12E [ Micro ]
[ 1
C 1
[ 1
Sensors:::b- O =
[ 1

569



The receiving system is very similar to the transmitting system, the receiver board has more power pins
to connect and two output pins, audio out and data out. The audio out pin is not used. It is essential that
the address on the HT12D is the same as that on the HT12E, otherwise the data will be ignored.

Rx
Address=11001011 D
‘ |
5V
mao ~ voop— oV 5V v | ov
A1 VT >
mjAz  0SCH1
= N =l
—m]as DN Data
—{0] A5 AD11[] >|: B.O ]
mas  AD10[T 3.1 u|
maA7  ADO[O >B.2 D.2[ -
—vss  ADs[] 3]e3 m
o HT-12D C Micro 1
[ 1
C 1
</ m
C 1
[ 1
;4 435 =||

Antenna EXT. +5V DC +5V DC Ground

Ground Ground Output Output
(Audio) (Digital)

570



53.2 HT12E Datasheet, transmission and timing

It is quite important to gain experience reading manufacturers datasheets, it is worth reading this with
the datasheet for the HT12 open as well. One confusing thing about datasheets is that they sometimes
cover a number of different parts in one sheet. This datsheet covers the HT12A and HT12E, the HT12A
is used for infrared remote controls the HT12E for RF (radio) . Datasheets also have various pinouts for
the ICs such as DIP (dual inline package) and SOP (small outline package) in this case. Make sure you
order the right one!

In the datsheet you will find timing diagrams, they occur a great deal in electronics; this diagram has
been taken from the HT12E datasheet and modified a little to help explain its detail.

o —,
TE J
—»| |4— <1 word
Encoder
DOUT |
g— 4 words —p
e A

In this diagram two time-voltage graphs are drawn one above the other, the reason for this is that they
line up in time. When TE (transmit enable) goes low Dout (data out) goes high and sends the data 4
times. The line or bar above the TE in the daatsheet means that it is an active low signal, i.e. the line
should usually be high and when it goes low the IC will do something.

f_l ™,
M= Conlinuously e 4words | )

The second diagram is the same, however in this case it shows that if TE is held low then the HT-12E
continues repeats sending the word until it goes high again(however it will always send at least 4 words)

These diagrams represent the flow of the process from the micro to the HT-12E and the HT-12E to the
transmitter. We are not looking at what comes out of the transmitter.

571



The datasheet gets a little confusing and isn’t clear about he data word structure for the two devices so
an oscilloscope was use to capture the transmission sequence on Dout from the HT-12E. The time in

millisecs is shown on the X axis, it can be seen that the whole sequence of 4 data words took almost

60mS to send. (Why does it send the data word 4 times?)

¥
5o

]
=y

x=85411s

on
0

Here is one data word, a data ‘word’ is 13 bits of data from the oscilloscope.

10

20 30 40

50

60

70

80

A single start bit, then the 8 address bits (10110011) then the 4 data bits (0001).

v
5

x=910.4)1s,0=222.9)1s,x0= 687.51s

S

0

0| 1

0

0

0

90

ms
100

Each full bit includes a period of low and a period of high time and lasts for 687.5uSecs (the difference
in time between the o and the x on the scope display)

Other measurements were taken and a single pulse was measured as 229 uSecs in duration and a
double pulse was measured as 458 uSecs, with the whole word taking about 8.5mSecs to transmit.

These rates are all determined by the value of R connected to the HT-12E, which in our case is 750K.

572



This graph from the datasheet shows how the frequency of the oscillator relates to the supply voltage
and resistor value. The 750k resistor at 5V will make the oscillator run at about 3.9Khz.
A 3.9Khz wave form has a period of 0.256mSecs (256uSecs).

The measured value was 228uSecs which is a 4.4kHz It doesn’t quite match, its about 10% off. This
could be due to variation in temperature, voltage, resistance or even inside the IC.

(Scale) Oscillator frequency vs supply voltage

(3kHz}3.00

573



53.3 HT12 test setup

The above 2 boards have been setup in the classroom to test the system. The transmitter is on the left,
the schematics for these are:

)
O O &
1.Set both tx and rx to = = 1 =t
the same address ool
] ] ]
oo ] e =
g GND Q
Address . = T 3. press tx button
Al DOUT
A1
A2 TE pd
s 101
Ad AD11 2
ps  HTIZE" apqp |12
AR apa 1
AT aDg |14
o 5
un]
@ & &
[n7] (V] o
i F1
MO
MO

2. Set the four switches to the

four bits of data to be sent —
SrO

574



1.5et both tx and rx to
the same address

Address

GMND

=t g2

o 114 1119
= =] o = Lo =T ¢n oo
e Pl B & Sl
agsl S =
(E{I]
[mu]
- (E{I]
]
=3
17
A MTIADOUT
o 14
a2 (DIMITE
a3 102 . R3
A4 . D1 AL 1
a5 HT12D"  pyq 112 T
A oA T A1
AT oa
o o
[un}
2 3 3
(=] (] (]
R2 When the 4 bits of data have been
D received they are latched (stay on) the 4 (MDD

LEDs - and the single LED flashes once

575



53.4 HT12E Program

Writing a program to send data usingthe HT12E is straight forward because the IC hides all the
complexity from us and we don’t have to worry about what it is actually doing. Here is a program that
sends the numbers 0 t015 continuously to the transmitter, at 2 second intervals.

' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 ' internal clock
Sregfile = "mlé6def.dat"

Hardware Setups

setup direction of all ports
Config Porta = Output

Config Portb = Output

Config Portc Output

Config Portd Output

Hardware Aliases
Htl2e te Alias Portd.2
Te led Alias Portc.O

' initialise ports so hardware starts correctly Porta = &HOO
Portc = &HFF ' Turn Off Led's on Portc.0 and PORTC.0.1
Portd = &HFF ' Ensure encoder is not transmitting

' Declare Variables
Dim I As Byte

Initialise Variables
Program starts here
Transmit the values 0 to 15 then repeat

Do
For I = 0 To 15
Portb = I ' Put the value into the encoder via PortB
Gosub Transmit ' Allow the data to be transmitted
Waitms 2000 'some Delay is for necessary testing.
' without effecting transmission reliabilty
Next T
Loop
v\ - _  _
' Subroutines
Transmit:
Set HtlZe te ' Enable transmission of 4bits from PortRB
Set Te led ' Turn on Transmission indicator
Waitms 5 ' Need a short delay for HT12E
Reset Htl2e te ' Stop the encoding and transmission of data
Waitms 60 ' Need to see LED and wait till transmission completed
Reset Te led
Return

576



53.5 HT12D datasheet

The matching part for the HT12E is the HT12D. The HT12D decodes the data from the receiver, if it
receives the same message 3 times in a row it will put the 4 bits of data onto the 4 data pins and then
put the VT (valid transmission) pin high for a short period. Note that the encoder repeats the data 4
times, this allows for some error, this repeating or sending duplicate data is called redundancy.

The flowchart from the datasheet explains the process.

( Power on J

>l<

Standby mode
No Disable VT &
ignore the rest of
this word
Yes A

Address bits
matched ?

Store data

>y

Match
previous stored
data ?

No

3 times
of checking}
completed *

Latch data
to output &
activate VT

Address or
data error ?

577



The graph from the datasheet shows that a 33k resistor at 5V will oscillate at 210kHz. The datasheet

states that the decoder oscillator must be about 50 times that of the encoder oscillator.

Rosc (Q2)

e g

(v DC)

The recommended

50 fOSCE (HT12E encoder)

~

oscillator trequency is fhgep (decoder)

578



53.6 HT12D Program

Writing a program to receive data is not hard as the HT12D takes care of the difficult details and signals
us when valid data has arrived via the VT pin.

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 ' internal clock

S$regfile "mlé6def.dat" ' ATMEGAl6

' Hardware Setups
' setup direction of all ports

Config Porta = Output '4 leds on PortA.Oto A.3

Config Portb = Input ' Valid data is input on this port
Config Portc = Output ' Used for LED's and LCD

Config Portd = Input ' PortD.2 is used for Data Valid

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =
Portc.7 , E = Portc.3 , Rs = Portc.2
Config Led = 16 * 2

'  Hardware Aliases

Htl2d dv Alias Pind.2

' Declare Constants

Const True =1

Const False = 0

' Declare Variables

Dim Rcvd value As Byte

' Initialise Variables

Cls

Cursor Off

Locate 1 , 1

Led "HT12D test program"

Program starts here

Do
If Htl2d dv = True Then ' If signal present
Gosub Get data ' Wait until a valid wvalue
Porta = Not Rcvd value 'display on leds - inverse
Locate 2 , 1
Lecd "Rcvd Value = "
Led Revd value ; " " ' display value
End If
Loop !
End 'end program
Get data:
ﬁcvd_value = Pinb And &HOF ' get value from lower nibble PortB
While Htl2d dv = True ' wait until data no longer wvalid
Wend
Return

The difficult part of the previous program is integrating it into a larger program where more things are
happening, the trouble is that we often don’t want to check if something has happened (polling) we want
to be told when it has happened (interrupted).

In a larger program it would make sense then to use one of the AVR’s hardware interrupt, thi sis
covered further on after the topic od interrupts has been introduced.

579



53.7 Replacing the HT12E encoding with software

The HT12E is not that complex (the HT12D is), it can easily be replaced with a program as in this code
below. The program continuously sends the numbers 0 to 15 as data to a fixed address &B01101111.

The code is in the subroutine transmit:
It sends the start bit, then 8 bits if address then 4 bits of data.

>
o
o
-

The code is easily implemented using for-next loops , within the loop it checks each bit

toseeifitisalor0. To do thisituses the code If Addr.i = 1 Then ...

The loop goes from 7 down to O, if the address is &B01101111 then as i changes the

code addr.i selects each bit of the address. This is similar to addressing port pins e.g.

portd.7 or portd.O

O RLrINW~OIIO|IN|—

RIR|R ROk k| o

' Compiler Directives (these tell Bascom things about our
hardware)

$crystal = 8000000 ' internal clock
$regfile = "m32def.dat"

Hardware Setups

setup direction of all ports
Config Porta = Output

Config Portb = Output

Config Portc Output

Config Portd = Output

' Hardware Aliases

Tx data Alias Portd.7

Tx led Alias Portc.0

' initialise ports so hardware starts correctly Porta = &HOO
Set Tx data

Set Tx led

Set Portc.1

Declare Constants

Const Tx del = 230 'micro seconds

' Declare Variables

Dim I As Byte 'temporary variable

Dim J As Byte 'temporary variable

Dim Addr As Byte

Dim Dat As Byte 'the 4 bits of data to send
' Initialise Variables

Addr = &B01101111 'the address for this system

Program starts here

the main program is just a test routine to test the subroutine
! that does the actual work

' Continuously transmit the values 0 to 15

For I = 1 To 4 ' toggle the LED on and off a few

times

Toggle Tx led ' to show the PCB is working

580




Waitms 500
Next
Do
For Dat = 0 To 15
Gosub Transmit
Waitms 2000
Next T
Loop

' Subroutines
Transmit:
Reset Tx led
For J = 1 To 6

'send the start bit first

Set Tx data
Waitus Tx del
Reset Tx data
'send the address
For I = 7 To O Step -1
Waitus Tx del
If Addr.i = 1 Then
Waitus Tx del
Set Tx data
Waitus Tx del
Reset Tx data
Else
Set Tx data
Waitus Tx del
Waitus Tx del
Reset Tx data
End If
Next
'send the data
For I = 3 To O Step -1
Waitus Tx del
If Dat.i = 1 Then
Waitus Tx del
Set Tx data
Waitus Tx del
Reset Tx data
Else
Set Tx data
Waitus Tx del
Waitus Tx del
Reset Tx data
End If
Reset Tx led
Next
Waitus 9000
Next
Set Tx led
Return

581

' test code
' Allow the data to be transmitted
' Delay is for visual testing.

'light tx LED
'send full word 6 times

'carrier on
'start bit time

'carrier off

'send most significant bit(7) first
'start with 1 period of no carrier

'extra low time for 1
'carrier on

'carrier off

'carrier on
'extra carrier on time for 1

'carrier off

'send most significant bit(3) first
'start with 1 period of no carrier

'extra low time for 1
'carrier on

'off

'on
'extra carrier on time for 0

'off

'pause between words

'TX LED off



Here are two screen shots from the oscilloscope the timing in each is almost identical apart from the
delay between datawords. This time period could be reduced from 9000uS to 8000uS to match the
HT12E.

It should be noted that although the HT12E sends the data word 4 times, we found it necessary to send
the data word at least 6 times to get a reliable transmission.

HT12 Encoder + Transmitter

0 1 1|0 1 1| 11| |1 \J
Nl ad N N b bad ] V] Al e e b W

|
0 2 4 6 8 10 12 14 16 18 ms
|
|

Address = 01101111 |

—-—nnmn---mrfn !‘T

AVR with software encode + transmitter

582



54 Introduction to 12C

The Inter-IC bus (I12C pronounced "eye-squared-see") was developed by Philips to communicate
between devices in their TV sets. It is now popular and is often used when short distance
communications is needed. It is normally used within equipment to communicate between pcb's, e.g.
main boards and display boards rather than externally to other equipment.

It is a half duplex synchronous protocol, which means that only one end of the link can talk at once (half
duplex) and that there are separate data and clock lines (synchronous). The real strength of this
protocol is that many devices can share the bus which reduces the number of I/O lines needed on
microcontrollers,it increases the number of devices 1 micro can interface to and several manufacturers
now make 12C devices.

Figure 1: 1°C has two lines in total

: DA
| SCL
@ ®- ® - -
Peripheral Peripheral | || Peripherd P Peripheral
Deviea # Deviea # Devics # Devica #
‘ |

The two lines are SDA - Serial data and SCL - Serial Clock
Communication

The system of communications is not too difficult to follow, the first event is when the master issues a
start pulse causing all slaves to wake up and listen. the master then sends a 7 bit address which
corresponds to one of the slaves on the bus. Then one more bit is sent that tells the slave whether it is
going to be receiving or sending information. This is then followed by an ACK bit (acknowledge) issued
by the receiver, saying it got the message. Data is then sent over the bus by the transmitter.

Figure 2: 1°C communication

Start Read or Weite Acknowledgenent Sty
(by Master) (by Master) (by Recetver) : by nm°5
% - - = e S A - > o]
s A A A F
[ F ¢ c c
3 X X
M8 L8 s L8 s s
— Slave Address — - W— e (A c—
- (by Master) - - (by Tranmsmitter) - - (by Teamsmittar)

The 12C protocol is not too hard to generate using software; Bascom comes with the software already
built in making 12C very easy to use.

583



54.1 I2C Real Time Clocks

These are fantastic devices that connect to the microcontroller and keep the time for you. Some
common devices are the DS1337, DS1678 and DS1307.

0 Vee x1g 1™ 8 Ve

xg ~ pvee x1 Q1 8 _
X2 O FISQWINTE X202 7 B8 INT Xxzd:2 7 B3 sQwriouT
NTA O (1 SCL Vaar O3 60 SCL Va3 o6 [scL
GND 1 SDA GND L} 4 50 spA g4 s PBspa
DS1337 D81678 DS1307

All three require an external 32.768KHz crystal connected to X1 and X2, 5Volts from your circuit
connected to Vcc, a ground connection (OV) and connection of two interface pins to the microcontroller,
SCL (serial clock) and SDA (serial data).

The DS1678 and DS1307 can have a 3V battery connected to them as backups to keep the RTC time
going even though the circuit is powered down. This will last for a couple of years and note that it is not
rechargeable. There are datasheets on www.maxim-ic.com website for each of these components as
well as many other interesting datasheets on topics such as battery backup. Each of these devices has
other unique features that can be explored once the basic time functions are operational.

In these RTCs the registers are split into BCD digits. What this means is that instead of storing seconds
as one variable it splits the variable into two parts the units value and the tens value.

register 0 Tens of seconds Units of seconds
register 1 Tens of minutes Units of minutes
register 2 Tens of hours  Units of hours
register 3 Tens of hours  Units of hours
register .. Tens of ... Units of ...

43 Seconds = &B 00101011

01000011

/

4=0100 3=0011

43 BCD

When we want to put the variable onto an LCD we cannot write Icd seconds as the number would not
be correct. We must first convert the BCD to true binary using

Seconds = Makedec(seconds).

LCD Seconds

The oppositeneeds to happen when writing to the time registers, we must convert the binary to bcd.

Temp = Makebcd(seconds)
I2cwbyte Temp

584



54.2 Real time clocks

These devices are very common in microcontroller products such as microwave ovens,
cellular phones, wrist watches, industrial process controllers etc.

54.3 Connecting the RTC

Vee . —{ i =
, ; E] 7 B sQw/ouT
. RTC | SDA AVR =
32.768khz =— HH:MKLSS 4 il C I SDA
: MMDD/YY p‘ 307
DAY OF WEEK Lo SCL
CONTROL REGISTERS GND

\-/
3V E:Jé
batte

The crystal for the RTC is a 32.768khz crystal. The reason for the strange number is that
32768 is a multiple of 2, so all that is needed to obtain 1 second pulses is to divide the
frequency by two 15 times to get exactly 1 second pulses.

32768
12 =16384, /2 =8192, /2 =4096, /2=2048...2=8,/2=4,/2=2,/2=1

54.4 Connecting the RTC to the board

Take special note about bending the leads and soldering to
avoid damage to the crystal. Also fix the crystal to the board
somehow to reduce strain on the leads.

| A

The 12C lines SDA and SCL require pull up resistors of 4k7
each to 5V.

The battery is a 3V lithium cell, connect it between 0V and
the battery pin of the RTC. If a battery is not used then the
battery backup pin probably needs connecting to 0V, but
check the datasheet first.

585



54.5

First open the datasheet for the DS1307 RTC

There is a memory within the RTC, firstly all the time and dates are stored individually. The

units and the 10s of each number are stored separately.

Here is the layout of the memory within the RTC

Internal features

ADDRESS| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | Bit0
00 0 [10 Seconds Seconds
01 0 10 Minutes Minutes
AM/PM
02 0 [12/24 T 10Hr Hour
03 0| 0 0 0 | Day of week
04 0 0 10 Date Date
05 olo| o |10 Month
Mo
06 10 Year Year
07 CONTROL
08
RAM
3F

The date and time Sunday, 24 September 2007 21:48:00 are stored as this

ADDRESS| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | Bit0
00 0 0 Seconds
01 4 8 Minutes
(02 2 1 Hours
03 0 7 (Sunday)
04 2 4 Day
05 0 9 month
06 0 7 Year

When we read the RTC we send a message to it, (SEND DATA FROM ADDRESS 0)
and it sends 0,48,21,07,24,08,7,..
until we tell it to stop sending

586



54.6 DS1307 RTC code

Here is the process for setting up communication with a DS1307 RTC followed by the code for one
connected to an 8535.

Stepl: configure the hardware and dimension a variable, temp, to hold the data we want to send
to/receive from the 1678. Dimension the variables used to hold the year, month, day, hours, etc. Don't
forget to configure all the compiler directives and hardware such as the LCD, thermistor, switches etc.

Step2: setup the control register in the RTC, to specify the unique functions we require the 1307 to carry
out. This is only ever sent once to the 1307.

Step 3: write a number of subroutines that handle the actual communication with the control and status
registers inside the 1307. These routines make use of the Bascom functions for 12C communication.

Step 4: write a subroutine that gets the time, hours, date, etc from the 1307.
step 5 : write a subroutine that sets the time, hours, date, etc from the 1307.

step 6: write a program that incorporates these features and puts the time on an LCD.
' Title Block

' Author: B.Collis

' Date: 26 Mar 2005

' File Name: 1307 Ver4.bas

' Program Description:

' use an LCD to display the time

' has subroutines to start clock,write time/date to the rtc,

' read date/time from the rtc, setup the SQW pin at 1Hz

'added subroutines to read and write to ram locations

' LCD on portc - note the use of 4 bit mode and only 2 control lines
' DS1307 SDA=porta.2 SDC=porta.3

' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the crystal we are using
Sregfile "m32def.dat" 'the micro we are using

' Hardware Setups

' setup direction of all ports
Config Porta = Output

Config Portb = Output !

Config Portc = Output !

Config Portd = Output !

' config 2 wire I2C interface

'"Config I2cdelay = 5 ' default slow mode

Config Sda = Porta.2

Config Scl = Porta.3

'Config lcd

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =
Portc.7 , E = Portc.3 , Rs = Portc.2

Config Lcd = 16 * 2 'configure lcd screen

587



'Hardware Aliases

'Initialise ports so harware starts correctly
Cls 'clears LCD display
Cursor Off 'no cursor

' Declare Variables

Dim Temp As Byte

Dim Year As Byte

Dim Month As Byte

Dim Day As Byte

Dim Weekday As Byte
Dim Hours As Byte

Dim Minutes As Byte

Dim Seconds As Byte

Dim Ramlocation As Byte
Dim Ramvalue As Byte

' Initialise Variables
Year = 5
Month = 3
Weekday =
Day = 26
Hours =
Minutes
Seconds = 0

6

I o
o
—

' Program starts here
Waitms 300
Cls

'these 3 subroutines should be called once and then commented out
'Gosub Startl1307clk
'Gosub Writel307ctrl
'Gosub Writel307time

'Gosub Clearl307ram 'need to use once as initial powerup is
undefined

'Gosub Writeram
'Gosub Readram

'Ramvalue = &HAA
'"Call Writel307ram(ramlocation , Ramvalue)

588



Do
Gosub Rea
Locate 1
Lcd Hours
Led "
Lcd Minut
Led "
Lcd Secon
Led "
Lowerline

dl307time
;1

es

ds

Lcd Weekday

Led ":"
Lcd Day
Led ":"
Lcd Month
Led "
Lcd Year
Led "
Waitms 20
Loop

0

! Subroutines
Readl307time:

I2cstart

I2cwbyte &B11010000
I2cwbyte 0

I2cstop

Waitms 50

I2cstart

I2cwbyte §B11010001
I2crbyte Seconds , Ack
I2crbyte Minutes , Ack
I2crbyte Hours , Ack
I2crbyte Weekday , Ack
I2crbyte Day , Ack
I2crbyte Month , Ack
I2crbyte Year , Nack
Seconds = Makedec (seconds)
Minutes = Makedec (minutes)
Hours = Makedec (hours)
Weekday = Makedec (weekday)
Day = Makedec (day)

Month = Makedec (month)
Year = Makedec (year)
I2cstop

Return

589

'read the rtc

'end program

'RTC Real Time Clock

'send device code (writing data)
'address to start sending from

'device code (reading)



'write the time and date to the RTC
Writel307time:
I2cstart
I2cwbyte &B11010000 'send device code (writing data)
I2cwbyte &HOO 'send address of first byte to
access
Temp = Makebed (seconds) 'seconds
I2cwbyte Temp
Temp = Makebcd (minutes) 'minutes
I2cwbyte Temp
Temp = Makebcd (hours) 'hours
I2cwbyte Temp
Temp = Makebecd (weekday) 'day of week
I2cwbyte Temp
Temp = Makebcd (day) 'day
I2cwbyte Temp
Temp = Makebcd (month) 'month
I2cwbyte Temp
Temp = Makebcd (year) 'year
I2cwbyte Temp
I2cstop
Return

Writel307ctrl:
I2cstart
I2cwbyte &B11010000 'send device code (writing data)
I2cwbyte &HO7 'send address of first byte to
access
I2cwbyte &B10010000 'start squarewav output 1Hz
I2cstop
Return

Startl307clk:
I2cstart
I2cwbyte &B11010000 'send device code (writing data)
I2cwbyte O 'send address of first byte to
access
I2cwbyte O 'enable clock-also sets seconds to O
I2cstop
Return

Writel307ram:

'no error checking ramlocation should be from &HO08 to &H3F (56 bytes only)
I2cstart
I2cwbyte &B11010000 'send device code (writing data)
I2cwbyte Ramlocation 'send address of byte to access
I2cwbyte Ramvalue 'send value to store
I2cstop

Return

590



'routine to read the contents of one ram location
'setup ramlocation first and the data will be in ramvalue afterwards
'no error checking ramlocation should be from &HO08 to &H3F (56 bytes only)
Readl307ram:
I2c¢cstart
I2cwbyte &B11010000 'send device code (writing data)
I2cwbyte Ramlocation 'send address of first byte to
access
I2cstop
Waitms 50
I2cstart
I2cwbyte &B11010001 'device code (reading)
I2crbyte Ramvalue , Nack
I2cstop
Return

Clearl307ram:
Ramvalue = 00
Ramlocation = &HO8
I2cstart
I2cwbyte &B11010000 'send device code (writing data)
I2cwbyte Ramlocation 'send address of byte to access
For Ramlocation = &H08 To &H3F
I2cwbyte Ramvalue 'send value to store
Next
I2cstop
Return

Writeram:
Ramlocation = &HOS8
Ramvalue = 111
Gosub Writel307ram
Ramlocation = &HO9

Ramvalue = 222
Gosub Writel307ram
Return
Readram:
Cls

Ramlocation = &HO08
Gosub Readl307ram
Lcd Ramvalue

Led ":"
Ramlocation = &HO9
Gosub Readl307ram
Lcd Ramvalue
Ramlocation = &HOA
Gosub Readl307ram
Led ":"

Lcd Ramvalue

Wait 5

Return

Interrupts



54.7 DS1678 RTC code

" 1. Title Block

" Author: B.Collis

‘Date: 10 mar 03

‘Version: 1

' File Name: 1678_Verl.bas

' 2. Program Description:

' read the time from the RTC

"display it on the LCD

' 3. Hardware Features:

' Dallas DS1678 connected with 32.768khz crystal and battery backup
'SDAonA.2 SCLonA3

" LCD on portc - note the use of 4 bit mode and only 2 control lines
' 5 switches on portB.0, B.1, D.2, D.3, D.6

" 4. Program Features:

5. Compiler Directives (these tell Bascom things about our hardware)

$crystal = 7372800 'the crystal we are using
$regfile = "m8535.dat" 'the micro we are using
$noramclear 'so the compiler saves on memory

$lib "mcsbyteint.lbx"

' 6. Hardware Setups

' setup direction of all ports

Config Porta = Output ‘LEDs on portA
Config Portb = Output '‘LEDs on portB
Config Pinb.0 = Input

Config Pinb.1 = Input

Config Portc = Output '‘LEDs on portC
Config Portd = Output '‘LEDs on portD
Config Pind.2 = Input

Config Pind.3 = Input

Config Pind.6 = Input

Config Lcdpin = Pin, Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E = Portc.2 , Rs =
Portc.0

Config Lcd =40* 2 ‘configure Icd screen
Config Sda = Porta.2

Config Scl = Porta.3

' 7. Hardware Aliases

Sw_1 Alias Pinb.0

Sw_2 Alias Pinb.1

Sw_3 Alias Pind.2

Sw_4 Alias Pind.3

Sw_5 Alias Pind.6

Spkr Alias Portd.7 'refer to spkr not PORTd.7
' 8. initialise ports so hardware starts correctly

Porta = &B11110000 'turns off LEDs

Portb = &B11111111 'turns off LEDs

Portc = &B11111111 'turns off LEDs

Portd = &B11111111 'turns off LEDs

Reset Spkr

592



Cls
Cursor Off

' 10. Declare Variables
Dim Temp As Byte
Dim Century As Byte
Dim Year As Byte

Dim Month As Byte
Dim Day As Byte

Dim _Dayofweek As Byte
Dim Hours As Byte
Dim Minutes As Byte
Dim Seconds As Byte
Dim Control As Byte

' 11. Initialise Variables

'12. Program starts here
Locate 1,1

Led "IT'S TIME"

Do

'the control byte for the DS1678

'‘Debounce Sw_1, 0, Startrtc , Sub

Gosub Displaytimedate
Loop

' 13. Subroutines
Displaytimedate:
Locate 2,1
Gosub Read1678time

Select Case _Dayofweek

Case 1 : Lcd "Mon"
Case 2 : Lcd "Tue"
Case 3: Lcd "Wed"
Case 4 : Lcd "Thu"
Case 5: Lcd "Fri"

Case 6 : Lcd "Sat"

Case 7 : Lcd "Sun"

End Select

Led""

Select Case Month
Case 1 : Lcd "Jan"
Case 2 : Lcd "Feb"
Case 3: Lcd "Mar"
Case 4 : Lcd "Apr"
Case 5: Lcd "May"
Case 6 : Lcd "Jun”
Case 7 : Lcd "Jul"
Case 8: Lcd "Aug”
Case 9 : Lcd "Sep”
Case 10 : Lcd "Oct"
Case 11 : Lcd "Nov"
Case 12 : Lcd "Dec"

‘end program

'read the rtc ds1678

593



End Select
Led""
Lcd Day
Led""
Lcd Century
If Year < 10 Then Lcd "0"
Lcd Year
Led" "
If Hours < 10 Then Lcd "0"
Lcd Hours
Led ™"
If Minutes < 10 Then Lcd "0"
Lcd Minutes
Led ™"
If Seconds < 10 Then Lcd "0"
Lcd Seconds
Led ™ !
Return

'read time and date from 1678

Readl678time: 'RTC Real Time Clock
|2cstart
I2cwbyte &B10010100 'send device code (writing)
I2cwbyte &HOO 'send address of first byte to access
I2cstop
|2cstart
I2cwbyte &B10010101 'send device code (reading data)

I2crbyte Seconds , Ack

I2crbyte Minutes , Ack

I2crbyte Hours , Ack

I2crbyte _Dayofweek , Ack

I2crbyte Day , Ack

I2crbyte Month , Ack

I2crbyte Year , Ack

I2crbyte Century , Nack

I2cstop

Seconds = Makedec(seconds)

Minutes = Makedec(minutes)

Hours = Makedec(hours)

_Dayofweek = Makedec(_dayofweek)

Day = Makedec(day)

Month = Makedec(month)

Year = Makedec(year)

Century = Makedec(century)
Return

'‘write the time and date to the DS1678 RTC

Write1678time: 'RTC Real Time Clock
|2cstart
I2cwbyte &B10010100 'send device code (writing)
I2cwbyte &HOO 'send address of first byte to access
Temp = Makebcd(seconds) 'seconds

594



I2cwbyte Temp
Temp = Makebcd(minutes) 'minutes
I2cwbyte Temp
Temp = Makebcd(hours) 'hours
I2cwbyte Temp
Temp = Makebcd(_dayofweek) ‘day of week
I2cwbyte Temp
Temp = Makebcd(day) ‘day
I2cwbyte Temp
Temp = Makebcd(month) 'month
I2cwbyte Temp
Temp = Makebcd(year) 'year
I2cwbyte Temp
Temp = Makebcd(century) ‘century
I2cwbyte Temp
|2cstop

Return

‘write to the control register in the DS1678 RTC
'Write1678control:'’comment out because its used only once at the start
' |2cstart

" 12cwbyte &B10010100 'send device code (writing)

' 12cwbyte &HOE 'send address of first byte to access
" 12cwbyte Control

' 12cstop

'‘Return

'read Status Register in DS1678 RTC into Temp register
'Readl1678status:
'send address to read data from
[2cstart
' 12cwbyte &B10010100 'send device code (writing)
" 12cwbyte &HOF 'send address of first byte to access
' 12cstop

'read data from that address
' 12cstart
' 12cwbyte &B10010101 'send device code (reading)
" 12crbyte Temp , Nack 'get just the one byte
" l2cstop
'‘Return

'read Control Register in DS1678 RTC into Temp register
'Read1678control:
'send address to read data from
[2cstart
[2cwbyte &B10010100 'send device code (writing)
' 12cwbyte &HOE 'send address of first byte to access
" l2cstop
'read data from that address
[2cstart
" 12cwbyte &B10010101 'send device code (reading)

595



[2crbyte Temp , Nack 'get just the one byte
I2cstop

Cls

Lcd Temp

" Wait 10

'‘Return

'Startrtc:
" Cls
" Wait 1
" Control = &B00000111
'me=0
'clr=0 clear the RTC memory
'dis1=0 dis0=0
To=0"
'tr1=1 tr0=1"
‘ce=1 RTC clock on
" Gosub Writel678control
" Lcd "written control”
" Wait 1
" Century =20
" Year =03
" Month=8
" Day =24
' _Dayofweek =7
" Hours =16
" Minutes = 44
' Seconds =50
" Gosub Writel678time
" Cls
" Lcd "written time"
" Wait 1
'Return

596



55 Plant watering timer student project
A client needed a system to control a small pump for an indoor garden, here is Ishan’s project.

55.1 System block diagram

RELAY

EEm

Ch RTCHi [
ange irne Plant Watering Timelr}] ( ChangePurmptirme W
displayTimeDate dizplayPumpOnTime
readButtans readButtons
SetTime Save PumpTime /

Save
i MainState
ReadRTC

DisplayPumpStatus
DisplayTirme

55.2 State machine

——__Duration

Displa}flnstruc_tinns \(Ch 5 —
/CheckAlarmTlme = Save angeFumpliuration

readButtons

displayDurationOptions
PumpQn . . readButtons

PurmpOff

TurnPumpOn
readButtons

TurnFumpOn

readButtons

597



55.3 Program code

" 1. Title Block

' Plant WateringTimer v0.10

"Ishan 2006

' 2. Program Description:

' statemachine implementation for pump timer

' read the time from the RTC

" display it on the LCD

' 3. Hardware Features:

' Dallas DS1678 connected with 32.768khz crystal and battery backup
"SDAonA.2 SCLonA.Z3

' LCD on portc - note the use of 4 bit mode and only 2 control lines
' 5 switches on portB.0, B.1, D.2, D.3, D.6

"4, Program Features:

'5. Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the crystal we are using
$regfile = "m32def.dat" 'the micro we are using
'‘$noramclear 'so the compiler saves on memory

'$lib "mcsbyteint.lbx"

' 6. Hardware Setups
' setup direction of all ports

'‘Config Porta = Output '‘LEDs on portA
Config Portb = Output '‘LEDs on portB
Config Pinb.0 = Input 'switch

Config Pinb.1 = Input 'switch

Config Portc = Output 'LEDs on portC
Config Portd = Output '‘LEDs on portD
Config Pind.2 = Input 'switch

Config Pind.3 = Input 'switch

Config Pind.6 = Input 'switch

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E = Portc.1 , Rs =
Portc.0

Config Lcd =40 * 2 ‘configure lcd screen

Config Sda = Porta.2

Config Scl = Porta.3

' 7. Hardware Aliases

Sw_5 Alias Pinb.0

Sw_4 Alias Pinb.1

Sw_3 Alias Pind.2

Sw_2 Alias Pind.3

Sw_1 Alias Pind.6

Pump Alias Portb.2

' 8. initialise ports so hardware starts correctly, activate pullups on sw's

Porta = &B11110000 'turns off LEDs
Portb = &B11111111 'turns off LEDs
Portc = &B11111111 'turns off LEDs
Portd = &B01111111 'turns off LEDs
Reset Pump "turn the pump off'



' 9. Declare Constants
Const State_main =0
Const State_pumpon = 1
Const State_pumpoff = 2

Const State_change_time =3

Const State_change_pumptime = 4
Const State_change_pumpdur = 5

' 10. Declare Variables

Dim Curr_state As Byte
Dim Switch As Byte

Dim Pump_hours As Byte
Dim Pump_mins As Byte
Dim Pump_dur As Byte
Dim Cursor_posn As Byte
Dim Oldseconds As Byte
'RTC variables for a DS1678
Dim Control As Byte

Dim Temp As Byte

Dim Century As Byte

Dim Year As Byte

Dim Month As Byte

Dim Day As Byte

Dim _dayofweek As Byte
Dim Hours As Byte

Dim Minutes As Byte

Dim Seconds As Byte

' 11. Initialise Variables
Curr_state = State_main
Cursor_posn =1
Century = 20

‘Control = &B00000111
'me=0

'clr=0 clear the RTC memory
'dis1=0 dis0=0

'ro=0"

'tr1=1 tr0=1"

'‘ce=1 RTC clock on

'12. Program starts here
Cls
Cursor Off

‘the state machine variable
'which switch is pressed

'begin here

'tell rtc to go on battery

Lcd "welcome to the pump controller”

Wait 1
Cls

599



'state machine implementation

Do
'read switches (common to all states so put here)
Switch =0

Debounce Sw_1,0,S1, Sub
Debounce Sw 2,0, S2, Sub
Debounce Sw_3,0, S3, Sub
Debounce Sw 4,0, S4, Sub
Debounce Sw 5,0, S5, Sub
‘action the current state
Select Case Curr_state
Case State_main : Gosub Sub_main
Case State_pumpon : Gosub Sub_pumpon
Case State_pumpoff : Gosub Sub_pumpoff
Case State_change_time : Gosub Sub_change_time
Case State_change_pumptime : Gosub Sub_change pumptime
Case State_change_pumpdur : Gosub Sub_change_pumpdur
End Select
Loop
End

'switch routines

S1:

Switch =1
Return
S2:

Switch =2
Return
S3:

Switch =3
Return
S4:

Switch =4
Return
S5:

Switch =5
Return

600



'individual states’ routines

Sub_main:
'display pump condition
Locate 1,1
Led "pumpis ™
If Pump =0 Then
Lcd "OFF"
Else
Lcd "ON "
End If

'get and display the time

Gosub Read1678time 'read the rtc (ds1678)
Gosub Displaytime 'put time on the display

'display user instructions on second line
Locate 2, 1
Lcd "TurnOn TurnOff SetTime PumpTime Dur"

'if user has pressed a switch action their choice

'but prior to changing to the new state setup any parameters

Select Case Switch

Case 1:Cls
Curr_state = State_pumpon

Case 2 : Cls
Curr_state = State_pumpoff

Case 3:Cls
Gosub Displaytimedate ‘get current time
Cursor_posn =1 'start with known cursor position
Locate 1, Cursor_posn 'tell display to start there
Cursor On Blink 'let the user see the cursor
Curr_state = State_change_time

Case 4 : Cls
Curr_state = State_change_pumptime

Case 5:Cls
Curr_state = State_change_pumpdur

End Select

'see if it is time to turn pump on/off
Gosub Check_pumptime
Return

Sub_pumpon:

Set Pump

Curr_state = State_main
Return

601



Sub_pumpoff:

Return

Reset Pump
Curr_state = State_main

Sub_change_pumptime:

Return

'display the time and instructions
Locate 1,1
Led " pump will go on at "
Locate 1, 21
If Pump_hours < 10 Then Lcd "0"
Lcd Pump_hours
Led ™"
If Pump_mins < 10 Then Lcd "0"
Lcd Pump_mins
'display switch actions
Locate 2,1
Led" -hr +hr -min +min save"
‘action any switch press
If Switch = 1 Then Gosub Decr_hours
If Switch = 2 Then Gosub Incr_hours
If Switch = 3 Then Gosub Decr_mins
If Switch = 4 Then Gosub Incr_mins
If Switch = 5 Then Gosub Save_pumptime
'if the max pump duration is 25 then
'it makes sense not to have the time cross midnight
'so make sure pump time is not greater than 11:30pm
If Pump_hours = 23 Then
If Pump_mins > 30 Then Pump_mins = 30
End If

Sub_change_time:

Return

Locate 2, 1

Lcd" left right decr incr save"

If Switch = 1 Then Gosub Cursor_left
If Switch = 2 Then Gosub Cursor_right
If Switch = 3 Then Gosub Decrement
If Switch = 4 Then Gosub Increment

If Switch =5 Then Gosub Save_time

Sub_change _pumpdur:

Return

Locate 2, 1
Lcd" 5min 10min 15min 20min 25min"
Select Case Switch
Case 1: Pump_dur=5
Case 2 : Pump_dur =10
Case 3 : Pump_dur =15
Case 4 : Pump_dur = 20
Case 5 : Pump_dur =25
End Select
If Switch > 0 Then Gosub Save_pumpdur

602



‘auxuillary routines
Save_pumpdur:
Curr_state = State_main
'save pump_dur
Return

Check_pumptime:
Return

Displaytime:
Locate 1, 16
If Hours < 10 Then Lcd "0"
Lcd Hours
Led ™"
If Minutes < 10 Then Lcd "0"
Lcd Minutes
Led ™"
If Seconds < 10 Then Lcd "0"
Lcd Seconds
Locate 1, 28
Lcd Pump_hours
Led ™"
Lcd Pump_mins
Locate 1, 36
Lcd Pump_dur
Led "min”
Return

Displaytimedate:
Locate 1,1
Select Case _dayofweek

Case 1:
Case 2:
Case 3:
Case 4 :
Case 5:
Case 6 :
Case 7 :

End Select

Led "™

Lcd "Mon"
Led "Tue"
Lcd "Wed"
Led "Thu"
Lcd "Fri"

Lcd "Sat"

Lcd "Sun”

Select Case Month

Case 1:
Case 2:
Case 3:
Case 4 :
Case 5:
Case 6 :
Case 7 :
Case 8 :
Case 9:

Lcd "Jan”
Lcd "Feb"
Lcd "Mar"
Lcd "Apr”
Lcd "May"
Lcd "Jun”
Led "Jul”

Lcd "Aug”
Lcd "Sep”

Case 10 : Lcd "Oct”

603



Case 11 : Lcd "Nov"
Case 12 : Lcd "Dec"
End Select
Led""
If Day < 10 Then Lcd "0" 'insert a leading zero
Lcd Day
Led""
Lcd Century
If Year < 10 Then Lcd "0"
Lcd Year
Led" "
Locate 1, 17
If Hours < 10 Then Lcd "0"
Lcd Hours
Led ™"
If Minutes < 10 Then Lcd "0"
Lcd Minutes
Led ™"
If Seconds < 10 Then Lcd "0"
Lcd Seconds
Return

'the pump on time routines
Incr_hours:

Incr Pump_hours

If Pump_hours > 23 Then Pump_hours = 0
Return

Decr_hours:

Decr Pump_hours

If Pump_hours > 23 Then Pump_hours = 23
Return

Incr_mins:

Incr Pump_mins

If Pump_mins > 59 Then Pump_mins =0
Return

Decr_mins:

Decr Pump_mins

If Pump_mins > 59 Then Pump_mins = 59
Return

Save_pumptime:
'save into eeprom
‘not implemented yet
Return

604



"Time modification routines
Increment:
Select Case Cursor_posn
Case 1 : Incr _dayofweek
If _dayofweek > 7 Then _dayofweek = 1
Case 5 : Incr Month
If Month > 12 Then Month = 1
Case 10 : Incr Day
If Day > 31 Then Day = 1
Case 15 : Incr Year
If Year > 12 Then Year =0
Case 18 : Incr Hours
If Hours > 23 Then Hours = 0
Case 21 : Incr Minutes
If Minutes > 59 Then Minutes = 0
Case 24 : Incr Seconds
If Seconds > 59 Then Seconds =0
Case Else:
End Select
Gosub Displaytimedate
Return

Decrement:
Select Case Cursor_posn
Case 1 : Decr _dayofweek
If dayofweek <1 Then _dayofweek =7
Case 5 : Decr Month
If Month < 1 Then Month = 12
Case 10 : Decr Day
If Day <1 Then Day = 31
Case 15 : Decr Year
If Year = 255 Then Year =0
Case 18 : Decr Hours
If Hours = 255 Then Hours = 23
Case 21 : Decr Minutes
If Minutes = 255 Then Minutes = 59
Case 24 : Decr Seconds
If Seconds = 255 Then Seconds = 59
Case Else:
End Select
Gosub Displaytimedate
Return

605



Cursor_left:
Select Case Cursor_posn
Case 1 : Cursor_posn = 24
Case 24 : Cursor_posn = 21
Case 21 : Cursor_posn =18
Case 18 : Cursor_posn = 15
Case 15 : Cursor_posn =10
Case 10 : Cursor_posn =5
Case 5: Cursor_posn =1
End Select
Locate 1, Cursor_posn
Return

Cursor_right:
Select Case Cursor_posn

Case 1 : Cursor_posn =5
Case 5 : Cursor_posn = 10
Case 10 : Cursor_posn =15
Case 15 : Cursor_posn = 18
Case 18 : Cursor_posn =21
Case 21 : Cursor_posn = 24
Case 24 : Cursor_posn =1

End Select

Locate 1, Cursor_posn
Return
Save_time:

Cursor_posn =1

Cls

Cursor Off

Gosub Write1678time

Curr_state = State_main
Return

'RTC routines
'read time and date from 1678

Read1678time: 'RTC Real Time Clock
|2cstart
I2cwbyte &B10010100 'send device code (writing)
I2cwbyte &HOO 'send address of first byte to access
I2cstop
|2cstart
I2cwbyte &B10010101 'send device code (reading data)

I2crbyte Seconds , Ack
I2crbyte Minutes , Ack
I2crbyte Hours , Ack

I2crbyte _dayofweek , Ack
I2crbyte Day , Ack

I2crbyte Month , Ack
I2crbyte Year , Ack

I2crbyte Century , Nack
I2cstop

Seconds = Makedec(seconds)
Minutes = Makedec(minutes)

606



Hours = Makedec(hours)
_dayofweek = Makedec(_dayofweek)
Day = Makedec(day)
Month = Makedec(month)
Year = Makedec(year)
Century = Makedec(century)
Return
‘write the time and date to the DS1678 RTC
Write1678time: 'RTC Real Time Clock
|2cstart
I2cwbyte &B10010100 'send device code (writing)
I2cwbyte &HOO 'send address of first byte to access
Temp = Makebcd(seconds) 'seconds
I2cwbyte Temp
Temp = Makebcd(minutes) 'minutes
I2cwbyte Temp
Temp = Makebcd(hours) 'hours
I2cwbyte Temp
Temp = Makebcd(_dayofweek) ‘day of week
I2cwbyte Temp
Temp = Makebcd(day) ‘day
I2cwbyte Temp
Temp = Makebcd(month) 'month
I2cwbyte Temp
Temp = Makebcd(year) 'year
I2cwbyte Temp
Temp = Makebcd(century) ‘century
I2cwbyte Temp
I2cstop
Return
‘write to the control register in the DS1678 RTC
Write1678control:
|2cstart
I2cwbyte &B10010100 'send device code (writing)
I2cwbyte &HOE 'send address of first byte to access
I2cwbyte Control ‘control must have COE set to 1 to enable osc
I2cstop
Return
'read Control Register in DS1678 RTC into Temp register
Read1678control:
Lcd Control
Wait 5
'send address to read data from
|2cstart
I2cwbyte &B10010100 'send device code (writing)
I2cwbyte &HOE 'send address of first byte to access
I2cstop
'read data from that address
|2cstart
I2cwbyte &B10010101 'send device code (reading)
I2crbyte Control , Nack 'get just the one byte
'12crbyte Status , Nack 'get just the one byte
I2cstop
Return

607



56 Amplifier

57 Bike audio amplifier project

_'/

In this case the client wanted an easy to use and safe audio system
for mountain biking.
The solution was to have a small box containing the circuit and
battery mounted to the rear of the helmet and speakers clipped onto
the helmet near the ears but not blocking out surrounding sounds from

other bikers.

There are 3 buttons on the device VOL UP, VOL DOWN and MUTE.
The amplifier is a common TDA2822 stereo audio amp and there is a
digital potentiometer controlled by an ATTiny13 to manage the volume

settings.

Eike Audio Amp Block Diagram (single channel)

Audioin

MP3

—
L
.
[ S TOA 2822
Amplifier
T mulitplexer
: chooses 1
| input of the ,
: 356 to Audio out
Ivoltage connect to
:divider the output
|
i
sefial to
parallel
e Comversion
data
T clock
reset
OS1267

mute el ]
up  down

The DS1267 digital pot has 256 settings and requires a serial signal of 17 bits in length sent to it to
control it. Bascom has a serial out command however it sends 8 bits, Jonathan decided to ‘bit-bang’ it
(send serial bit by bit via software rather than using any hardware device).

608



100uF

DS1267
! 14
EFT+ - H
gl" 3 12
& 4 11 3¢
- 5 10 |2 Ey
| RIGHT+
K3 - En Ry o
7 B — E
D TDA25220
I
Wt 2 T
% | 3 i
4 §
 ATTINY G,
2 7 L 02 » []I pisy
3 f [SE I S I ]
| : 5 100ufE T — &7 —
L - &
& | GND Z%5 4 L
2% N GND  GND GND GND
1 ] =0
— [} [mm]
) =1 = =
= Sal S [II N
n + ™
SP1+
s pHEL= .
W &
=0
3 S GND

[I - LW

bt

GrO GNOGHD * I PO+
Ci

.

-
m
? ol
=
m
=
w]
=

609



'1.title blcok

‘author: jonathan

‘date: 2 july 2008

"version 7.0

‘file name:potentiometer control7.bas
'2.program descrption

'manually shifts out 17 bits to digital potentiometer
‘uses buttons to select data to be sent out
'3.hardware features

'2 switches and 3 wire serial interface to digital pot on one port
'5. complier directives

$regfile = "atTiny13.dat"

$crystal = 1200000

$hwstack = 20

$swstack = 8

$framesize = 20

'6. define hardware

Config Portb = Output

Config Pinb.2 = Input

Config Pinb.1 = Input

Config Pinb.5 = Input

Set Pinb.5

Set Pinb.2

Set Pinb.1

7. hardware aliases

Qb Alias Portb.0

Clk Alias Portb.3

Rst Alias Portb.4

Sw_up Alias Pinb.2

Sw_down Alias Pinb.1

Sw_mute Alias Pinb.5

‘8. initialise hardware ports so program starts correctly
Rst=0
Qb =0
Clkk=0

'9.declare constants

'10. declare variables
Dim V As Byte

Dim B As Byte

Dim S As Byte

Dim State As Bit

"11. initialise variables
B=8

State =0

610



'12. main program code
Gosub Caseselect

Do
Debounce Sw_up, 1, Up, Sub
Debounce Sw_down, 1, Down , Sub
Debounce Sw_mute , 1, Mute , Sub
Loop
'13. subroutines
Up:
B=B+1
If B>22 Then B =22
Gosub Caseselect
Return
Down:
B=B-1
fB<1ThenB=1
Gosub Caseselect
Return
Caseselect:
Select Case B
Casel:V=0
Case2:V=4
Case3:V=10
Case4:V=16
Case5:V=25
Case6:V =35
Case 7:V =50
Case 8:V =65
Case 9:V =80
Case 10:V =100
Case 11:V =120
Case 12 :V =145
Case 13:V =170
Case 14 :V =200
Case 15:V =230
Case 16 :V =255
End Select
Gosub Send
Return
Mute:
If State = 0 Then
State =1
S=V
V=0
Else
V=S
State =0
End If
Gosub Send
Return

611



Send:
‘bit bang 17 bits of serial data to digital pot
Rst=1
Qb=1 "1
Clk=1
Qb =0
Clkk=0
Qb =V.7 2
Clk=1
Qb =0
Clk=0
Qb =V.6 '3
Clk=1
Qb =0
Clk=0
Qb=V5 ‘4
Clk=1
Qb=0
Clk=0
Qb=V.4 '5
Clk=1
Qb =0
Clk=0
Qb=V.3 '6
Clk=1
Qb =0
Clk=0
Qb=V.2
Clk=1 7
Qb =0
Clk=0
Qb=V.1
Clk=1 '8
Qb =0
Clk=0
Qb=V.0 '9
Clk=1
Qb =0
Clk=0
Qb=V.7 '9
Clk=1
Qb =0
Clk=0
Qb=V.6
Clk=1 '11
Qb=0
Clk=0
Qb=V5
Clk=1 '12
Qb=0
Clk=0
Qb=V.4
Clk=1 13

612



Qb=0
Clk=0
Qb=V.3
Ck=1 14
Qb=0
Clk=0
Qb=V.2
Ck=1
Qb=0 15
Clk=0
Qb=V.1
Clk=1
Qb=0 16
Clk=0
Qb=V.0 17
Clk=1
Qb=0
Clk=0
Rst=0
Return

613



58 Graphics LCDs

58.1 The T6963 controller

There are a number of different types of graphics LCDs; this display is based on the T6963 driver IC.
The display is from TRULY and is 240 pixels wide x 64 pixels high.

The LCD is a complex circuit as shown in the block diagram below, however Bascom has built in
routines to drive it which makes it very straight forward to use. There are also built in fonts so it can be
used in a similar way to a character LCD (the FS pin is used to select either a 6x8 or 5x7 size font).

r— - - - - - - - — - - - — - - - - - - - — = = = = —|
[ [
~DB"———————] D0~D7
0BO~-0B a02ai1a SRAM I > I > )'( > :
[ E—

WR RAW (32K) SEGMENT SEGMENT SEGMENT
R — CE DRIVER DRIVER DRIVER I
CE ———+ 716963C 80 80 80 I
A 3 { { 1 |
RESET ——L— !
S E— covvon |64 LCD PANEL |
' ORIVER 240 X B4 DOTS '
o — '
VoD ' '
VSS ! [
A TEWP : * NIRRT o EquTvALENT !

DC/DC LCD POWER | |LCM POWER ' . or

T RSS2 S P e e R R * SEG.IC TE6A3S or ERLIVALENT :
[
[
[
[

A Bascom program requires a config line for the display:
Config Graphlcd = 240 * 64 , Dataport = Portc , Controlport = Portd ,Ce =4 ,Cd =1,
Wr=6,Rd=5,Reset=0,Fs=7,Mode =6

614



I~ =
Q00| O

HOHw

OO

nnnn ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂfMﬂ

Real
Time
Clock

[ [-] <] []

ATMEL
AVR

ATMEGA32

ToImuoo

Iillillilt\
I

Relay

LCD

System Block Diagram for this student’s clock project.

The (almost) finished product.

615




Setup hardware

read 35 eeprom

Create finitailise variables

larms into ram

i TimeChange K

Read1678Time
start [2C

Write RTC
Start at byte 0
Head RTC
ReadSeconds.. Century
Convert BCD values to Decimals

DisplayTimeDate
on top line of LCD
display dayof week

date & time

DisplayBigTime
for each digit

and display it

lookup the picture
that represents the digit

TrackTime

move left/right
alter date/time

X A

B
ReadKeypad  /write1678time
display menu C

Readkeypad
read1678Time
DisplayTimeDate
DisplayBigTime
CheckAlarmTime

. DﬁD
e

MenuState

Readkeypad
read1678Time
DisplayTimeDate
lLIZhe::I«:;-’-‘-LIElrmTime 3

e A

A

Moggle Big

Seconds

time=alarm =

Every minute
For each alarm
check to see if time is the same

PreBell

fcancel alarm

. S
fCancel alarm

C

message
~{Clancel
monitor time
Q'Hht on

I
armin

|

Alarm 1

AlarmChange

Ty

display alarms
Readkeypad

move left/right

alter time/dayofweek

Ao

message
. ACjcancel
sound (3 loops)
on 5 secs

-~

Clock Statechart

LLu:uffEEI SECS

|7

A
. !
fcancel sound

—



The big digits are actually 10 individual pictures which are selected to be displayed on the
screen.

Y
45 Attributes
& ﬁ File last saved: 24032002 730 pm
2 q Size on disk: 222 bytes
‘:F ﬁ Resolution: 56 x 56 dots per inch
N nits
() Inches {)Cm {*) Pixels
O /Z
i -
{*) Black and white () Colore

Each one is created in a simple drawing program like MS Paint. Use exactly the size BMP file
you want the picture to be, in MSPaint the attributes can be set from the menu. Each digit
was 24 pixels wide and 40 pixels high (they need to be in multiples of 8 pixels).

In Bascom open the Graphic Converter, load the bitmap image and then save the file as a
BGF (Bascom graphics file) into the directory where the program will be.

Graphic converter

U ave

zhe

&
I—
[}

=

ﬁ i
IEII:I [[45]

' OK
Height 40 Width 24 i
LCD type Font
O 12864 O 2407128 O 240240 O 68 [ SED series
[ ] Uncompreszed
(@ 24064 (1287128 @) &5

The full program is not listed here however the routine to display the time is.

617



Displaybigtime:

first digit
Digit=1 first digit
Pic_y =16 'fixed location up the GLCD for each graphic
For Digit = 1 To Numdig 'for each digit location on the GLCD
Select Case Digit ‘get the location of the digit on the display
Case 1: Pic x=16 at x=16
Dig = Hours / 10 'display tens of hours
Case 2 : Pic_ x=40 ‘units of hours go at x=40
Dig = Hours Mod 10
Case 3 : Pic x=80 'tens of minutes
Dig = Minutes / 10
Case 4 : Pic x=112 ‘'unit minute
Dig = Minutes Mod 10
Case 5: Pic_ x=144 'tenth second
Dig = Seconds / 10
Case 6 : Pic x=176 ‘unit second
Dig = Seconds Mod 10
End Select
Select Case Dig ‘actually display the picture at the location
Case 0 : Showpic , Pic_x, Pic_y, Zero
Case 1 : Showpic , Pic_x, Pic_y, One
Case 2 : Showpic , Pic_x, Pic_y, Two
Case 3 : Showpic , Pic_x, Pic_y, Three
Case 4 : Showpic , Pic_x, Pic_y, Four
Case 5 : Showpic , Pic_x, Pic_y, Five
Case 6 : Showpic , Pic_x, Pic_y, Six
Case 7 : Showpic , Pic_x, Pic_y, Seven
Case 8 : Showpic , Pic_x, Pic_y, Eight
Case 9 : Showpic , Pic_x, Pic_y, Nine
End Select
Next
Return
Zero: ‘labels are required for each picture
$bgf "zero_6.bgf"
One:
$bgf "one_6.bgf"
Two:
$bgf "two_6.bgf"
Three:
$bgf "three_6.bgf"
Four:
$bgf "four_6.bgf"
Five:
$bgf "five_6.bgf"
Six:
$bgf "six_6.bgf"
Seven:
$bgf "seven_6.bgf"
Eight:
$bgf "eight_6.bgf"
Nine:

$bgf "nine_6.bgf"

618



58.2 Graphics LCD (128x64)

P SR R A

In this project the goal is to keep the final product the same size as the LCD. And as it was a

one off veroboard was a good choice.

619

Veroboard is straight forward
to use however to get a good
product requires some careful
planning.

Here the Veroboard, LCD,
datasheet for the
Microcontroller showing its pin
connections and the
datasheet for the LCD
showing its pin connections
are in use to help decide on
the ciruit and layout.

(The display was purchase
from sure-electronics)



The circuit was drawn up next. It
shows a trimpot between pins 18 and 3 4
of the LCD. This is the contrast ’ GNC

adjustment for the LCD. - | 1- VS5 (0V)
2 - wDD(5Y)
) 3-%D
Itis 4 - 0l
always a gj E’W
balance X—A [T] - | 7-00
worki - |5-D1
orklng S
out which 10- D3
pins on the 11-D4
: 7 12-D5
micro to connect to the I/O X 1% D&
devices. In this case itis a - | 14-D7
process of elimination of - |1z
constraints. = | 17-reS
18- vaut
It was decided not to use — EN ;3 Eﬁtf‘{
PortB because sometimes | 2

I/O devices can interfere
with uploading programs
and the LCD would have to
be removed everytime you —
want to program. Port A

has the

ADC on it

and if a 2 "
touch

screen is

required we must

have at least 2 ADC

pins available. Port D has interrupt pins and is more likely
to be useful in the future than portC, so portC was chosen
for the 8 data lines. Choosing the port for the 6 control lines
was easy, portA, as we will have 2 spare. Note that it is a good idea not to write data to the LCD while doing an ADC conversion as this could mess up
the ADC results. 0.1uf (100nF) bypass capacitors were added to the circuit, one on the power pins of the micro and one next to the power pins of the
LCD, these stop voltage spikes on the power supply caused by fast switching devices like microcontrollers and LCDs upsetting the power supply to
other devices like microcontrollers, LCDs and any other ICs that will be added. We need to bypass each device with a capacitor real close to the IC.

620




-----

...... To make assembly easier to
...... . follow the IC was mounted

- - right up to the edge of the
board so that its portc pins
physically lined up with the 8
datalinesof the LCD. This
reduced the wiring.

Before attempting to do the
wiring of the micro to the LCD
a label was placed onto the IC
socket with the names of the
pins, and the names of the
LCD pins were written using a
permanent marker onto the
board itself. This really helps
avoid confusion when flowing
the schematic.

The 5V and OV/GND lines
were coloured red and black
on the board. The reason
these are where they are on
the veroboard is that they line

up with the power pins of the
LCD.

The 7805 was positioned so that it
was directly onto the 5V and 0OV lines.

There is plenty of space left on the
board for other circuitry. Perhaps a
real time clock and a touch screen
connection.

1




The code for the display is straight forward

' Title Block

" Author: B.Collis

' Date: 1 June 2008

' File Name: GLCD_KS_verl.bas

" Program Description:
" A simple clock

' Hardware Features:
'128x64 GLCD

" Compiler Directives (these tell Bascom things about our hardware)

$regfile = "m32DEF.dat" ' specify the used micro
$crystal = 8000000 " used crystal frequency
$lib "glcdKS108.lib" "library of display routines

" Hardware Setups

'‘Configure GLCD interface

'CE CSlselect pinl5 CE A3
'CE2 CS2select2 pinl6 CE2 A4

'CD DI pind CD A7
'RD  Read pin5 RD A6
'RESET reset pinl7 R A2

'ENABLE Chip Enable pin6 En A5

Config Graphlcd = 128 * 64sed , Dataport = Portc , Controlport = Porta, Ce =3 ,Ce2 =4,
Cd=7,Rd=6,Reset=2,Enable=5

'Hardware Aliases

' Declare Constants

Const Runningdelay = 170

' Declare Variables

Dim X As Byte

Dim Y As Long

'11. Initialise Variables

'‘Date$ = "14/06/08" ‘default starting date
‘Time$ ="19:12:00" 'default starting time

' Program starts here
Cls
Setfont Font 16x16 'specify the small font

Lcdat1l,1," A Cool" 'the rows are from 1 to 8
Lcdat 7, 1, "Display” '

Line(8, 15) (120, 15),1 'top line

Line(8,15)-(8,41),1 'left vertical line

Line(120, 15) -(120,41) ,1 'right vertical line

ForY =41To 45 ‘own simple filledbox
Line(8,Y)-(120,Y),1

Next

'show the three pics in sequence to get simple animation

622



Do
For X=10To 104 Step 8
Showpic X, 20, Runl
Waitms Runningdelay
Showpic X, 20, Blank
X=X+8
Showpic X, 20, Run2
Waitms Runningdelay
Showpic X, 20, Blank
X=X+8
Showpic X, 20, Run3
Waitms Runningdelay
Showpic X, 20, Blank
Next
Waitms 500
Loop
End ‘end program

'the font and graphic files must be in the same directory as the .bas file
'these lines put the fonts into the program flash
$include "font16x16.font"

Runl:
$bgf "runl.bgf"
Run2:
$bgf "run2.bgf"
Run3:
$bgf "run3.bgf"
Blank:
$bgf "blank.bgf"

623



58.3 Generating a negative supply for a graphics LCD

These particular displays were available at a very good price; however they did not have the
negative voltage circuit on the display for the contrast adjustment making them a little trickier
to use.

This block diagram shows the power supply voltages required and how they were developed.
The 317 is an adjustable regulator and a trimpot on it will be used to vary the voltage and
consequently the LCD’s contrast.

Voltage input | 317 0V L%L;fisg
approx 15V DC “| voltage - g
voltage
regulator converter -0V
Graphics LCD
|
ik "
7805
> voltage V5
regulator

Microcontroller

624



I5MD

[l erl fuah [EAR By DR (R Bl

o2 +10W
1 g
S T y
=R ’
= 2
e [T CAP+  0SC
T 3 1 6D Ly
- 21 care wout
+] O3 ICL7EE0CPA
>
ol
— =t | L7
Ico
D3 10 33
oLl Pl Voo (ADCTIFAT
& A
THAD0 14004 e g;
ADCSIPAS
IC1 oLl . EADC4§PA4 g?
Lh2340T-3 AREF (ADCIPAI
(ADC2IPA gg
. OChPAL 2
- MG mocoran 2
=
14004 P ?
MisojPes |
; MOSHPBS |2
RESET EEPB [
T - . (AIN1IOCD)PBI f——
| = S L2 T2 ANDINTZPE2 [
= -
= - kT
K r—ls ] L
: 0.1 0. 28 &)
(TOSCZPCT 4||]|:|
. TOSCIIPCE g?
13 L e obpes =L
qoorcs T
Ms)Po3 |22
. TCKPC? [—=2
AGHND T
. {SCLIPCO
’ GHD .
wenro7 (=1
(cPFDE |50
(oC1#PDs (2
(OCTEFD4
GND (INT1)PD3 :I'g
(INTOPD2
TxmPD1 |12
R¥mPD0 |14
MEGAIZ-F

625

1-%55 (0W)
2 - DO av)
3-%o

4 - Dl

g - R
6-E

7-00
g8-01
9-[02

10- D3
11-Dd
12-0a

13- 06

14- 07

15- C51

16- C52
17- RES
18- wout
19- BYLA
20- BIL K



59 GLCD Temperature Tracking Project

59.1 Project hardware

In thisproject | wanted to use a GLCD to display a graph of temperature and humidity over
time.
| had the following:

a 192x64 pixel GLCD (KS0108 type from Sure Electronics)

an LM35 temperature sensor

an HiH4030 humidity sensor

192 x 64 KS0108 GLCD The 192x64 GLCD
Temperature and Humidity plotter has 1 more interface
pin than the 128x64

GLCD asithas a
LM35 J\_/\ third controller for the

Tempr display. This makes a
Sensor .
total of 7 control lines
. 8 data lines between the
Microcontroller !

microcontroller and

HiH 4030 7 control lines the GLCD When I

Humidity designed this board

Sensor

for student use |

decided that the data
lines could be on PortB (shared with the programming port — which is ok if you add the 10k
resistors as per the schematic) and that the control lines would have to be flexible so that
depending on the use for the board the students could change them.

A I L
[I] ' T

@]

|
>

RERREEN ||||II%

626



In this photo the fine yellow wires are the 7 control lines added later.

In the software Bascom has a different library for this GLCD so it must be added and your
wiring above must be configured in the software as below.

' Compiler Directives (these tell Bascom things about our hardware)

$1lib "glcdKS108-192x64.1ib" ' library of display routines

' Hardware Setups

'Configure GLCD interface

'CE CS1l select GLCD-pinlb5 CE portC.3
'CE2 CS2 select? GLCD-pinl7 CE2 portC.5
'CE3 CS3 select3 GLCD-pinl8 CE6 portC.6
'CD RS GLCD-pin4 CD portC.0
'RD RW GLCD-pinb RD portC.1
'RESET reset GLCD-pinl6 R portC.4
'ENABLE Chip Enable GLCD-piné6 En portC.2
Config Graphlcd = 192 * 64sed , Dataport = Portb , Controlport =

n
Portc , Ce = 3 , Ce2 =5, Cd=0, Rd =1 4 , Enable = 2 ,

Ce3 = ©

, Reset

627



59.2

Project software planning

This is a realtively complex system which will require some interesting software to plot a

graph of values so | will use decomposition to break the software down into subroutines each

with its own job to do.

draw the
graph scales
on the GLCD

Temperature & Humidity Logger

/

/

Y

\

save
tempr
values

save
humidity
values

graph the
tempr and
humidity values

get get
Tempr humidity
display display
tempr humidity

The least complex parts of the software for the project will be the displaying of the graph
scales and the values, the next will be reading the values from the sensors and translating

these to humidity and temperature, the most challenging will be the last part actually graphing

the values.

Here is what the display looks like with the graph scales and the temperature and humidity

values displayed.

628




59.3 Draw the graph scales

Draw graph scales:

Line (12 , 0) -(12 , 52) , 1 'left vertical
Line (178 , 0) -(178 , 52) , 1 'right vertical
Line (12 , 53) -(178 , 53) , 1 '"bottom horizontal

'left hand side humidity scale

Setfont Font 8x8

Lecdat 4 , 3 , "H"

Pset 11 , 0 , 1

Pset 11 , 10 ,

Pset 11 , 20 ,

Pset 11 , 30 ,

Pset 11 , 40 ,

Pset 11 , 50 ,

Setfont Font 5x5

Line(0O , 0) -(0 , 4) , 1 'l in the 100 to save space

Lecdat 1 , 2 , "0O"

Ledat 7, 0 , "50"

'right hand side temperature scale

Setfont Font 8x8

Lcdat 4 , 3 , "T"

Pset 179 , 0 , 1

Pset 179 , 10 ,

Pset 179 , 20 ,

Pset 179 , 30 ,

Pset 179 , 40 ,

Pset 179 , 50 ,

Setfont Font 5x

Lcdat 1 , 181 , "50"

Lcdat 7 , 181 , "O"
Return

N = S S

PR e e

This routine makes use of some of the Bascom functions for the display and use two different
font sizes. | use comments to help me to remember what each part does.

There is one small point to make about the 100 on the left of the display. | wanted to
maximise the display space for plotting values so when | went to display the number 100 it
took up a lot of space as each character is 5 pixels wide. | reduced that by drawing a line in
place of the character 1 and then putting in “00” after it, thus reducing my width for the 100
from 15 pixels to 12, leaving me room for 3 more data point in the display itself. When | went
to draw the check marks for the scale | wrote the check mark over the top of the last O
increasing my display by another data point. | now have 165 data points that | can use to
display values out fo the full 192 pixels width.

629



59.4 Read the values

The LM35 temperature sensor has been covered already but note the conversion from volts
to degrees. To do this | measured the voltage on the LM35 it was 0.282V (28.2 degrees) the
ADC value was 56 (on a scale from 0 to 1023) and as | know there is a straight line
relationship between the two that starts at 0. | got a simple conversion factor of 1.9858. In
maths | might express that as a formula of the type Y=mX+C or in this case Tempr =
conversion factor times ADC reading (plus zero for C as the graph crosses at 0 volts).

Get tempr:

' Im35 temperature sensor on pinA.7

' calibrated at adc=56 and temperature=28.2deg (0.282V)
' 56/28.2 = 1.9858

Lm35 = Getadc (7) 'get the raw analog reading

Tempr single = Lm35 'convert to single to use decimals

Tempr single = Tempr single / 1.9858

Tempr = Tempr single 'convert to byte for storage
Return

Disp tempr val:
Setfont Font 8x8
Lecdat 8 , 145 , Tempr single
Ledat 8 , 176 , "C"
Return !

Note the need to convert the between different variable types.

The ADC readings are whole numbers in the range of 0 to 1023, so these are initially word
types(e.g LM35 above). | want to do division with these though and word type variables
truncate division so | convert the values to single variable types (tempr_single above). After |
have finished doing the fomula | want to store the values in memory and | want to store a lot
of them so | convert the values to byte type variables which take up much less space (e.g.
tempr above)

| used the HIH4030 humidity sensor, it can be bought from Sparkfun.com mounted on a small
PCB. Itis another easy to use analogue sensor and has a very linear scale so a straight
forward formulae is required.

In this case the voltage corresponds to a humidity value which we look up on a graph from
the datasheet.

I measured 2.37V which was an ADC value of 480.

An ADC value of 480 (2.37V) is a humidity of about 55% on the graph.

630



Note that 0% humidity is not OV (as it is with the LM35 for temperature) so our formula is
more in the form Y=mX+C.From the graphl estimated that the formula is Voltage=0.0306 x

humidity + 0.78.

To get humidity | changed this around to be humidity = (Voltage-0.78)/0.0306.

4
35 //
A %
=)
°
Z'25
% ’ --.----Sensor Response
E -------Sensor Response
= Best Linear Fit
3 2
o
5
(@]
1.5 /
| / /
0.5
0 20 40 60 80 100
Relative Humidity (%RH)
v -
Get humidity:
' humidity sensor HIH4030 on pin a.4
' calibrated at adc=480 and voltage = 2.37

' formula for hum=(V-0.78)/0.0306 - worked out from datasheet

Hih4030 =

Hum single

Hum single =

Hum single =

Hum single =

Humidity =
Return

Getadc (4)

Hih4030

Hum single / 203.85
Hum single - 0.78
Hum single / 0.0306
Hum single

Disp humidity val:
Setfont Font 8x8

Ledat 8 , 10 , Hum single
value

Ledat 8 , 44 , "s"
Return

631

'get raw adc value
'convert to single
'convert raw adc to volts

'convert to byte for storage

'single to display decimal



59.5 Store the values

First | need to store 165 readings for each so | dimension two arrays
Dim T (165) As Byte '165 readings stored
Dim H(165) As Byte

The first location is T(1) and then next T(2) all the way up to T(165).

In the main loop | wait for 5 minutes (wait 300) between readings and after each reading |
increase a variable which is keeping track of the number of readings. | also do not want to go
over 165 so | test this variable and reset it back to 1 if it goes over 165.

' Program starts here

'setup inital screen

Cls

Gosub Draw graph scales

Do
Gosub Get humidity
Gosub Save humidity
Gosub Get tempr
Gosub Save tempr
Gosub Disp humidity val
Gosub Disp tempr val
Gosub Draw tempr hum graphs
Wait 300 'reading every 5 minutes
Incr Curr reading
If Curr reading > 165 Then Curr reading = 1
Loop
End

| have two routines for storing the values in ram even though | could do it in one subroutine
and call it something like save_values. This is because each has a slightly different function
to perform and if | extend the program in the future | might want to add features to one routine
that aren’t in the other such as keeping track of the maximum temperature or something else.
Save humidity:

H(curr reading) = Humidity
Return B
Save tempr:

T (curr reading) = Tempr
Return
Storing the values is easy | copy the value from the variable Humidity into the array at the
position determined by my increasing variable curr_reading

632



59.6 Plot the values as a graph

What | want the graph to do is to always draw the current value at the very right hand side of
the display. This will achieve the effect of the data scrolling left with each new value.

Current

reading
#ﬂﬂ"-_ _::h
*,
graph starts -~
at pixel 13 graph ends at
pixel 177

To do this was not difficult in the end but to understand it may take a little explanation. Note
that | solved it this way, another person might look at this problem and solve it in another (and
even better) way. If my current reading is 80, then | want to draw the data points from 81 to
165 and 1 to 80 inthat order on my graph.

81,8283 84.. ety
...162,163,164,165,1,2,3.4... ...77,78,79,80 T
———==\ I
\grﬂph staris -~
at pixel 13 graph ends at
pixel 177
pixel | Data If you look at these two sequences you can see the pattern for my
location | program is that it must lookup the data location which is the pixel
in array | location minus 13, plus current location(80) + 1.
13 81
14 82 This code does this
Tmp = Xpos - Graph left
Tmp = Tmp + Curr reading 'exceeds byte size
163 Incr Tmp
164
165
1 Of course we want to restart at 1 again after 65 so we add this as well
2
3 If Tmp > 165 Then Tmp = Tmp - 165
When | first wrote the program | declared Tmp as a byte, but that
didn’t work and | got a strange shifting of the display, | realised it was
175 |78
176 79 because tmp can actually get much larger than 255 before | subtract
177 30 165 from it.

633



The final part of the routine requires me to make sure that the display os blank before | draw
data on it.
There are two ways(at least) that | could do this

| chose to draw a blank vertical line before | put the data at that point.
Line (xpos , 0) -(xpos , 51) , 0 'remove anything on col already there

| also must plot the actual point.

Ypos = 50 - T (tmp) 'turn the value into a position

Pset Xpos , Ypos , T (tmp) 'set the pixel,if > 0
the display points 0,0 is the top left pixel on the display so | turn my temperature value into a
location 50 degrees is at the top, (pixel 0) and O degrees is 50 pixels down the display (pixel
50)

Here is the complete loop
Draw_tempr hum graphs:

'draw the two sets of data

For Xpos = Graph left To Graph right

Line (xpos , 0) -(xpos , 51) , 0 'remove anything on col already there
Tmp = Xpos - Graph left
Tmp = Tmp + Curr reading 'exceeds byte size
Incr Tmp
If Tmp > 165 Then Tmp = Tmp - 165
Ypos = 50 - T (tmp) 'turn the value into a position
Pset Xpos , Ypos , T (tmp) 'set the pixel,if > 0
'Pset Xpos , H(xpos) , 1 'set the pixel
Next

Return

634



59.7 Full software listing

' Title Block

' Author: Bill Collis

' Date: June 2010

' File Name: HumidityTempLogVla.bas

' Program Description:

'l read temperature and humidity and display values
'la setup graph scales

! read multiple values and store in ram

'lb get storage and display working so that

! data in array goes onto the display with the current reading last

! e.g. if the curr reading is stored at 125
! then the display shows from 126 to 165 then 1 to 125

' Hardware Features:
' 128x64 GLCD on portB and 7 pins of portC

' 1Im35 temperature sensor on pinA.7

' calibrated at adc=56 and temperature=28.2deg (0.282V)

' 56/28.2 = 1.9858

' humidity sensor HIH4030 on pin a.4

' calibrated at adc=480 and voltage = 2.37

' formula for hum=(V-0.78)/0.0306 - worked out from datasheet

' Compiler Directives (these tell Bascom things about our hardware)

$regfile = "m8535.dat" ' specify the used micro
$crystal = 8000000 ' used crystal frequency

$1ib "glcdKS108-192x64.1ib" ' library of display routines
'Snoramclear

' Hardware Setups
Config Porta.4 = Input 'ADC inputs
Config Porta.7 = Input 'ADC inputs

'Configure GLCD interface

'CE CS1 select GLCD-pinl5 CE portC.3
'CE2 CS2 select? GLCD-pinl?7 CE2 portC.5
'CE3 CS3 select3 GLCD-pinl8 CE6 portC.6
'CD RS GLCD-pin4 CD portC.0
'RD RW GLCD-pin5 RD portC.1
'RESET reset GLCD-pinlé6 R portC.4
'ENABLE Chip Enable GLCD-piné En portC.2
Config Graphlcd = 192 * 64sed , Dataport = Portb Controlport = Portc

Ce2 =5, Cd=0, Rd=1, Reset = 4 , Enable = 2 , Ce3 = 6
Config Adc = Single , Prescaler = Auto

Start Adc

'Hardware Aliases

' Declare Constants
Const Graph left = 13
Const Graph right = 177

' Declare Variables

Dim X As Byte

Dim Y As Long

Dim Hih4030 As Word

Dim Hum single As Single

Dim Humidity As Byte

Dim Lm35 As Word

Dim Tempr single As Single

Dim Tempr As Byte

Config Single = Scientific , Digits =1

635

4

Ce

'single for fractional calculations

'single for fractional calculations

3

4



Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

T(165) As Byte
H(165) As Byte
Arr pos As Byte
Curr reading As Byte
Xpos As Byte

Ypos As Byte

T ypos As Byte

H ypos As Byte
Dim I As Byte

Dim Tmp As Word
'initialise variables
Arr pos Graph left
Curr reading 1

'165

Program starts here
'setup inital screen
Cls

Gosub Draw_graph scales

Do
Gosub
Gosub
Gosub
Gosub
Gosub
Gosub

Get humidity

Save humidity

Get tempr

Save tempr

Disp humidity val
Disp tempr val

Gosub Draw_tempr hum graphs
Wait 300

Incr Curr reading

If Curr reading > 165 Then Curr reading

Loop
End

Save humidity:

H(curr reading) = Humidity
Return
L
Save tempr:

T (curr reading) = Tempr

Return

Draw_tempr hum graphs:
'draw the two sets of data

For Xpos = Graph left To Graph right
Line (xpos , 0) —-(xpos , 51) , O
Tmp = Xpos - Graph left
Tmp = Tmp + Curr reading
Incr Tmp
If Tmp > 165 Then Tmp = Tmp - 165
Ypos = 50 - T(tmp)
Pset Xpos , Ypos , T (tmp)
'Pset Xpos , H(xpos) , 1

Next

Return
Draw graph scales:

Line (12 , 0) -(12 , 52) , 1

Line (178 , 0) -(178 , 52) , 1

Line (12 , 53) -(178 , 53) , 1

'left hand side humidity scale

Setfont Font 8x8

Lcdat 4 , 3 , "H"

Pset 11 , 0 , 1

Pset 11 , 10 , 1

Pset 11 , 20 , 1

readings

stored

'temp variable

'start here
'start at 1st location in ram

'reading every 5 minutes

1

'remove anything on col already there

'exceeds byte size

'turn the value into a position
'set the pixel,if > 0
'set the pixel

'left vertical
'right vertical
'bottom horizontal

636



Pset 11 , 30 ,
Pset 11 , 40 ,
Pset 11 , 50 ,
Setfont Font 5x5

Line(O0O , 0) -(0 , 4) , 1 'l in the 100 to save space
Ledat 1, 2 , "0O"

Ledat 7 , 0, "50"

I

'right hand side temperature scale
Setfont Font 8x8
Ledat 4 , 182 , "T"
Pset 179 , 0 , 1
Pset 179 , 10 ,
Pset 179 , 20 ,
Pset 179 , 30 ,
Pset 179 , 40 ,
Pset 179 , 50 ,
Setfont Font 5x
Ledat 1 , 181 , "50"
Lecdat 7 , 181 , "O"
Return

N = =S S

Get humidity:

Hih4030 = Getadc (4) 'get raw adc value
Hum single = Hih4030 'convert to single
Hum single = Hum single / 203.85 'convert raw adc numbr to volts

Hum single Hum single - 0.78

Hum single = Hum single / 0.0306

Humidity = Hum single 'convert to byte for storage
Return B

Disp humidity val:
Setfont Font 8x8

Ledat 8 , 10 , Hum single 'single to display decimal value
Ledat 8 , 44 , "g"
Return
L
Get tempr:
Lm35 = Getadc (7) 'get the raw analog reading
Tempr single = Lm35 'convert to single to use decimals
Tempr single = Tempr single / 1.9858
Tempr = Tempr single 'convert to byte for storage
Return

Disp tempr val:
Setfont Font 8x8
Ledat 8 , 145 , Tempr single
Ledat 8 , 176 , "C"
Return !

'the font and graphic files must be in the same directory as the .bas file
'these lines put the fonts into the program flash

$include "font5x5.font"

'Sinclude "font6x8.font"

$include "font8x8.font"

'$include "fontl6xl6.font"

'$include "font32x32.font"

637



60 Computer programming — low level detail

We refer to programming languages as either HIGH LEVEL languages or LOW LEVEL.

High Level Languages include Basic, C, Java, Haskell, Lisp, Prolog, C++, C#
and many more.

High level languages are written using text editors such as Programmers
Notepad or within an IDE like Bascom. These languages are typically easy for
us to understand, however microcontrollers do not understand these words
they only understand binary numbers which are called Machine Code. A
computer program is ultimately a file containing machine code. Commands
written in high level languages must be compiled into these binary codes.

60.1 Low level languages:

Machine code for all microcontrollers and microprocessors (all computers) are groups of
binary digits (bits) arranged in bytes (8 bits) or words of 16, 32 or 64 bits.
Understanding a program in machine code is not at all easy. The AVR

\ machine code to add the numbers in 2 memory registers is 0001 1100 1010
0111.

To make machine code a little easier to understand we can abbreviate every 4
bits into hexadecimal numbers; HEX uses numbers 0 to 9 and the letters from
atof.

It is easier on the eyes than machine code but still very difficult to read. It looks like this
1CA7 which is easier to read than is 0001 1100 1010 0111, but no easier to understand!
Program code for micros is never written today directly in machine code, abbreviations called
mnemonics are used and we call it assembly language, assembly code or assembler which
IS more readable, for example:

add rl12 , r7 instead of 1C A7

Assembler is much easier to understand than machine code and is in very
common use for programming microcontrollers, however It does take more
effort to understand the microcontroller internals when programming in
assembler.

You can see the machine code in BASCOM by going to the directory where your programs
are stored and opening the .hex file (ignore the colon and the first 8 digits in each line, the
rest is the actual program).

638



60.2 AVR Internals — how the microcontroller works

The AVR microcontroller is a complex integrated circuit, with many features as shown
in this block diagram of the AVR’s internal architecture.
Data Bus 8-bit

16-bit Program Status Interrupt
4K X 16 | 167 o q—l—y :
Program Counter and Control Unit
Memory
16 - SPI
/r ™ 32x8 Unit
Instruction General
Register Purpose
T — Registrers Serial
+ UART
Instruction l l
Decoder ,
o 8-bit
2 3 N *™ Timer/Counter
2 o ALU
= =
Control Lines § 3 1600
5 ‘g Timer/Counter
@ _~§ with PWM
G = B-bit
Timer/Counter
Data
8535 » SRAM £ Watchdog
Architecture > Timer
512x 8 . he ) Analog to Digital
EEPROM Converter
32 ] Analog
I/O Lines ¢ v’ Comparator

There are memory, calculation, control and 1/0O components.

639



60.3 1. The 8bit data bus

This is actually 8 parallel wires that
32x8 interconnect the different parts within
gerr;‘;%':; the IC. At any one time only one section
u . .
Registrers 81; tshe 8535 is able to transmit on the

Each device has its own address on the
bus and is told when it can receive and
when it can transmit data.

8 bit wide
DATABUS

ALU Note that with 8 bits (1 byte) only
numbers up to 255 may be transmitted
L at once, larger numbers need to be
transferred in several sequential
moves.

256/512x 8
Data
SRAM

60.4 2. Memory

There are three separate memory areas within the AVR, these are the Flash, the Data
Memory and the EEPROM.

Program Memory Data Memory Data Memory

84 /O Registers

640



In the 8535 the Flash or program memory is 4k of words (8k bytes) of program. The
AVR stores program instructions as 16 bit words. Flash Memory is like a row of
lockers or pigeon holes. When the micro starts it goes to the first one to fetch an
instruction, it carries out that instruction then gets the next one.

The Static RAM is a volatile store for variables within the program.
The EEPROM is a non-volatile store for variables within the program.

The 32 general purpose registers are used by your programs as temporary storage for
data while the microcontroller is working on it (in some micros these are called
accumulators).

If you had a line on your code to add 2 numbers e.g. z=x+y. The micro will get the
contents of ram location X and store it in a register, it will get the contents of ram
location Y and puts it into a second register, it will then add the 2 numbers and the
result will go into one of the registers, it then writes the answer from that register into
memory location Z.

The 64 1/0 registers are memeory locations with special hardware abilities, when you
change something in a register the hardware attached to it changes; it is here that you
access the ports, ADC etc and their control them.

60.5 3. Special Function registers

There are several special high speed memory registers within the microcontroller.

* Program counter: 16 bits wide, this keeps track of which instruction in flash the
microcontroller is carrying out. After completing an instruction it will be incremented to
point at the next location.

* Instruction register: As a program instruction is called from program memory it is
held here and decoded.

* Status Register: holds information relating to the outcome of processing within the
microcontroller, e.g. did the addition overflow?

4. ALU

The arithmetic logic unit carries out mathematical operations on the binary data in the
registers and memory, it can add, subtract, multiply, compare, shift, test, AND, OR,
NOR the data.

60.6 A simple program to demonstrate the AVR in operation

Lets take a simple program in Bascom then analyse the equivalent machine code
program and then what happens within the microcontroller itself.

This program below configures all of portc pins as outputs, then counts binary in a
never ending loop on the LEDs on portc.

Config Portc = Output  'all of portc pins as outputs

Dim Temp As Byte 'set memory aside
Temp=0 'set its initial value to O
Do

Incr Temp 'increment memory

Portc = Temp 'write the memory to port ¢
Loop 'loop forever
End

641



This is compiled into machine code, which is a long line of binary numbers. However
we don't normally view the numbers as binary, it is shorter to use hexadecimal
notation.

Equivalent machine code to the Bascom code above is:
EFOF (11101111 0000 1111)

BB04

EOOO

BBO05

9503

CFFD

These program commands are programmed into the microcontroller starting from the
first address of the FLASH (program memory). When the micro is powered up (or
reset) it starts executing instructions from that first memory location.

The equivalent assembly language to the above machine code

EF OF SER RI16 set all bits in register 16

BB 04 OUT 0x14,R16  store register 16 at address 14 (portc = output)
EOO0 LDI R16,0x00 load immediate register 16 with 0  (temp=0)

BB 05 OUT O0x15,R16  store register 16 at address 15 (port C =temp)
9503 INC R16 increment register 16 (incr temp)
CFFD RJMP -0x0003 jump back 3 steps in the program (back to BB05)

1. The microcontroller powers up and the program counter is loaded with address
&HO000, the first location in the flash (program memory). The first instruction is EF
OF and it is transferred into the instruction register. The program counter is then
incremented by one to 0x01. The instruction is decoded and register 16 is set to
all ones.

2. The next cycle of the clock occurs and BB 04 is moved from the flash into the
instruction register. The program counter is incremented by one to 0x02. The
instruction is decoded and R16 contents are copied to address 0x14 (Ox means
hex), this is the i/o register that controls the direction of port ¢, so now all pins of
portc are outputs.

3. The next cycle of the clock occurs and EO 00 is moved into the instruction register
from the flash. The program counter is incremented by one (to 0x03). The
instruction is decoded and Register 16 is loaded with all O's.

4. The next cycle of the clock occurs and BB 05 is moved into the instruction register
from the flash. The program counter is incremented by one (to 0x04). The
instruction is decoded and the contents of register 16 (0) are copied to address
0x15 this is the i/o register address for portc itself — so all portc goes low.

5. The next cycle of the clock occurs and 95 03 is moved into the instruction register
from the flash. The program counter is incremented by one (to 0x05). The
instruction is decoded and the contents of register 16 are incremented by 1 (to 01).
This operation requires the use of the ALU as a mathematical calculation is
involved.

6. The next cycle of the clock occurs and CF FD is moved into the instruction register
from the flash. The program counter is incremented by one (to 0x06). CF FD is
decoded and the program counter has 3 subtracted from it (It is Ox06 at the
moment so it becomes 0x03). The sequence jumps back to number three causing
a never ending loop.

642



61 Interrupts

Microcontrollers are sequential devices, they step through the program code one step after
another faithfully without any problem, and it is for this reason that they are used reliably in all
sorts of environments. However what happens if we want to interrupt the usual program
because some exception or irregular event has occurred and we want our micro to so
something else briefly.

For example, a bottling machine is measuring the drink being poured into bottles on a conveyor.
There could be a sensor connected to the conveyor which senses if the bottle is not there.
When the bottle is expected but not there (an irregular event) the code can be interrupted so
that drink is not poured out onto the conveyor.

All microcontrollers/microprocessors have hardware features called interrupts. There are two
interrupt lines on the ATmega8535, these are pind.2 and pind.3 and are called Int0 and Int1.
These are connected to switches on the development pcb. When using the interrupts the first
step is to set up the hardware and go into a normal programming loop. Then at the end of the
code add the interrupt subroutine (called a handler)

The code to use the interrupt is:

1. Title Block

" Author: B.Collis

' Date: 9 Aug 2003

"Version: 1.0

' File Name: Interrupt_Verl.bas

' 2. Program Description:

' This program rotates one flashing led on portb
"when INTO occurs the flashing led moves left

"when INT1 occurs the flashing led moves right

' 3. Hardware Features

' Eight LEDs on portb

' switches on INTO and INT1

' 4. Software Features:

" do-loop to flash LED

"Interrupt INTO and INT1

5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of operations inside the micro
$regfile = "m8535.dat" ' the micro we are using
' 6. Hardware Setups

' setup direction of all ports

Config Porta = Output

Config Portb = Output

Config Portc = Output

Config Portd = Output

Config Pind.2 = Input 'Interrupt O

Config Pind.3 = Input 'Interrupt 1

643



On Int0 IntO_handler 'if at anytime an interrupt occurs handle it
On Intl Intl_handler 'if at anytime an interrupt occurs handle it
Enable IntO Nosave ‘enable this specific interrupt to occur
Enable Intl Nosave 'enable this specific interrupt to occur
Enable Interrupts 'enable micro to process all interrupts

' 7. hardware Aliases

' 8. initialise ports so hardware starts correctly

'10. Declare Variables
Dim Pattern As Byte
Dim Direction As Bit
"11. Initialise Variables
Pattern = 254
Direction = 0
'12. Program starts here
Do
If Direction = 1 Then
Rotate Pattern , Left
Rotate Pattern , Left
Else
Rotate Pattern , Right
Rotate Pattern , Right
End If
Portb = Pattern 'only 1 led on
Waitms 150
Portb = 255 ' all leds off
Waitms 50

' 14. Interrupt subroutines
Int0_handler:

Direction =1
Return

Intl_handler:
Direction =0
Return

Note that enabling interrupts is a 2 step process both the individual interrupt flag and the global
interrupt flag must be enabled.

Exercise

Change the program so that only one interrupt is used to change the direction.
With the other interrupt change the speed of the pattern.

644



61.1 Keypad- polling versus interrupt driven

With the earlier keypad circuits we have had to poll (check them often) to see if a key has been
pressed.

It is not always possible however to poll inputs all the time to see if they have changed it can be much
easier using an interrupt.

INTO

i v

0

-

)
———

-s—so—s
T A 4 A

0= P T S o S
% [ AN I g
0> Pot T O - W
7 % AN g X ¥ s 4
0> P T o P oy
2 kN K : g
O P T P
- L PSRN PO PO
4x4 Keypad

In this circuit 4 pins are configured as outputs and 4 as inputs, when a keypad button is pressed down
the 0 on the output pulls the diode down triggering the interrupt.

In the interrupt routine the inputs are read to identify which pin is 0. Then the inputs become outputs

and the outputs become inputs. The outputs are driven low and one of the inputs will become low.
This combination is unique and identifies which key was pressed.

v

S

Q=

1121 1 o

Q=

b o
1.0 Ped T2 Fud b o b
¢ L% R s < g
1¢ PP
P Fod e T T
O« o ! o g
1¢ P SO o P o)
1+ L% g g g
4x%4 Keypad

645



Here is the circuit diagram for an ATMega64 with the keypad circuit shown

PabO1

UCC

1H 49

C3

o
5

ouT
ND C4

PrOZ

UCC

GND

AUCC

GND

AGND

0
-
]
[ | ) =
a
[
=
GHO
1 -
ETHE G 28 -AC =
% PE7/0CZ/0C40 sl g —
16 | prerocis
12 pessocas mEsET 22—
14 | pe4soco
13 | pessmiso pC7spls 2
T2 pe2/Mos] pes/Ald |
PE1/SCK PrEsAls 8
18 | pppgg PC4/A12 %
Prasall ol
22 | pprsT2 PC2/AlE ol
% PO&/TL PCL/ A %
28 | possxckt pCosps 20
% PO4./101 »
28 | possTEDA/INTE pArsenr i
22 | ppz/RNDL/INTZ - PAE/ADS a2
26 | pOissDa/INTL  PAG/ADS &
e B pppsSCLAINTE  PAT/ADS o
48
. 5 PA3/ADD 1o
PEZ/IC3/INT?  PRz/a0z |2
c S | PES/T3/INTS PAl/ADL 28
g Z | BEE/OCIC/NTE  PeaseDe 2L
5 S | PE4/0CIE/INT4
g 2 PE3./0C3A/AINA
PE2./%CKE/ATNE
2 S | PEA/POOSTHOE PG4/TOSCA |22
1 2 | PEB/POL/RXDE PG3/TOSCZ LB
PGZ/ALE 1S
23— Pr7sAoc7/Tol PeL/AD (2T .
55 | presmOCe/TO0 PGB/ 2o b
596 | prE/ADCS/THS ¥TALZ 22 . II
92| pr4/mOC4/TOK i
% PF3/80C3 N
29 Prz/ADC2 » o
S8 | prismoct YTALL + II—«
1 | Brosm0cE BREF =2

646




Program code for this keypad
' Title Block
" Author:B.Collis

' File Name: kybd_v2.bas

' Program Description:

' This program reads a keypad using interrupts rather than polling

' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 "internal clock

$regfile = "m64def.dat" " ATMEGAG64-16Al

' Hardware Setups

' setup direction of all ports

Config Porta = Output

Config Portc = &B11111111 ‘1=output O=input

Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.5 , Db6 = Porth.6 , Db7 = Portb.7 , E = Portb.3 ,
Rs = Porth.2

Config Lcd =20 *4 ‘configure lcd screen
'the keypad interrupt

Config Pind.1 = Input int INTO

Config Intl = Falling 'negative edge trigger
On Intl Intl_int 'go here on interrupt
Enable Interrupts ‘global interrupts on

'Hardware Aliases

Keypad_int Alias Pind.1 'not used

Keypad_out Alias Porte

Keypad_dir Alias Ddre

Keypad_in Alias Pine

'Initialise hardware state

Keypad_dir = &B00001111 " upper half of port input=0, lower half output=1
Keypad_out = &B11110000 " enable pullups upper 4 bits, lower half port to O
'‘Declare Constants

Const Timedelay = 450

Const Debouncetime = 20

'‘Declare Variables
Dim Keyrow As Byte
Dim Keycol As Byte
Dim Keycode As Byte

Dim Lastkey As Byte 'the last key that was pressed

Dim Keyval As Byte 'the extended value of the key that has just been pressed
Dim Keycount As Byte 'records how may times the key has been pressed

Dim Keychar As String * 1 'the character gotten from the keypad

Dim Intcount As Word
Dim Keypress As Bit

647



'Initialise Variables

Intcount =0
Keychar ="r"
Keypress =0 'no key down

'Program starts here
Reset Porta.0 'led on
Cls
Lcd "ATMEGAG64-16Ai1"
Lowerline
Lcd "keypad reader:"
Locate 3,1
Lcd "l_ctr="
Locate 3, 10
Lcd "code="
Locate 4,1
Lcd "col="
Locate 4, 10
Lcd "row="
Enable Intl
Do
Locate 3,7
Lcd Intcount : Led " "
Locate 3, 15
Lcd Keycode : Lcd "™
Locate 4,5
Lcd Keycol : Lcd "™
Locate 4, 14
Lcd Keyrow : Lcd " "
Locate 2, 16
Lcd Keychar
Toggle Porta.6
Waitms Timedelay
Toggle Porta.7
Waitms Timedelay
Loop
End ‘end program

648



" Interrupts

Intl_int:
Toggle Porta.0 'indicate a key press
Incr Intcount 'tally of key presses
Keypress =1 'flag a key down

Keycol = Keypad_in
'swap port upper nibble to input, lower to output
Keypad_dir = &B11110000
Keypad_out = &B00001111
Waitms 1 ' port needs a little time
Keyrow = Keypad_in 'read the col is zero
'set port back to original state
Keypad_dir = &B00001111
Keypad_out = &B11110000
'make keycode from port pins read
Shift Keycol , Right , 4
Select Case Keycol
Case 7 : Keycode =0
Case 11 : Keycode = 4
Case 13 : Keycode = 8
Case 14 : Keycode = 12
Case Else : Keycode =99
End Select
'make final keycode from port pins read
Select Case Keyrow
Case 7 : Keycode = Keycode + 0
Case 11 : Keycode = Keycode + 1
Case 13 : Keycode = Keycode + 2
Case 14 : Keycode = Keycode + 3
Case Else : Keycode = Keycode + 99
End Select
'illegal keycode from bounce effects
'If Keycode > 15 Then Keycode = 16
Keychar = Lookupstr(keycode , Keycodes)
'the changing of ports causes interrupts to be flagged a second time
'however interrupts are not processed during an intr routine
' because the global flag is halted (CLI)
'so we must clear the second interrupt so that we do not enter here again
'this took a few hours to figure this one out!!!
'this line clears any pending interrupts before the routine exits
Eifr =2
Return
Keycodes:
Data "1", "4"  "7", "s",6"2" "5","8","0",
Data "3","6","9","h","A","B","C","D","?"

649



61.2 Improving the HT12 radio system by using interrupts

Earlier a radio system was described that used the HT12E and HT12D ICs. The receiver side of the
system used a polling type design, where the program regularly checked the VT pin from the HT12D to

see if data was present.

It would be useful in some
situations to have an interrupt
driven design, so that a
program could be doing other
functions and only respond
when something actually
happens.

In this program the data is
stored when it arrives and the
main program loop is free to
check it when it wants.

l

$crystal = 8000000
$regfile "ml6def.dat"

1

Hardware Setups
Config Porta = Output
Config Portb = Input
Config Portc Output
Config Portd Input

'setup LCD

Config Lcdpin = Pin , Db4d =
Portc.7 , E = Portc.3 , Rs =
Config Led = 40 * 2

'setup Interrupts

On Int0 Get data
Enable IntO

Config Int0 = Rising
Enable Interrupts

' Hardware Aliases
Htl2d dv Alias Pind.2

( Start )

\

/y< interrupt on receive >

A3
Nl pregim few AN read data from HT12D

A
AN
AN
A

AN
A
{ return to normal process >

setup direction of all ports

Compiler Directives (these tell Bascom things about our hardware)

' internal clock

' ATMEGAl®6

'4 leds on PortA.0Oto A.3

' Valid data is input on this port

' Used for LED's and LCD

' PortD.2 is used for Data Valid input

Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =
Portc.2

' Turn off LED's on PortC.0 & PortC.l1l

' Declare Constants

Const True =1

Const False = 0

' Declare Variables

Dim Rcvd value As Byte

Dim Data rcvd flag As Bit
Dim Data rcvd count As Byte
Dim Message As String * 81

650



' Initialise Variables

'  Program starts here

Cls

Cursor Off

Locate 1 , 1

Led "HT12D interrupt test program"

Do
'do other program stuff here
If Data rcvd flag = True Then 'do something with the new data
Porta = Not Rcvd value 'display on leds
Message = Lookupstr (rcvd value , Messages)
Cls
Lcd Message
Data rcvd flag = False 'remove flag
End If
Loop !
End

'"interrupt routine

Get data:
Data rcvd flag = True
Rcvd value = Pinb And &HOF ' get value from lower nibble PortB
While Htl2d dv = True ' wait until data no longer wvalid
Wend 'so that the program only actions data
once
Return
Vo o o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o o e e
Messages:
Data "The only time success comes before work is in the dictionary!!"
Data " Ma Te Mahi Ka Ora Fulfillment comes through hard
work!"
Data "good decisions come from experience experience comes from bad
decisions"
Data " the trouble with normal is it only gets worse!"
Data " What you do speaks so loud that I cannot hear what you are
saying"

Data "Never confuse motion with action"
Data "The only thing necessary for the triumph of evil is for good men to do

nothing"

Data "Ability is what you're capable of doing Attitude determines if you will do
it"

Data " The first will be last and the last will be first"
Data "If a blind person leads a blind person, both will end up in a ditch"
Data "10"

Data "11"

Data "12"

Data "13"

Data "14"

Data "15"

The limitation of this program is that it only stores one piece of data; and if new data arrives before it
has had an opportunity to process the first value, then the first value is lost. This program could do
with a buffer to remember received data, in fact a queue would be useful, where data arrives it is
stored at one end of the queue and it is processed from the other end . In computer programming
terms its called a First In First Out (FIFO) queue or buffer.

651



61.3 Magnetic Card Reader

The JSR-1250 is only a few dollars and can make the basis for a
neat project involving magnetic cards.

The card reader has 5V and ground/0V power supply pins as well as
5 interface pins. This is how the interface pins were connected (each
pin also had a 4k7 pullup resistor connected to VCC).

RDD2 onto Pind.6 (data 2)

RCP2 onto Pind.2 - INTO (clock pulse 2)

CPD onto Pind.3 - INT1 (card present detect)

RDD1 onto Pind.4 (data 1)

RCP1 onto Pind.5 (clock pulse 1)

61.4 Card reader data structure

Before program code can be written it must be planned, AND before it can be planned the hardware
must be understood in fine detail.
A card was swiped upwards through the reader and using a logic analyzer the data was captured.
Note the following:
e CPD is high when there is no data.
e When a card is swiped CPD goes low and remains low during the complete data send process.
e There are two sets of data (RDD1 And RDD2) and their respective clock signals (RCP1 and
RCP2).
We can use all this information when writing code to understand the incoming data.

L1 TRSPRLURAN R FLRAE TRYLNY

VA IEET TR O

(UL W (A TR TR

652



61.5 Card reader data timing

There is still much more to understand. When writing program code to read the data from a magnetic
card reader it is important to understand exactly when the data is valid. This is a synchronous data
transfer process, which means that two signals are sent both clock and data, and we must know when
to read the data in relation to the level of the clock data.

The datasheet has this diagram in it and explains that the data should be read when the clock goes
from high to low (its negative edge).

Timing Chart

F2F T,

—b‘ §<—NOTE1 NOTE 2 —> '4—
CPD
RDD :
BIT TIME i
rReP — LTl ML 1ot frn me Tl
NoTES T e +—>noTES
DATA 0 0 1 0 1 1 0 0
NOTES: 1. 8 or 9 head flux reversals for low density configuration.
2. TIMEOUT of the CPD signal approx. 50m Sec after last Head Signal transition.
3. The RDD is valid at 1.6 Sec(min.) before negative edge of the RCP.
4. The low pulse width of RCP is approx. 70% of the bit time.
RDD The DATA signal is valid while the RCP is low. If the RDD signal is high,
the bit is zero. And If low, the bit is one
RCP The RCP signal indicates that RDD is valid. The RDD should be loaded by
the user when the RCP signal goes low.(Negative edge)
CPD CPD signal will go to low after the 8 or 9" flux reversal and will return to

high when the 20m Sec approx. was elapsed.

Seleae Logic 1.0.33  [Disconmected]

EETTED - DT | ETERTTTN In this screen capture from
v sgm : 3 the logic analyser it can be

Qe ] L] 1] seen that there is a gap of

Heo: . L-1-1-1-] LA U UL il around 15mS between CPD

YO going low and the data

B - TSR - starting.

LI UL

653



61.6 Card reader data formats

Next we must know how the binary data (1's and 0’s) needs to be put back into information we can use
(numbers such as credit card numbers!). There are many sources of information on the internet about
magnetic card readers, perhaps one of the best is http://stripesnoop.sourceforge.net/devel/index.html.
On this site are documents that explain in quite a lot of detail the number of tracks of data on a card
and its format. There are two tracks available from our reader, 1 and 2.

Here is the track 2 data format.

It has a start sentinel (signal), then 19 digit code, then... as per the diagram

Card Data Format - Track 2

i A7 MUMERIC DATA CHARACTERS >
55 PAN 15} ADDITIONALDATA | DISCRETIONARY DATA ﬂmd
1 Fimary Account No. NO. OF CHARACTERS NO. OF CHARACTERS
(19 digits Max.)
Expirafion date (YYMM) 4 *PVKI 1
> Service Code 3 *PVV or Offset 4
*CVWWor*CVC 3
Some or ail of he above
feids may be found within
he Discretionary Data.
Shaded area identifies control characters. >
E Start Sentinel HexB ES| End Sentinel HexF ?
E Field Separator HexD = [RC| Longitudinal Redundancy Check character

Further research on the web leads to the format that the data is in. The data is sent 5 bits at a time, 4
data bits and 1 parity bit (error checking). The data comes in LSB (least significant bit) first. The
number 3 in binary is 0011; this means that a 1 is sent then another 1 then a 0 then another 0; and
then the parity bit is sent.

61.7 Understanding interrupts in Bascom- trialling

The tricky thing with Bascom and interrupts is that Bascom does not give us complete control over how
the interrupts are configured, and there are a number of features in the AVR that we can make use of.
In the AVR we can actually configure the interrupts to be negative edge, positive edge, both edge or
low level detect.

Bascom configures the interrupt to be level detected, so interrupts occur when the pin goes low and
continue to occur while it is low. In this program an edge rather than a level detection is better. We only
want one interrupt to occur on the edges.

Here is how the interrupts are configured by Bascom (level detection).

On Intl Intl cpd 'card present detect
Enable Intl 'enable card detect interrupt
Enable Interrupts 'enable micro to process all interrupts

However this is not what we need; to figure out the settings the datasheet was downloaded and the
sections on interrupts and external interrupts were read. The interrupts are controlled by registers
(memory locations which directly control hardware) within the micro, so a program was then written to
display all of the register values involved with Interrupts.

Lcdat
Lcdat
Lcdat
Lcdat
Lcdat
Lcdat

1 "8535 Interrupt Testing"
1 , Sreg
, 1 , Gicr
1, Gifr
1 , Mcucsr
1 , Mcucr

o U W N

654



Here are the results of dis

laying the values of the registers.

Register | Value

Meaning

SREG &B10000010
Status
Reg

This register is the status register for the whole AVR, we are only
interested in bit 7, which is the global interrupt flag. If we set thisto 1
then any enabled interrupt will occur, if it is reset to 0 then any
enabled interrupts will not occur (hence the name global interrupt
flag). We can set it by using any one of the following commands in
Bascom

enable interrupts or SEI or set SREG.7

GICR &B10000000
General
Interrupt
Control
Reg

This register is used to control the external interrupts.

We can disable INTO using the following commands
disable INTO or RESET GICR.INTO

We can enable INT1 using the following commands
enable INT1 or SET GICR.INT1

GIFR &B00100000
General

Interrupt
Flag Reg

We don'’t set or reset any of the bits in this register

MCUCSR | &B00000011
MCU
Control
Status
Reg

We don'’t set or reset any of the bits in this register

MCUCR | &B00000000
MCU
Control
Reg

The type of interrupt is set with this register, we are really interested
in this.

When we write in Bascom “On INT1 int1_cpd’
Bascom configures 2 bits of this register, ISC11 and ISC10, and it
resets them to 0, meaning low level interrupt is configured.
We really want an interrupt on both the negative edge and positive
edge of this pin. So we write these 3 lines
On INT1int1_cpd ‘Bascom sets up the interrupts for us
Reset MCUCR.ISC11 ‘we modify the type of interrupt
Set MCUCR.ISC10

When we write in Bascom “On INTO int0_rcp2’
Bascom configures 2 bits of this register, ISC01 and ISCO00, and it
resets them to 0, meaning low level interrupt is configured.
We really want a negative (falling) edge interrupt on the clock so we
write these 3 lines

On INTO int0_rcp2 ‘Bascom sets up the interrupts for us

Set MCUCR.ISCO1 ‘we modify the type of interrupt

Reset MCUCR.ISC00
After doing this MCUCR = &B00000110

655




Initially the CPD (card present) interrupt is enabled and the clock (RCP) interrupt is disabled. When a
card is present (CPD goes low) the interrupt routine is used to enable the clock interrupt. When the
clock goes low we will read the data.

An initial program to test the ideas was created. This program detects the positive and negative edges
on the CPD (card present detect) and counts them, it then counts the number of clock pulses.

' File Name: MagReaderVla.bas

' Program Description:

uses interrupts to read the data from a magnetic card
Hardware Features:

' 128x64 GLCD

' JSR-1250 magnetic card reader

waits for int0 (CPD) then enables intl (RCP)

every swipe the number of clocks is counted

' Compiler Directives (these tell Bascom things about our hardware)

$regfile =