

AVR064: A Temperature Monitoring System with
LCD Output

Features
• Presenting data on an LCD-display
• Temperature measurement
• Real Time Clock (RTC)
• UART communication with a PC
• PWM implementation

1 Introduction
The STK502 board is a top module designed to add ATmega169(P) support to the
STK500 development board from Atmel. STK500 and STK502 provide all hardware
needed to get started developing with the ATmega169(P). This application note is
meant to be an example of how to use the ATmega169(P) and the STK502.

It includes:

• A complete ATmega169(P) code example written in C-code.
• Flowcharts explaining the code.
• Instruction on how to configure the STK502.
• A pre-programmed ATmega169(P) including the example in this application note

is shipped with each STK502 kit.
• The source code is found on the “AVR Technical Library” CD shipped with the

STK502 or on the Atmel AVR web site, http://www.atmel.com/products/avr/.

Figure 1-1. The STK502 board

8-bit
Microcontrollers

Application Note

Rev. 2529C–AVR–02/06

http://www.atmel.com/products/avr/

2 AVR064
2529C–AVR–02/06

2 Application overview
This application note describes how to get started with the ATmega169(P)
microcontroller (MCU), the first AVR that has a built in LCD-controller/driver. This
application is a temperature control application, including a Real Time Clock (RTC). It
will monitor the temperature through a sensor, and regulate the temperature if a
heating/cooling element is attached.

Figure 2-1. Application overview

The LCD starts with scrolling the text: “STK502 example application for
ATmega169(P)”. It is required that the example code is programmed into the
ATmega169(P) and the hardware is set up according to the section “Hardware
Configuration” on page 6.

Select a desired temperature set point. When the temperature goes below this set
point value, the Heater I/O pin will go high, and a LED on STK500 will flash. When the
temperature goes above the set point value, the Cooler I/O pin will go high, and
another LED on the STK500 will flash. The duty cycle of the LED flashing will vary
with the actual temperature deviation from the set point (the greater the deviation is,
the brighter the LEDs will shine) The LCD will display time and temperature
information. All data that is presented on the LCD will also be sent through the UART-
interface and can be received by etc a standard terminal.

Pressing a button on the STK500 will shift between the different information on the
LCD. This information is:

ATmega16
L
C
D

U
A
R
T

ADCI/O

STK500
SWITCHES

Heating/
cooling-
element

STK500
LEDS

NTC
Thermistor

32 kHz

Timer2

• CLOCK: RTC clock running on the ATmega169(P)
• DATE: Calculated from the RTC-clock
• SET POINT: Selected temperature
• TEMPERATURE: Measured temperature
• OFFSET: Difference between the measured temperature and the set point
• CONTRAST: Shows all the segments available with the default hardware

strapping.
Adjusting the CLOCK, DATE, SET POINT or the CONTRAST can be done by using
three of the SWITCHES on the STK500. Since these switches are used for different

 AVR064

 3

2529C–AVR–02/06

Figure 2-2. Menu System

lease see section “STK500 switches” on page 17, for more detailed information on

POINT can also be adjusted from the UART interface.

e used with the STK502 and the LCD-display that

the STK502 LCD”.

functions, there is a need for a menu system. See Figure 2-2 for an overview of how
the menus are arranged in this application.

P
how to use the menu system.

The CLOCK, DATE and SET
See section “Terminal” on page 20.

The implementation is designed to b
is included in this starter-kit. For technical specifications and the LCD-bit mapping
please refer to the “STK502 User Guide” found in the AVR Studio help system, and
for more information on the LCD-driver see Application note “AVR065 - LCD driver for

OFFSET

SET POINT

CLOCK

TEMPERATURE

HOUR

MINUTE

SECOND

+

-

+

-

+

-

SET POINT
+

-

DATE

DAY

MONTH

YEAR

+

-

+

-

+

-

CONTRAST CONTRAST
+

-

Menu 1 Menu 2 Menu 3

4 AVR064
2529C–AVR–02/06

3 Hardware description

3.1 ATmega169(P)
e ATmega169(P) is an ultra low power AVR 8-bit RISC microcontroller. It includes

16K of bytes self-programming Flash Program Memory, 1K bytes SRAM, 512 Byte
EEPROM and 8 Channel 10-bit A/D-converter, JTAG interface for on-chip-debugging

Th

and 4 X 25 Segment LCD Driver. It can do up to 1 MIPS throughput at 1 MHz for
ATmega169(P)V, or 4 MIPS throughput at 4 MHz for the ATmega169(P)L.

The ATmega169(P) is an excellent choice for low power applications that requires
user interaction (LCD + keyboard) and the possibility to interface analog sensors etc.

Figure 3-1. ATmega169

The ATmega169P has lower power consumption in power-down and power-save
than ATmega169 revision E, but there are also other differences, e.g. oscillator.

lease see application note AVR098 and the ATmega169(P) datasheets for more P
information.

 AVR064

 5

2529C–AVR–02/06

3.2 STK502
The STK502 board is a top module designed to add ATmega169(P) support to the
STK500 development board from Atmel.

The STK502 includes connectors and hardware allowing full utilization of the new
features of the ATmega169(P) (including an LCD-display), while the Zero Insertion
Force (ZIF) socket allows easy use of TQFP packages for prototyping.

Figure 3-2. STK502 top module for STK500 (pin1 location marked)

See the STK502 User Guide for more information about the STK502

3.2.1 LCD-display

Liquid Crystal Displays (LCDs) are categorized as non-emissive display devices. In
that respect, they do not produce any form of light like a Cathode Ray Tube (CRT).
LCDs are composed of a polarized liquid crystalline material in between two plates of
glass. Typically, one plate is called the common or backplane, and the other is called
a segment or frontplane. In a reflective LCD panel (one that has no back light) a
voltage difference applied across the two electrodes will result in a polarization that
will prevent the light from reflecting back to the observer. This will appear as a dark
segment and is, therefore, considered ON. A lack of voltage difference will allow the
light to reflect back and is considered OFF.

For more information on the LCD-driver, see application note “AVR065: LCD driver
for the STK502 LCD”

3.2.2 NTC-thermistor

Various types of sensors can be used to measure temperature. One of these is the
thermistor, or temperature-sensitive resistor. Most thermistors have a negative
temperature coefficient (NTC), meaning the resistance goes up as temperature goes
down. Of all passive temperature measurement sensors, thermistors have the highest
sensitivity (resistance change per degree of temperature change). Thermistors do not
have a linear temperature/resistance curve.

The NTC-thermistor used with this application has a resistance of 10kΩ at 25°C (),
beta-value of 3450 and a tolerance of ±1%. The voltage over the NTC can be found
using the A/D converter in the ATmega169(P). See the ATmega169(P) datasheets for

6 AVR064
2529C–AVR–02/06

how to use the ADC. And by the use of Equation 3-1, the temperature can be
calculated.

Equation 3-1. Calculation of temperature from measured ADC values

25°C) + (273°C298°K =
273°K =
1.263V =

conversion A/D thefrom calculated Voltage =
3450 =

ln

amb

zero

ref

ADC

zero

ambADCref

ADC

T
T
V
V

T

TVV
V

eTemperatur

β

β

β
−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

=

3.3 Hardware configuration
In order to make the example code work, it is required to set up the cables and
switches in the correct order. Figure 3-3 and Figure 3-4 shows how to set up the
cables and switches.

Figure 3-3. Cable settings

 AVR064

 7

2529C–AVR–02/06

Figure 3-4. Switch configuration

• Connect PORTE on the STK502 to the SWITCHES-header on the STK500 with a
10-pin cable.

• Connect PB5/PB6 to LED5/LED6, PB4/PB7 to respectively Heating/Cooling
element. If no heating/cooling element is available, just connect PORTB to the
LEDS using a 10pins cable.

• Connect PE0/PE1 on the STK500 to the RXD/TXD.
• Connect the “Segment pins from ATmega169(P)” to the “STK502 LCD pins” with

the 34pins cable.
• Place a jumper on the 2pins header “19 24”
• Insert the NTC-thermistor in the screw-terminal.
• All of the three switches on the STK502 should be in the position towards the

screw-terminal, i.e. the TOSC switch should be in the TOSC-position, the AREF
switch should be in the VREF-position and the PF[1:0] should be in the SENSOR-
position.

• Connect PG5 and RST with a jumper, on PORTG/RST.
And most importantly insert the ATmega169(P) in the ZIF-socket. The ATmega169(P)
that comes with the STK502 kit, is pre-programmed with the example code. If it is
required to reprogram the ATmega169(P), see the STK502 User Guide for help on
this topic. The AVR064.hex file that should be programmed into the ATmega169(P)
can be found on the “AVR Software and Technical Library”-CD that comes with the
STK502, and on the ATMEL web site (http://www.atmel.com/products/avr/). If the
ATmega169(P) is reprogrammed, make sure the fuses are set up according to Figure
3-5.

http://www.atmel.com/products/avr/

8 AVR064
2529C–AVR–02/06

Figure 3-5. Fuse settings

As Figure 3-5 describes, the only fuses that should be programmed is:

• Brown-out detection disabled
• JTAG Interface Enabled
• Boot Flash section size = 1024 words
• Int. RC Osc.; Start-up time 6CK + 65 ms

4 ATmega169(P) firmware
This section contains information about the source code and functions. The firmware
can be downloaded from the Atmel website: http://www.atmel.com/products/AVR/.
For compiler info and settings, device settings, target setup info and comprehensive
source documentation please see the readme.html file included with the source.

The timing related functions are written for an ATmega169(P) running at 1Mhz
(except the RTC-clock and the LCD-frame rate that is clocked from an external 32kHz
crystal), and the prescaler for the system clock is therefore set to 1/8. Please note
that the ATmega169 revision B runs at 4 MHz, so the communication speed of the
UART will be reduced from 9,600 to 4,800 baud, but otherwise will be ok.

4.1 Interrupts used

4.1.1 LCD Start of Frame

In this interrupt the data from the LCD_displayData buffer is latched to the LCD Data
Registers. The variable LCD_Blink toggles every time this interrupt occurs. The
interrupt is dependent of the external 32kHz crystal.

http://www.atmel.com/products/AVR/

 AVR064

 9

2529C–AVR–02/06

4.1.2 Timer/Counter2 Overflow

This interrupt is used to increment the variable SECOND, which the whole RTC-clock
builds on. Timer/Counter2 is clocked asynchronous from the 32kHz and is therefore
independent of the clock frequency.

4.1.3 USART0, RX complete

This interrupt takes care of incoming data from the UART interface.

4.1.4 USART0, Data Register Empty

This interrupt transmits data out through the UART interface.

4.2 Main loop
Figure 4-1 shows the main loop.

Figure 4-1. Main loop

Store data from
receive-buffer

Send data from
transmit-buffer

Temperature
calculation

Time and date update

Initialize

Check status on
STK500 buttons

Update LCD

4.3 Initialize
After a reset the firmware will initialize the ATmega169(P) and its integrated
peripherals. The initialization runs only one time after a reset.

10 AVR064
2529C–AVR–02/06

Figure 4-2. Initialize

Set PORTB as output.
Set PORTE as input.

Set up Timer1 with PWM.
Phase Correct, 10-bit.

Set up the Real Time Clock,
using Timer2 in asynchronous

mode.

Set up the UART.
Baudrate = 9600 @ 1Mhz

Set up the ADC

Set up the LCD with 1/4 duty
cycle and 1/3 bias.

Enable all segments.

Set up data for the LCD-
display. Scrolling text.

Initialization

Return

PORTB is set as output and should be connected to the LEDS on STK500. PB5
(OC1A) and PB6 (OC1B) show the offset between measured temperature and
selected temperature set point. PB4 and PB7 are heating and cooling pins
respectively. Connect a heating and cooling element to these pins.

DDRE is set as input and should be connected to the SWITCHES on the STK500.
PE7, PE6 and PE5 are used to select what information should be displayed on the
LCD and adjusting time/date, temperature set point and the LCD contrast.

Timer/Counter1 is set up with PWM to use on the OC1A/OC1B (PB5/PB6) pins.

Enable Timer/Counter2 with asynchronous operation, for the RTC. By using an
external 32kHz crystal the RTC can run independently of the ATmega169(P) system
clock, and will also run during sleep.

Set up the UART with both RX and TX enable, baud rate 9600 @ 1 MHz,
asynchronous operation, 8 bit character size, 1 stop bit and disable parity mode.

Set up the ADC in single-ended mode. (Differential mode can be selected by setting
ADC_init(Differential) instead of ADC_init(SingleEnded) in the source code). Disable
digital input on PORTF and run a dummy ADC conversion.

 AVR064

 11

2529C–AVR–02/06

Enable all segment pins on the ATmega169(P). Select the 32kHz as clock source for
the LCD, and set the prescaler bits thereafter. Select 1/4 duty cycle and 1/3 bias. Set
up Timer/Counter0 Compare Match interrupt to give the required delays for the
scrolling and blinking speed of the information on the LCD-display.

Start scrolling the initial string over the LCD-display.

4.4 Time and date update
This routine updates the clock and date according to the variable SECOND that gets
incremented every second in the Timer/Counter2 Overflow interrupt routine. The
whole update routine is self-explaining from the flow-chart.

Figure 4-3. Time and date update

SECOND
larger than

59?

MINUTE
larger than

59?

Increment MINUTE
Clear SECOND

Increment HOUR
Clear MINUTE

HOUR
larger than

23?

Increment DAY
Clear HOUR

Increment MONTH
Set DAY = 1

MONTH
larger than

12?

DAY
larger than

number of days in
month? (check if

leap year)

Increment YEAR_LO
Set MONTH = 1

Increment YEAR_HI
Clear YEAR_LO

YEAR_LO
larger than

99?

YES

YES

NO

YES

NO

NO

YES

NO

YES

YES

NO

NO

The variable
SECOND is

incremented in the
Timer2 Overflow
Interrupt routine.

Time_update

Return

12 AVR064
2529C–AVR–02/06

4.5 Temperature calculation
In this function the voltage over the NTC-thermistor will be measured and the
temperature calculated.

Figure 4-4. Temperature calculation

Run an Analog to
Digital Conversion.

Measured
temperature 32

times?

YES

NO

Calculate the voltage from
the ADC-value, and use it in

a formula to calulate the
corresponding temperature.

Find the difference between
the measured temperature

and the setpoint, and if
necessary, set heating or

cooling pin.

Return

ADC_conversion

Increment the
number of A-D

conversions

Start by doing an A/D conversion. The average of 32 ADC results is used in a formula
to calculate the corresponding temperature. The heating or cooling pin is set
depending on the difference between the calculated temperature and the temperature
set point. The temperature set point is selected by the user. The bigger the difference
is, the brighter the heating or cooling LED will shine.

4.6 Receive data from PC
These routines take care of data coming from the PC through the UART interface.

 AVR064

 13

2529C–AVR–02/06

Figure 4-5. Receive packet from PC

Byte in
receivebuffer =

0x0D?

Read the UDR0-reg which
contains the received byte.

__interrupt [USART_RXC_vect]
void USART0_RXC_interrupt(void)

Preamble
received?

Store received byte in
receive buffer

Received
byte = 0x0D?

(ascii value for line feed,
end of packet)

Preamble received = FALSE
RX_Packet complete = TRUE

YES

YES

NO

NO

RX_Packet
complete?

Byte in
receivebuffer = 0x0D

or 0x20? (end of
packet or new

byte)

Convert ASCII-byte
to HEX

Store the HEX-byte
to SRAM

There may be up to
three ASCII bytes to

get one HEX-byte

Any byte
converted?

YES

NO

YES

NO

Set RX_Packet
complete = FALSE

YES

NO

NO

YES

Return

Return from
interrupt

Store_RX_data

RXC interrupt

4.6.1 USART_RXC_interrupt

Receiving data from the PC is done in the USART_RXC_interrupt routine. It will
discard all data until the correct preamble bytes are received. Then it will store the
succeeding bytes in a receive buffer until the byte for Line Feed appears (ASCII
value: 0x0D) This indicates the end of the packet and RX_Packet_complete flag will
be set to TRUE.

4.6.2 Store_Rx_data:

The packet is then converted from ASCII to hexadecimal. One HEX-byte can contain
1-3 ASCII bytes. ASCII-bytes that belong to different HEX-bytes are separated by an

14 AVR064
2529C–AVR–02/06

ASCII-space (0x20). The converted HEX-bytes get continuously stored in the correct
place in SRAM until the Line-Feed byte appears, which is the end of the packet.

Table 4-1. Receive Packet from PC
Data Size

Preamble “STK502” 6 byte

ASCII-space (0x20) 1 byte

HOUR 2 byte

ASCII-space (0x20) 1 byte

MINUTE 2 byte

ASCII-space (0x20) 1 byte

SECOND 2 byte

ASCII-space (0x20) 1 byte

DATE 2 byte

ASCII-space (0x20) 1 byte

MONTH 2 byte

ASCII-space (0x20) 1 byte

YEAR_HI 2 byte

ASCII-space (0x20) 1 byte

YEAR_LO 2 byte

ASCII-space (0x20) 1 byte

SET_POINT 2 byte

ASCII-carriage return (0x0D) 2 byte

ASCII-line feed (0x0A) 2 byte

Transferring the data in ASCII allows a standard terminal to be used on the PC.

4.7 Transmit packet to PC
These routines transmit the data from ATmega169(P) to the PC

 AVR064

 15

2529C–AVR–02/06

Figure 4-6. Transmit packet to PC

Load Preamble bytes
 in transmit-buffer

HEX-bytes
left to convert?

Enable UDRE-
interrupt, that will
start the transfer.

Load 0x0D,
ASCII:"line feed" in
the end of packet

YES

YES

NO

NO

interrupt [USART0_UDRE_vect]
void USART0_UDRE_interrupt(void)

Bytes left to
send?

Disable UDRE-
interrupt

Transmit one byte

On-going
transmission?

YES

NO

Load 0x20,
ASCII: "space"

 in transmit buffer.

Convert one
HEX-byte to

2-3 ASCII-bytes.

Send_TX_data

UDRE interrupt

Return from
interrupt

Return

A transmit packet starts with the preamble bytes, and then the HEX-bytes that are to
be transmitted get converted to ASCII-bytes and loaded in the packet. Between each
HEX-byte that gets converted, an ASCII-byte for space (0x20) is inserted. At the end
of the packet, an ASCII-byte for Line Feed is added to indicate the end of frame. The
transmission starts by enabling the UDRE interrupt. When all bytes are transmitted
the UDRE interrupt gets disabled.

16 AVR064
2529C–AVR–02/06

Table 4-2. Transmit packet to PC
Data Size

Preamble “STK502” 6 byte

ASCII-space (0x20) 1 byte

HOUR 2 byte

ASCII-space (0x20) 1 byte

MINUTE 2 byte

ASCII-space (0x20) 1 byte

SECOND 2 byte

ASCII-space (0x20) 1 byte

DATE 2 byte

ASCII-space (0x20) 1 byte

MONTH 2 byte

ASCII-space (0x20) 1 byte

YEAR_HI 2 byte

ASCII-space (0x20) 1 byte

YEAR_LO 2 byte

ASCII-space (0x20) 1 byte

SET_POINT 2 byte

ASCII-space (0x20) 1 byte

TEMP_HIGHBYTE 2 byte

ASCII-space (0x20) 1 byte

TEMP_LOWBYTE 2 byte

ASCII-space (0x20) 1 byte

OFFSET 2 byte

ASCII-space (0x20) 1 byte

Firmware revision 2 byte

ASCII-carriage return (0x0D) 2 byte

ASCII-line feed (0x0A) 2 byte

 AVR064

 17

2529C–AVR–02/06

4.8 STK500 switches
Figure 4-7. CheckButtons

Read buttons

Button
A, B or C?

Yes

Shift
Menu1

Button
A, B or C?

Menu2
active?

No

A

B

No

Yes

Shift
Menu2

A

Activate
Menu2

Menu3
active?

No

Yes

C

Activate
Menu3

B

Deactivate
Menu2

C Button
A, B or C?

A

B

C

Increase
value

Decrease
value

Deactivate
Menu3

Buttons
released from

last time?

Run
LCDsetupData

Run
LCDsetupData

Run
LCDsetupData

Return ReturnReturn

Return

CheckButtons

Deactivate
Menu1

There are three switches that are used as inputs to the application. To do several
tasks with only three switches, a menu system is needed. Figure 4-7 shows three
menus in a hierarchy, which are used in this code. See Figure 2-1 for an overview of
the menus.

Figure 4-7 refers to Button A/B/C, in the application these buttons can be found at:

“ButtonA” is SW7 that is connected to PE7.

“ButtonB” is SW6 that is connected to PE6.

“ButtonC” is SW5 that is connected to PE5.

Example:

After a RESET the LCD is set up to scroll a text. None of the three menus are active.
Pressing the SW7 will toggle between the alternatives in Menu1 (Clock, Date, Set
point, Temperature, Offset and Contrast)

To adjust the variable MINUTE: Press SW7 until “CLOCK” appears in the LCD-
display, and select this by pressing SW6 to activate Menu2 under “CLOCK”. Pressing
SW7 will now toggle between the alternatives in Menu2 (Hour, Minute and Second).
Press SW7 until the variable MINUTE is blinking in the LCD-display, and select this
by pressing SW6. Now Menu3 is activated (the colons should disappear). Pressing
SW7 will increase the variable MINUTE and SW6 will decrease. When desired value
has been selected, press SW5 to deactivate Menu3, and go back to Menu2. Press
SW5 once more to deactivate Menu2 and go back to Menu1.

The same procedure can be used to adjust the other variables as well.

18 AVR064
2529C–AVR–02/06

4.9 LCD
Writing to the LCD requires an LCD driver. The driver used in this application is
described in the application note “AVR065: LCD Driver for the STK502LCD”.

4.9.1 LCD update

Figure 4-8. LCD_update

Clear all
specialsegments

Set
specialsegments if

required

Write data
fromTransmit-

Buffer?

Yes

No

No

Yes

Load one byte from
transmitbuffer

Write the digit to
LCD_displayBuffer

Activate blinking if
required

6 digits
written to
buffer?

Yes No

Go to
LCDscrollMSG

function.

LCD_update

Return

Set LCD_updateComplete
= FALSE

Set LCD_updateRequired
= FALSE

LCD_
updateComplete =

TRUE?

Set LCD_updateRequired
= TRUE

Enable all
segments

Scrolling
text?

Yes

No

This function will load data into the LCD_displayBuffer.

First check if the LCD has been updated with the data already in the
LCD_displayBuffer. If so, set the LCD_update required to FALSE. This will prevent
the LCD to be updated with incomplete data, if an LCD Start of Frame interrupt
should occur during this function.

If a text-string is to be scrolled, clear display and call the LCDscrollMSG function. If no
text to scroll, check if there is data to write from the TransmitBuffer, and load the data
into the LCD_displayBuffer. Digits can be set to blink on the display. To do this the
digit will be loaded with either its data value or a ASCII-space (0x20), depending on
the variable LCD_Blink.

 AVR064

 19

2529C–AVR–02/06

After the LCD_displayBuffer has been updated, the LCD_updatedComplete will be
set to FALSE and LCD_updateRequired to TRUE. This will cause the
LCD_displayBuffer to be written to the LCD in the LCD Start of Frame interrupt.

4.9.2 Scroll function

Figure 4-9. LCDscrollMsg

This function shifts the six digits on the LCD one step to the left. The scroll function
uses a pointer to keep track of what characters to shift in and out of the LCD. When
all the six digits have been updated, the pointer gets incremented by one in order to
shift the text-string one step the next time this function is called.

If the pointer has reached the end of the string, the LCD has to be filled up with one
ASCII-space at the time until all of the six digits are blank. This will “fade” out the text
string.

String-pointer
at the end of

string?

Write six characters
from the String to the
LCD_displayBuffer

Yes

No

Increment
string pointer

Add one 'space' and write
the remaining characters

from string to the
LCD_displayBuffer

No

Yes

If not set to infinite
scrolling, decrement the
NumberOfScroll variable

LCD-display
empty?

Clear
string-counter

Return

LCDscrollMsg

20 AVR064
2529C–AVR–02/06

4.9.3 LCD set-up data

Figure 4-10. LCDsetupData

Load Welcome
string and activate

infinite scrolling

Menu2 active?

Menu1
active?

Load a string
(depending on
Menu1) to be
scrolled once.

Menu3
active?

Yes

No

NoNo

YesYes

Enable
colons

Enable
colons

Disable
colons

Return

LCDsetupData

If Menu1 isn’t active the welcome will scroll over the LCD. If Menu1 is active but not
Menu2, the corresponding string will be scrolled once over the LCD and then the
belonging data. If Menu2 is active but not Menu3, just enable the colons. And if
Menu3 is active, disable the colons to indicate that the current variable can now be
adjusted.

5 Terminal
All temperature and time information is transmitted through the UART-interface. A
program on a PC can receive this data by connecting a serial-cable between the
“RS232 SPARE” on the STK500 and a com-port on the PC. A standard terminal can
be used, e.g. HyperTerminal. Set up the terminal with the settings shown in Figure 5-
1.

 AVR064

 21

2529C–AVR–02/06

Figure 5-1. Port Settings

Press the connect-button and the data from the ATmega169(P) should appear as in
Figure 5-2. The data is presented according to Table 5-1.

Table 5-1. Transmit Packet from ATmega169 according to Figure 5-2
Data Value

Preamble STK502

Hour 15

Minute 14

Second 22

Day 04

Month 11

Year high 20

Year low 02

Set point 25

ºC high byte 25

ºC low byte 14

Offset 00

Versions number 01

22 AVR064
2529C–AVR–02/06

Figure 5-2. HyperTerminal

One can also adjust the variables within the ATmega169(P) from the terminal. This
has to be done according to Table 4-1. E.g. write: ”STK502 14 37 02 25 11 20 02 24”
in the terminal, and press enter to indicate end of frame. This will adjust the clock to
14h37m02s, the date to 25. November 2002, and the temperature set point will be
24°C.

 AVR064

 23

2529C–AVR–02/06

6 Table of Contents
Features... 1
1 Introduction .. 1
2 Application overview ... 2
3 Hardware description .. 4

3.1 ATmega169(P) .. 4
3.2 STK502.. 5

3.2.1 LCD-display... 5
3.2.2 NTC-thermistor .. 5

3.3 Hardware configuration ... 6
4 ATmega169(P) firmware .. 8

4.1 Interrupts used... 8
4.1.1 LCD Start of Frame ... 8
4.1.2 Timer/Counter2 Overflow .. 9
4.1.3 USART0, RX complete.. 9
4.1.4 USART0, Data Register Empty ... 9

4.2 Main loop ... 9
4.3 Initialize.. 9
4.4 Time and date update ... 11
4.5 Temperature calculation.. 12
4.6 Receive data from PC ... 12

4.6.1 USART_RXC_interrupt.. 13
4.6.2 Store_Rx_data: ... 13

4.7 Transmit packet to PC... 14
4.8 STK500 switches... 17
4.9 LCD ... 18

4.9.1 LCD update ... 18
4.9.2 Scroll function.. 19
4.9.3 LCD set-up data .. 20

5 Terminal .. 20
6 Table of Contents... 23
Disclaimer... 24

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, AVR Studio® and
others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be
trademarks of others.

2529C–AVR–02/06

	Introduction
	Application overview
	Hardware description
	ATmega169(P)
	STK502
	LCD-display
	NTC-thermistor

	Hardware configuration

	ATmega169(P) firmware
	Interrupts used
	LCD Start of Frame
	Timer/Counter2 Overflow
	USART0, RX complete
	USART0, Data Register Empty

	Main loop
	Initialize
	Time and date update
	Temperature calculation
	Receive data from PC
	USART_RXC_interrupt
	Store_Rx_data:

	Transmit packet to PC
	STK500 switches
	LCD
	LCD update
	Scroll function
	LCD set-up data

	Terminal
	Table of Contents

