
1DWLRQDO�6HPLFRQGXFWRU�/0��'LJLWDO�7HPSHUDWXUH�6HQVRU
Using the LM75 with an 8-bit microcontroller
I2C interface.

0��$NHUV�(QWHUSULVHV
3800 Vineyard Ave #E
Pleasanton, California 94566
Voice: +1-925-640-3600
Email: mwakers@home.com

Attention
The information contained in this document is neither supported, nor sanctioned, by any of the

corporations referenced within. This document and the information it contains is solely the opinion
and view of its creator. Use of the information contained in this document is at the risk of the user of
the information. Neither the creator of the document, nor M. Akers Enterprises, can or will, be held

accountable for any damages or loss of profits resulting from the use of this information.

Created by Michael W. Akers, M. Akers Enterprises, October 18, 1999

mailto:mwakers@home.com

7KH�/0��
What exactly is the LM75

2YHUYLHZ
The LM75 was created by National Semiconductor Corporation to fill a crying need in the
PC industry for detecting over temperature conditions in a personal computer. This device
has a built-in 9 bit ADC that will convert the analog thermal reference to a digital value
usable by the PC. But for this document we are going to explore how to access this device
using a Atmel 89C4051 flash microcontroller using the MCS Electronics BASCOM-8051
basic language compiler.

Communication with the LM75 is through the I2C interface (created by the Phillips
Corporation). This is a 2-wire communications protocol used to communicate serially with
various types of devices similarly configured. The LM75, designed as a ‘slave’ device, can
be configured through the I2C interface to alert, through various methods, the PC system
that an over temperature condition has happened.

At certain times, direct quotations or excerpts of the LM75 Datasheet1 will be reproduced
in this document. The information will be displayed with a gray background, and will
contain the page of the LM75 Datasheet. The LM75 Datasheet will, at all times, be the
sole authority. If there is a conflict of information, the LM75 Datasheet will be considered
the correct source.

6FRSH
It is the intent of this document to show the relative ease to which the LM75 Digital
Temperature Sensor can be utilized. This author has reviewed several programs that use
different programming languages to interact with the LM75 DTS. Except for the MCS
Electronics BASCOM-8051 Basic Compiler, all other high level languages require a large
amount of code to perform a simple task (although the compiled object code is as small as
can be). BASCOM-8051 is 99% syntax compatible with Microsoft Qbasic, thus anyone
who can program using MS Qbasic can program a microcontroller. MCS Electronics
BASCOM-8051 Basic Compiler has built-in commands for handling the I2C protocol,
making the coding process much easier.

The programming examples given in this document will be presented as subroutines that
you can use in your project. Appendix A will contain an example program that will read the
temperature from the LM75 DTS and display it on a LCD display module.

Section�

�

7KH�/0��
The easiest way to think of the LM75 is as a digital thermal alarm clock. You can read the
thermal time, set the thermal alarm, and it’s thermal snooze button. You can configure the
device to switch on a fan or an audible alarm. As seen in the diagram below the LM75 is a
fairly simple device.

Figure 1. Block diagram of LM75 device. (extracted from page 1 of the LM75 Datasheet)

The Lm75 has four registers that you can read and write to, depending upon what you
want the device to do. Mostly though, you will be reading the temperature. Upon power up
the device is set to the default mode:

n Comparator Mode

n TOS = 80° C

n THYST = 75° C

n O.S. Active Low

n Pointer = “00”

The LM75 registers are accessible through the I2C port. This port is comprised of Pin 1
‘SDA’ (Serial DAta) and Pin 2 ‘SCL’ (Serial CLock). Also, since this device is addressable
(you can have up to eight devices on the I2C bus), you have three address pins; Pin 7 ‘A0’,
Pin 6 ‘A1’, and Pin 5 ‘A2’. For purposes of simplicity, A0 to A2 are considered tied to

�

ground. A thorough reading of the LM75 Datasheet will aquatint you with the operational
fundamentals of the device.

There are some apparent errors in the LM75 Datasheet. As stated, the errors are only
apparent and not actual. The errors, if they are errors, are in the omission of information.
The following is how the information should have been presented:

Address word format: (the waveforms in the LM75 Datasheet are correct)

1 0 0 1 A2 A1 A0 R/W

MSB LSB

n The address for a read function would be 1001XXX1

n The address for a write function would be 1001XXX0

This is the correct way to represent the address word.

Many people who read the LM75 Datasheet often make the mistake of thinking that the
registers in the LM75 are accessed as a 16-bit word. Not, as the waveforms clearly
delineate, as two 8-bit words, in high byte, low byte, order. So most people make the
mistake of using the read word or write word I2C function when communicating with the
LM75. Although the registers are 16-bit, the access method is 8-bit!

&RQFOXVLRQ�
In the next section, I will be going through each register and, with code, explain how to
access and interpret the information.

/P���,�2
Basic Communications

7HPSHUDWXUH
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

SGN MSB 0 0 0 0 0 0 LSB X X X X X X X

MSB LSB MSB LSB

High Byte Low Byte

In the table above is the accurate way to think of the temperature register. Remember that
upon power-up the device is in the default mode, (Pointer = ‘00’) read temperature. With
this in mind, lets look at the table above.

The temperature register is 16 bits wide. Only bits D7 through D15 mean anything. The
High Byte of the temperature word contains the Sign bit (D15) and the whole value
temperature, and the Low Byte contains the fractional temperature (D7). The rest of the
bits in the Low Byte have no meaning (D0 to D6).

To read the LM75 temperature will require sending the address and read command to the
LM75 and then reading the High Byte and then the Low Byte. In addition, the temperature
data is in two’s compliment form. This means that when the temperature goes below 0°C
the sign bit is set and the data is now a two’s compliment of the actual temperature value.

Two’s compliment simply means that the information is negated. (Real clear isn’t it?) As an
example, zero is the compliment of one, and one is the compliment of zero. The
compliment of falling down is falling up. Get the picture? The math for it though is a little
tricky. In doing the math we loose 1 LSB, so it must be replaced when converting back.

Original 00011001

Compliment 11100111

As seen in the example above the compliment to 00011001 (Hex 19) is 11100111 (Hex
E7). But if we negate 11100111 we get 00011000 (Hex 18). But we know that we lost 1
LSB when the conversion was performed, so we just add it back. So 00011000 (Hex 18) +

Section�

�

1 gives us 00011001 (Hex19), the original number. (Believe it or not, this gives first year
Computer Science students NIGHTMARES!)

So with the above in mind, lets get to the code! In BASCOM-8051 syntax, you must
declare the Subroutines and the variables associated with them.

Declare Sub Readlm75(Lm75addr as Byte)
Dim Lm75read As Byte ‘ Read address base
Dim Lm75write As Byte ‘ Write address base
Dim Lm75addr As Byte ‘ Lm75 Address
Dim Lm75high As Byte ‘ Lm75 High Byte
Dim Lm75low As Byte ‘ Lm75 Low Byte
Dim Lm75sign As Bit ‘ Lm75 Sign Bit

Now setup the Read and write addresses.

Lm75read = &B10010001
Lm75write = &B10010000

And now the subroutine!

Sub Readlm75(Lm75Addr)
Call Setaddr Lm75addr, 0
I2cstart ‘ Start the I2C process.
I2cwbyte Lm75read, 8 ‘ Send the LM75 address and read Info.
I2crbyte Lm75high , 8 ‘ Get 8 bits and get ACK from LM75
I2crbyte Lm75low , 9 ‘ Get 8 bits and send NACK to LM75
I2Cstop ‘ Stop the I2C system
If Lm75high > 127 Then

Lm75high = Not Lm75high ‘ Flip the bits Bob!
Incr Lm75high ‘ Add 1 to the value
Lm75sign = 1 ‘ Yup, we be negative!

End If
Lm75low = Lm75low And &B10000000 ‘ Mask out the lower 7 bits.
If Lm75Low = &B10000000 Then

Lm75low = 5
End If
Lm75read = &B10010001 ‘ Reset Lm75read

End Sub

This leaves the variables Lm75high with the whole temperature value, Lm75low with the
fractional temperature value, and the Lm75sign bit denoting the polarity of the temperature
value.

3RLQWHU

As seen abo
to the regist
concern our
write operat
alone.

The breakdo

As it is un
operation on
access this

&RQILJXUDWLRQ

The Config
Comparator
device to sle

6KXWGRZQ�
To put the
nominally ac
still Read/W
device back

&RPSDUDWR
 With D1 =
TOS value, th
O.S. goes h
Interrupt mo

D
0

P7 P6 P5 P4 P3 P2 P1 P0
0 0 0 0 0 0 Register

Select
ve the Pointer register is 8 bits in length. The Pointer register is used to Point
er that you would like to read from or write to. The only bits that we need to
selves with are P0 and P1. Bits P2 to P7 are for test purposes only, and a
ion into these registers could damage or destroy the Lm75. So, leave them

wn of the Pointer register is as follows:

necessary
 a differen

register.

uration reg
 or Interrup
ep.

0RGH�
device in s
tive state a
rite the Con
 up to full op

U�,QWHUUXSW
0 the devic
e O.S. will
igh. This a
de. When

P0 P1
0 0
0 1
1 0
1 1

7 D6
0

Register Pointed To
Temperature (Read only)(Power-up default)
Configuration (Read/Write)
THYST (Read/Write)
TOS (Read/Write)
to specifically set the pointer before performing a Read/Write
t register as a separate process, I will not create a subroutine to
D5 D4 D3 D2 D1 D0
0 Fault

Queue
O.S.

Polarity
Cmp/Int Shutdown
�

ister controls the O.S polarity, whether or not the output is in
t mode, fault queue (for noisy environments), and a way to put the

hutdown mode D0 is set. The device goes into a quiescent but
nd will draw around 1 µA. The I2C bus remains active and you can
figuration, THYST, and TOS registers. Resetting theis bit will bring the
eration.

�0RGH�
e is in comparator mode. When the temperature goes above the
go low. When the temperature falls below the THYST value then the
ssumes that the Polarity bit is low. With D1=1, the device is in
the temperature goes above the TOS value, the O.S. will start

pulsing low. To reset the Interrupt the temperature must be below TOS and any device read
function will then reset the Interrupt.

2�6��3RODULW\�
With D2=0 (default) the O.S. output is Active Low, when D2=1 then O.S. output is Active
High.

)DXOW�4XHXH�

As the temperature
The Fault Queue all
the device triggers fo

Now for the code!

Sub Getconfig(lm75
Call Setaddr Lm75
I2cstart
I2cwbyte Lm75wri
I2cwbyte &B00000
I2cstart
I2cwbyte Lm75rea
I2crbyte Lm75con
I2cstop
Resetpointer

End Sub

Sub Setconfig(lm75a
Call Setaddr Lm75
I2cstart
I2cwbyte Lm75wri
I2cwbyte &B00000
I2cwbyte Lm75con
I2cstop
Resetpointer

End Sub

D4
0
0
1
1

D3 Number of Faults
0 1 (default)
1 2
0 4
1 6
�

nears the TOS level, any noise will cause the device to false trigger.
ows you to determine how many times a false trigger happens before
r real.

addr)
addr , 2

te ’ Send write address
001 , 8 ’ Set Pointer to point to Configuration register

’ Restart I2C
d ’ Send read address
fig , 9 ’ Read the config register

’ Reset the pointer to ’00’

ddr)
addr , 1

’ Start I2C
te ’ Send write address
001 , 8 ’ Set Pointer to point to Configuration register
fig ’ Send the Lm75config byte to write

’ Reset the pointer to ’00’

�

726�DQG�7+<67
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

SGN MSB 0 0 0 0 0 0 LSB X X X X X X X

MSB LSB MSB LSB

High Byte Low Byte

TOS Register

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

SGN MSB 0 0 0 0 0 0 LSB X X X X X X X

MSB LSB MSB LSB

High Byte Low Byte

THYST Register

The TOS and THYST registers are exactly like the Temperature register except that you can
write to them. Everything that pertains to the temperature register pertains to the TOS and
THYST registers.

On power-up the TOS register contains &B0101000000000000 (Hex 5000) or 80°C. And
the THYST register contains &B0100101100000000 (Hex 4800) or 75°C. The following
four subroutines will show how to set and get data on these registers.

Sub Gettos(lm75addr)
Call Setaddr Lm75addr , 2
I2cstart
I2cwbyte Lm75write ’ Send write address
I2cwbyte &B00000011 , 8 ’ Set Pointer to Tos
I2cstart
I2cwbyte Lm75read ’ Send read address
I2crbyte Lm75toshi , 8 ’ Read Tos high byte
I2crbyte Lm75toslo , 9 ’ Read Tos low byte
I2cstop
Resetpointer ’ Reset the pointer to ’00’

End Sub

Sub Settos(lm75addr)
Call Setaddr Lm75addr , 1
I2cstart
I2cwbyte Lm75write ’ Send write address
I2cwbyte &B00000011 ’ Set Pointer to Tos
I2cwbyte Lm75toshi ’ Send Tos high byte
I2cwbyte Lm75toslo ’ Send Tos low byte
I2cstop

��

Resetpointer ’ Reset the pointer to ’00’
End Sub

Sub Getthyst(lm75addr)
Call Setaddr Lm75addr , 2
I2cstart
I2cwbyte Lm75write ’ Send write address
I2cwbyte &B00000010 , 8 ’ Set pointer to Thyst
I2cstart
I2cwbyte Lm75read ’ Send read address
I2crbyte Lm75thysthi , 8 ’ Read Thyst high byte
I2crbyte Lm75thystlo , 9 ’ Read Thyst low byte
I2cstop
Resetpointer ’ Reset the pointer to ’00’

End Sub

Sub Setthyst(lm75addr)
Call Setaddr Lm75addr , 1
I2cstart
I2cwbyte Lm75write ’ Send write address
I2cwbyte &B00000010 ’ Set pointer to Thyst
I2cwbyte Lm75thysthi ’ Send Thyst high byte
I2cwbyte Lm75thystlo ’ Send Thyst low byte
I2cstop
Resetpointer ’ Reset the pointer to ’00’

End Sub

&RQFOXVLRQ�
Well, that’s it! Not as hard as you were thinking was it. Using the I2C interface code in
BASCOM-8051 makes accessing and controlling the LM75 a snap.

Appendix A contains the full core code file, along with a schematic of a circuit that will work
with the code. All you need to do now is complete the program to read and write to the
LM75.

/0���&RUH�&RGH
’--

’ Program Name : Lm75Full.bas

’ Program Date : October 15,1999

’ Program Written By : M. Akers Enterprises

’ Michael W. Akers

’ 3800 Vineyard Ave. #E

’ Pleasanton, California 94566

’ Voice: +1 925 484 4750

’ Email: mwakers@home.com

’ Program Purpose : This program will demonstrate how to interface to,

’ and communicate With The National Semiconductor LM75

’ Digital Temperature Sensor.

’ Target Processor : Atmel 89C52

’--

’ Programmer Date Comments

’ ------------------- ---------- --

’ Michael Akers 10/15/99 Initial creation of program.

’ ---

’ Define the processor (the regfile goes here!)

 $regfile = "8052.DAT"

’ Define all meta-commands that must beinserted before all other commands.

’ Define all subroutines

 Declare Sub Readlm75(lm75addr As Byte)

 Declare Sub Getconfig(lm75addr As Byte)

 Declare Sub Setconfig(lm75addr As Byte)

 Declare Sub Gettos(lm75addr As Byte)

 Declare Sub Settos(lm75addr As Byte)

 Declare Sub Gethyst(lm75addr As Byte)

 Declare Sub Sethyst(lm75addr As Byte)

 Declare Sub Setaddr(lm75addr As Byte , Flagrw As Byte)

 Declare Sub Resetpointer()

 Declare Sub Val2temp(lm75tmphi As Byte , Lm75tmplo As Byte , Lm75tmpsign As Bit)

’ Define all variables and constants

 Dim Lm75read As Byte ’ Read address base

 Dim Lm75write As Byte ’ Write address base

 Dim Lm75addr As Byte ’ Lm75 Address

 Dim Lm75high As Byte ’ Lm75 Temperature High Byte

 Dim Lm75low As Byte ’ Lm75 Temperature Low Byte

 Dim Lm75sign As Bit ’ Lm75 Temperature Sign Bit

 Dim Lm75config As Byte ’ Lm75 Configuration

 Dim Lm75toshi As Byte ’ Lm75 Tos high byte

 Dim Lm75toslo As Byte ’ Lm75 Tos low byte

 Dim Lm75tossign As Bit ’ Lm75 Tos sign bit

 Dim Lm75thysthi As Byte ’ Lm75 Thyst high byte

 Dim Lm75thystlo As Byte ’ Lm75 Thyst low byte

 Dim Lm75thystsign As Bit ’ Lm75 Thyst sign bit

Appendix$

��

Dim Flagrw As Byte ’ Read/Write Flag

 Dim Lm75tmphi As Byte ’ Lm75 Temp hi byte

 Dim Lm75tmplo As Byte ’ Lm75 Temp lo byte

 Dim Lm75tmpsign As Bit ’ Lm75 Temp sign bit

’ Define all Configurations and Pin assignments

 Config Sda = P1.0

 Config Scl = P1.1

 Config I2cdelay = 1

 Config Lcd = 40 * 4

 Config Lcdpin , Db4 = P1.4 , Db5 = P1.5 , Db6 = P1.6 , Db7 = P1.7 , E = P1.3 , Rs = P1.2

’ Initialize variables as needed.

 Lm75read = &B10010001

 Lm75write = &B10010000

’ Program start.

Start:

Goto Start

’Program end.

’ Begin subroutine section.

Sub Readlm75(lm75addr)

 Call Setaddr Lm75addr , 0

 I2cstart ’ Start the I2C process.

 I2cwbyte Lm75read ’ Send the LM75 address and read Info.

 I2crbyte Lm75high , 8 ’ Get 8 bits and get ACK from LM75

 I2crbyte Lm75low , 9 ’ Get 8 bits and send NACK to LM75

 I2cstop ’ Stop the I2C system

 Call Val2temp Lm75high , Lm75low , Lm75sign ’ Convert the value (if needed)

 Lm75high = Lm75tmphi

 Lm75low = Lm75tmplo

 Lm75sign = Lm75tmpsign

 Lm75read = &B10010001 ’ Reset Lm75read

End Sub

Sub Getconfig(lm75addr)

 Call Setaddr Lm75addr , 2

 I2cstart

 I2cwbyte Lm75write ’ Send write address

 I2cwbyte &B00000001 , 8 ’ Set pointer register to point

’ at the configuration register.

 I2cstart ’ Restart I2C

 I2cwbyte Lm75read ’ Send read address

 I2crbyte Lm75config , 9 ’ Read the config register

 I2cstop

 Resetpointer ’ Reset the pointer to ’00’

End Sub

Sub Setconfig(lm75addr)

 Call Setaddr Lm75addr , 1

 I2cstart ’ Start I2C

 I2cwbyte Lm75write ’ Send write address

 I2cwbyte &B00000001 , 8 ’ Set Pointer to point to Config register

 I2cwbyte Lm75config ’ Send the Lm75config byte to write

 I2cstop

��

Resetpointer ’ Reset the pointer to ’00’

End Sub

Sub Gettos(lm75addr)

 Call Setaddr Lm75addr , 2

 I2cstart

 I2cwbyte Lm75write ’ Send write address

 I2cwbyte &B00000011 , 8 ’ Set Pointer to Tos

 I2cstart

 I2cwbyte Lm75read ’ Send read address

 I2crbyte Lm75toshi , 8 ’ Read Tos high byte

 I2crbyte Lm75toslo , 9 ’ Read Tos low byte

 I2cstop

 Resetpointer ’ Reset the pointer to ’00’

End Sub

Sub Settos(lm75addr)

 Call Setaddr Lm75addr , 1

 I2cstart

 I2cwbyte Lm75write ’ Send write address

 I2cwbyte &B00000011 ’ Set Pointer to Tos

 I2cwbyte Lm75toshi ’ Send Tos high byte

 I2cwbyte Lm75toslo ’ Send Tos low byte

 I2cstop

 Resetpointer ’ Reset the pointer to ’00’

End Sub

Sub Getthyst(lm75addr)

 Call Setaddr Lm75addr , 2

 I2cstart

 I2cwbyte Lm75write ’ Send write address

 I2cwbyte &B00000010 , 8 ’ Set pointer to Thyst

 I2cstart

 I2cwbyte Lm75read ’ Send read address

 I2crbyte Lm75thysthi , 8 ’ Read Thyst high byte

 I2crbyte Lm75thystlo , 9 ’ Read Thyst low byte

 I2cstop

 Resetpointer ’ Reset the pointer to ’00’

End Sub

Sub Setthyst(lm75addr)

 Call Setaddr Lm75addr , 1

 I2cstart

 I2cwbyte Lm75write ’ Send write address

 I2cwbyte &B00000010 ’ Set pointer to Thyst

 I2cwbyte Lm75thysthi ’ Send Thyst high byte

 I2cwbyte Lm75thystlo ’ Send Thyst low byte

 I2cstop

 Resetpointer ’ Reset the pointer to ’00’

End Sub

Sub Setaddr(lm75addr , Flagrw)

 If Lm75addr <> 0 Then

 Lm75addr = Lm75addr * 2 ’ Shift the address 1 bit left

 Select Case Flagrw

 Case 0 : Lm75read = Lm75read + Lm75addr ’ Add the offset to the read address

 Case 1 : Lm75write = Lm75write + Lm75addr ’ Add the offset to the write address

 Case 2 :

��

Lm75read = Lm75read + Lm75addr ’ Add the offset to read and write address

 Lm75write = Lm75write + Lm75addr

 Case Else

 End Select

 End If

End Sub

Sub Resetpointer()

’ Only call this routine from within a subroutine that has called Setaddr()!

 I2cstart

 I2cwbyte Lm75write ’ Send write address

 I2cwbyte &B00000000 , 9 ’ Set pointer to ’00’

 I2cstop

 Lm75read = &B10010001

 Lm75write = &B10010000

End Sub

Sub Val2temp(lm75tmphi , Lm75tmplo , Lm75tmpsign)

’ This routine will convert the hi and lo bytes into a temperature value

 If Lm75tmphi > 127 Then

 Lm75tmphi = Not Lm75tmphi

 Incr Lm75tmphi

 Lm75tmpsign = 1

 End If

 Lm75tmplo = Lm75tmplo And &B10000000

 If Lm75tmplo = &B10000000 Then

 Lm75tmplo = 5

 End If

End Sub

Sub Temp2val(lm75tmphi , Lm75tmplo , Lm75tmpsign)

’ This routine will convert a temperature value into the prober hi and lo byte values.

 If Lm75tmpsign = 1 Then

 Lm75tmphi = Not Lm75tmphi

 Incr Lm75tmphi

 End If

 If Lm75tmplo <> 0 Then

 Lm75tmplo = &B10000000

 End If

End Sub

’ Insert include files here.

’ End of subroutines and actual end of program.

MAE-LM75DEMO-001 --

LM75 Demo (handles 8 LM75 devices)

A

1 1Monday, October 18, 1999

M. Akers Enterprises
Title

Size Document Number Rev

Date: Sheet of

+5

+5

+5

U1

AT89C52

31

19

18

9

12
13
14
15

1
2
3
4
5
6
7
8

39
38
37
36
35
34
33
32

21
22
23
24
25
26
27
28

17
16
29
30
11
10

EA/VP

X1

X2

RESET

INT0
INT1
T0
T1

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

RD
WR

PSEN
ALE/P

TXD
RXD

R1
10K

C1
0.1uf

OSC1

CO100-24

1
4

8

7

1

V
cc

OUT

G
n

d

N/C

U2

LM75_S

1

2

3

4

5
6
7

8

SDA

SCL

O.S.

G
N

D

A2
A1
A0

+
V

S

U3

LM75_S

1

2

3

4

5
6
7

8

SDA

SCL

O.S.

G
N

D

A2
A1
A0

+
V

S
U4

LM75_S

1

2

3

4

5
6
7

8

SDA

SCL

O.S.

G
N

D

A2
A1
A0

+
V

S

U5

LM75_S

1

2

3

4

5
6
7

8

SDA

SCL

O.S.

G
N

D

A2
A1
A0

+
V

S

U6

LM75_S

1

2

3

4

5
6
7

8

SDA

SCL

O.S.

G
N

D

A2
A1
A0

+
V

S

U7

LM75_S

1

2

3

4

5
6
7

8

SDA

SCL

O.S.

G
N

D

A2
A1
A0

+
V

S

U8

LM75_S

1

2

3

4

5
6
7

8

SDA

SCL

O.S.

G
N

D

A2
A1
A0

+
V

S

U9

LM75_S

1

2

3

4

5
6
7

8

SDA

SCL

O.S.

G
N

D

A2
A1
A0

+
V

S

R3
5K

R2
5K

R4
330 R5

330

24 MHz Oscillator

RS
EN
DB4
DB5
DB6
DB7

LCD Module

	Overview

