AVR064: A Temperature Monitoring System with
LCD Output

Features

Presenting data on an LCD-display
Temperature measurement

Real Time Clock (RTC)

UART communication with a PC
PWM implementation

1 Introduction

The STK502 board is a top module designed to add ATmega169(P) support to the
STK500 development board from Atmel. STK500 and STK502 provide all hardware
needed to get started developing with the ATmega169(P). This application note is
meant to be an example of how to use the ATmega169(P) and the STK502.

It includes:

e A complete ATmega169(P) code example written in C-code.
¢ Flowcharts explaining the code.
¢ Instruction on how to configure the STK502.

e A pre-programmed ATmega169(P) including the example in this application note
is shipped with each STK502 kit.

e The source code is found on the “AVR Technical Library” CD shipped with the
STK502 or on the Atmel AVR web site, http://www.atmel.com/products/avr/.

Figure 1-1. The STK502 board

AIMEL

AIMEL

Y (%)

8-bit AVR

Microcontrollers

Application Note

Rev. 2529C-AVR-02/06

http://www.atmel.com/products/avr/

AIMEL

2 Application overview

2 AVR064

This application note describes how to get started with the ATmega169(P)
microcontroller (MCU), the first AVR that has a built in LCD-controller/driver. This
application is a temperature control application, including a Real Time Clock (RTC). It
will monitor the temperature through a sensor, and regulate the temperature if a
heating/cooling element is attached.

Figure 2-1. Application overview

G 0 o

ATmega16

oor
HX>C

STK500 Timer2 4|_| |:| F‘
SWITCHES | .o

ADC
/ Q Heating/ \

STK500 cooling- NTC
LEDS element Thermistor

The LCD starts with scrolling the text: “STK502 example application for
ATmega169(P)”. It is required that the example code is programmed into the
ATmega169(P) and the hardware is set up according to the section “Hardware
Configuration” on page 6.

Select a desired temperature set point. When the temperature goes below this set
point value, the Heater 1/0O pin will go high, and a LED on STK500 will flash. When the
temperature goes above the set point value, the Cooler /O pin will go high, and
another LED on the STK500 will flash. The duty cycle of the LED flashing will vary
with the actual temperature deviation from the set point (the greater the deviation is,
the brighter the LEDs will shine) The LCD will display time and temperature
information. All data that is presented on the LCD will also be sent through the UART-
interface and can be received by etc a standard terminal.

Pressing a button on the STK500 will shift between the different information on the
LCD. This information is:

e CLOCK: RTC clock running on the ATmega169(P)

o DATE: Calculated from the RTC-clock

o SET POINT: Selected temperature

o TEMPERATURE: Measured temperature

o OFFSET: Difference between the measured temperature and the set point

o CONTRAST: Shows all the segments available with the default hardware
strapping.

Adjusting the CLOCK, DATE, SET POINT or the CONTRAST can be done by using

three of the SWITCHES on the STK500. Since these switches are used for different

2529C-AVR-02/06

2529C-AVR-02/06

AVR064

functions, there is a need for a menu system. See Figure 2-2 for an overview of how
the menus are arranged in this application.

Figure 2-2. Menu System

Menu 1 Menu 2 Menu 3
> HOUR
— - |
CLOCK » MINUTE
]
» SECOND
-
> DAY
]
DATE » MONTH
— - |
> YEAR
— - |
SET POINT » SETPOINT
— - |

TEMPERATURE

OFFSET

CONTRAST » CONTRAST
— - |

Please see section “STK500 switches” on page 17, for more detailed information on
how to use the menu system.

The CLOCK, DATE and SET POINT can also be adjusted from the UART interface.
See section “Terminal” on page 20.

The implementation is designed to be used with the STK502 and the LCD-display that
is included in this starter-kit. For technical specifications and the LCD-bit mapping
please refer to the “STK502 User Guide” found in the AVR Studio help system, and
for more information on the LCD-driver see Application note “AVR065 - LCD driver for

the STK502 LCD".
AIMEL 3

Y)

AIMEL

3 Hardware description

3.1 ATmegal69(P)

4 AVR064

The ATmega169(P) is an ultra low power AVR 8-bit RISC microcontroller. It includes

16K of bytes self-programming Flash Program Memory, 1K bytes SRAM, 512 Byte
EEPROM and 8 Channel 10-bit A/D-converter, JTAG interface for on-chip-debugging
and 4 X 25 Segment LCD Driver. It can do up to 1 MIPS throughput at 1 MHz for
ATmega169(P)V, or 4 MIPS throughput at 4 MHz for the ATmega169(P)L.

The ATmega169(P) is an excellent choice for low power applications that requires
user interaction (LCD + keyboard) and the possibility to interface analog sensors etc.

Figure 3-1. ATmega169

E aVOC

53] ano

E AREF

E PFO (A0CO)

&
8
.
iy
o

50] Pri o)
]

[E1[

[59] PR3 ooy

3 PF4 (ADC ATCK)

59 Prs mocaTHs

E PFE (ADCETOO)

E PET (ADCTITON
59 cno

E Woo

E PA.0 [DOKD)

El Pal [(COMI)

El a2 (COME)

LoDCAP E
{RXDVPCINTO) PED E
mXOPCINTY PE1 [2]

pCKiaMVPCINTZ) PE2 1]
{AINUPCINT) PEZ E
(USCHSCLIPCINTA PE4 E
(DIS0APCINTS) PES E
{poPciNTs) Pes [E]
(CLKOPCINTT) PET 5]
{ESPCINTE) PE0 E
@sCKPCINTE Fei 7]
MosiPCINTIG) PR [12
iMisDVPCINT11) Fea [T3
{DooaPCINTIZ) PR [14]
(0 APCINT 1) PES E

(OCTRPCINT4) PEE E

[OC2aPCNTIS PET 1]

(T1E Ea paa [19

INDEX CORMER

oS EGE Pad 19

ATmegal&9

(TOsCE) xTaLz | 23]

(TOSC) ¥Tall 2|

B

(ICP1/SEGES) PDO

(INT S EG21) PO

B

(SEGH0 PD2
{5EG1E) PO [23]

(S EG1E) PD4

(SEG1T) PO6

&
53]

(SEG1E) POS

(SEG1E) POT

] Paz(coms
7] Pas (sEG0)
[EEIHEE
E PAE [SEG2)
[a4] Pa7(sES
ELEEN
g Po7 isEas
[41] Pos (sEas)
3] Fos isEaT)
E PC4 (SEGE)
[2s] PoaisEas)
E PC2 (SEGT0
E PC1 (SEGT)
E PO (SEGIZ)
9] paiseaiy
=] pooseaty

The ATmega169P has lower power consumption in power-down and power-save
than ATmega169 revision E, but there are also other differences, e.g. oscillator.
Please see application note AVR098 and the ATmega169(P) datasheets for more

information.

2529C-AVR-02/06

3.2 STK502

3.2.1 LCD-display

3.2.2 NTC-thermistor

2529C-AVR-02/06

AVR064

The STK502 board is a top module designed to add ATmega169(P) support to the
STK500 development board from Atmel.

The STK502 includes connectors and hardware allowing full utilization of the new
features of the ATmega169(P) (including an LCD-display), while the Zero Insertion
Force (ZIF) socket allows easy use of TQFP packages for prototyping.

Figure 3-2. STK502 top module for STK500 (pin1 location marked)

------------- = |

" o

See the STK502 User Guide for more information about the STK502

Liquid Crystal Displays (LCDs) are categorized as non-emissive display devices. In
that respect, they do not produce any form of light like a Cathode Ray Tube (CRT).
LCDs are composed of a polarized liquid crystalline material in between two plates of
glass. Typically, one plate is called the common or backplane, and the other is called
a segment or frontplane. In a reflective LCD panel (one that has no back light) a
voltage difference applied across the two electrodes will result in a polarization that
will prevent the light from reflecting back to the observer. This will appear as a dark
segment and is, therefore, considered ON. A lack of voltage difference will allow the
light to reflect back and is considered OFF.

For more information on the LCD-driver, see application note “AVR065: LCD driver
for the STK502 LCD”

Various types of sensors can be used to measure temperature. One of these is the
thermistor, or temperature-sensitive resistor. Most thermistors have a negative
temperature coefficient (NTC), meaning the resistance goes up as temperature goes
down. Of all passive temperature measurement sensors, thermistors have the highest
sensitivity (resistance change per degree of temperature change). Thermistors do not
have a linear temperature/resistance curve.

The NTC-thermistor used with this application has a resistance of 10kQ at 25°C (),
beta-value of 3450 and a tolerance of +1%. The voltage over the NTC can be found
using the A/D converter in the ATmega169(P). See the ATmega169(P) datasheets for

AIMEL 5

Y)

AIMEL

how to use the ADC. And by the use of Equation 3-1, the temperature can be
calculated.

Equation 3-1. Calculation of temperature from measured ADC values

s -7

Temperature = 2610
In(VADC J + ﬂ
Vref _VADC Tamb
=3450

V,.oc = Voltage calculated from the A/D conversion
Ve =1.263V

T =273°K

T =298°K (273°C +25°C)

3.3 Hardware configuration

6 AVR064

In order to make the example code work, it is required to set up the cables and
switches in the correct order. Figure 3-3 and Figure 3-4 shows how to set up the
cables and switches.

Figure 3-3. Cable settings
HITTTLER I RTTITTITINY

PBILLLT] X

:Z-: .:‘? LEw:

2529C-AVR-02/06

2529C-AVR-02/06

Figure 3-4. Switch configuration

AVR064

. \\\\—Y%. —

Connect PORTE on the STK502 to the SWITCHES-header on the STK500 with a
10-pin cable.

Connect PB5/PB6 to LED5/LED6, PB4/PB7 to respectively Heating/Cooling
element. If no heating/cooling element is available, just connect PORTB to the
LEDS using a 10pins cable.

Connect PEO/PE1 on the STK500 to the RXD/TXD.

Connect the “Segment pins from ATmega169(P)” to the “STK502 LCD pins” with
the 34pins cable.

Place a jumper on the 2pins header “19 24"

Insert the NTC-thermistor in the screw-terminal.

All of the three switches on the STK502 should be in the position towards the
screw-terminal, i.e. the TOSC switch should be in the TOSC-position, the AREF

switch should be in the VREF-position and the PF[1:0] should be in the SENSOR-
position.

Connect PG5 and RST with a jumper, on PORTG/RST.

And most importantly insert the ATmega169(P) in the ZIF-socket. The ATmega169(P)
that comes with the STK502 kit, is pre-programmed with the example code. If it is
required to reprogram the ATmega169(P), see the STK502 User Guide for help on
this topic. The AVR064.hex file that should be programmed into the ATmega169(P)
can be found on the “AVR Software and Technical Library”-CD that comes with the
STK502, and on the ATMEL web site (http://www.atmel.com/products/avr/). If the
ATmega169(P) is reprogrammed, make sure the fuses are set up according to Figure
3-5.

AIMEL 7

Y)

http://www.atmel.com/products/avr/

AIMEL

STKS00

Program =~ Fuses | LDckBitsI .ﬁ.dvancedl Board I Auto I

Figure 3-5. Fuse settings

STKS00

Program Fuses ILockEitsI Advancedl Board I Auto |

=101 =10] x|

"] Bant Flazh zection size=256 wards Boaot start addrese=$1F00; [BDDTSZ;I
[T Boct Flash section size=512 words Book start address=$1E00; [EOOTS:
¥ Bt Flazh section size=1024 wards Boat start address=$1C00; [B0OT!
[} Baoat Reset vector Enabled [default address=$0000]; [BOOTRST=0]
™ Divide clock by 8 internally; [CkDIVE=0]

M Clack output on PORTE?; [CROUT=0]

[T Ext. Clock; Skart-up time: B CE + 0 meg; [CKSEL=0000 51T=00]

T Ext. Clock; Start-up time: 6 K.+ 4.1 me; [CKSEL=0000 SUT=01]

[T Exst. Clock; Start-up time: 5 CE + 85 ms; [CKSEL=0000 S5UT=10]

T Int. BC Qs Startup time: 6 CK + 0 me; [CKSEL=0010 SUT=00]

I Int. RC O=c.; Startup time: B CK + 4.7 me: [CKSEL=0010 51UT=01]

[Int. BC Qzc.; Startup time: 5 CK + 55 me; [CKSEL=00105UT=10]

[¥ Browr-out detection disabled: [BODLEVEL=111]

[T Browreout detection level at YCC=1.8%; [BODLEYVEL=110]

[T Browr-out detection level at WCC=2.7 v [BODLEVEL=101]

[T Browreout detection lewvel at YCC=4.3%; [BODLEYEL=100]

[T Extemnal reset disable; [RSTDISEL=0]

[T On-Chip Debug Enabled; [OCDEMN=0]

¥ JTAG Interface Enabled: [JTAGEN=0]

I Serial program downloading [SP1) enabled; [SPIEM=0]

™ watchdog timer always on; fw/DTON=0]

[~ Prezerve EEPROM memary thraugh the Chip Eraze cycle; [EES&VE =]
[T Boat Flash section size=128 words Boot start address=$1F20; [BO0TS:
[T Boot Flagh section size=256 words Boaot start address=$1F00; [BOOTS:

[Baat Flash section size=A12 words Boat start addresz=$1E00; [BOOT5:
[¥ Boot Flazh section size=1024 wards Boat start addresz=41C00; [EOOT!
[Boat Reset vectar Enabled [default address=$0000); [E0OTRST=0]

™ Est. Low-Freq. Crystal; Start-up time: 32K CK + 0 ms; Int. Cap.; [CKSEL=
[T Ext. Low-Freq. Crystal; Start-up time: 32K, CK. + 4.1 ms; Int. Cap.; [CK5SE
™ Ewnt. Low-Freq. Crystal: Start-up time: 32K CK. + B5 ms; Int. Cap.; [CKSEL

[~ Divide clock by 8 intemally: [CKD V=0

I'I Eut. Low-Freq. Crostal; Start-up time: 11 CE + 0 rn|$; Int, Cap.; [CKSEL:iLI
4 »

4| 3
I Auto Verfy i Pragram | Werify | Read | ™ Auto Veriy . Program | Werify | Read |
¥ Smart Wamings W Smart Warnings
=l =l

Setting device parameters, serial programming mode 0K, Setting device parameters, senial programming mode 0K
Entering programming rmode.. DK Entering programming mode., 0K
Reading fuses.. OxFF, 0x99E2 .. OK Fieading fuzes.. 0xFF, 0x99E2 . OK
Leaving programming rmode.. 0K ;I Leaving programming mode.. QK ;I

As Figure 3-5 describes, the only fuses that should be programmed is:
Brown-out detection disabled

JTAG Interface Enabled

Boot Flash section size = 1024 words

Int. RC Osc.; Start-up time 6CK + 65 ms

4 ATmegal69(P) firmware

This section contains information about the source code and functions. The firmware
can be downloaded from the Atmel website: http://www.atmel.com/products/AVR/.
For compiler info and settings, device settings, target setup info and comprehensive
source documentation please see the readme.html file included with the source.

The timing related functions are written for an ATmega169(P) running at 1Mhz
(except the RTC-clock and the LCD-frame rate that is clocked from an external 32kHz
crystal), and the prescaler for the system clock is therefore set to 1/8. Please note
that the ATmega169 revision B runs at 4 MHz, so the communication speed of the
UART will be reduced from 9,600 to 4,800 baud, but otherwise will be ok.

4.1 Interrupts used

4.1.1 LCD Start of Frame

In this interrupt the data from the LCD_displayData buffer is latched to the LCD Data
Registers. The variable LCD_Blink toggles every time this interrupt occurs. The
interrupt is dependent of the external 32kHz crystal.

AVR064

2529C-AVR-02/06

http://www.atmel.com/products/AVR/

AVR064

4.1.2 Timer/Counter2 Overflow
This interrupt is used to increment the variable SECOND, which the whole RTC-clock
builds on. Timer/Counter2 is clocked asynchronous from the 32kHz and is therefore
independent of the clock frequency.

4.1.3 USARTO, RX complete
This interrupt takes care of incoming data from the UART interface.

4.1.4 USARTO, Data Register Empty

This interrupt transmits data out through the UART interface.

4.2 Main loop

Figure 4-1 shows the main loop.

Figure 4-1. Main loop

Initialize

!

» | Time and date update

'

Temperature
calculation

!

Store data from
receive-buffer

!

Send data from
transmit-buffer

!

Check status on
STK500 buttons

!

Update LCD

4.3 Initialize

After a reset the firmware will initialize the ATmega169(P) and its integrated
peripherals. The initialization runs only one time after a reset.

AIMEL 0

(G
2529C-AVR-02/06

AVR064

AIMEL
Figure 4-2. Initialize

Initialization

Set PORTB as output.
Set PORTE as input.

!

Set up Timer1 with PWM.
Phase Correct, 10-bit.

!

Set up the Real Time Clock,
using Timer2 in asynchronous
mode.

!

Set up the UART.
Baudrate = 9600 @ 1Mhz

!

Set up the ADC

!

Set up the LCD with 1/4 duty
cycle and 1/3 bias.
Enable all segments.

{

Set up data for the LCD-
display. Scrolling text.

PORTB is set as output and should be connected to the LEDS on STK500. PB5
(OC1A) and PB6 (OC1B) show the offset between measured temperature and
selected temperature set point. PB4 and PB7 are heating and cooling pins
respectively. Connect a heating and cooling element to these pins.

DDRE is set as input and should be connected to the SWITCHES on the STK500.
PE7, PE6 and PE5 are used to select what information should be displayed on the
LCD and adjusting time/date, temperature set point and the LCD contrast.

Timer/Counter1 is set up with PWM to use on the OC1A/OC1B (PB5/PB6) pins.

Enable Timer/Counter2 with asynchronous operation, for the RTC. By using an
external 32kHz crystal the RTC can run independently of the ATmega169(P) system
clock, and will also run during sleep.

Set up the UART with both RX and TX enable, baud rate 9600 @ 1 MHz,
asynchronous operation, 8 bit character size, 1 stop bit and disable parity mode.

Set up the ADC in single-ended mode. (Differential mode can be selected by setting
ADC_init(Differential) instead of ADC_init(SingleEnded) in the source code). Disable
digital input on PORTF and run a dummy ADC conversion.

2529C-AVR-02/06

4.4 Time and date update

2529C-AVR-02/06

AVR064

Enable all segment pins on the ATmega169(P). Select the 32kHz as clock source for
the LCD, and set the prescaler bits thereafter. Select 1/4 duty cycle and 1/3 bias. Set
up Timer/Counter0 Compare Match interrupt to give the required delays for the
scrolling and blinking speed of the information on the LCD-display.

Start scrolling the initial string over the LCD-display.

This routine updates the clock and date according to the variable SECOND that gets
incremented every second in the Timer/Counter2 Overflow interrupt routine. The
whole update routine is self-explaining from the flow-chart.

Figure 4-3. Time and date update

. » The variable
ime_update SECOND is
incremented in the

Timer2 Overflow

NO SECOND YES Increment MINUTE Interrupt routine.
larger than A Clear SECOND
597
NO lal\:g’;lrUtIEn YES Increment HOUR
o Clear MINUTE
NO HOUR YES Increment DAY
Iargzeg;han Clear HOUR

DAY
larger than
number of days in

NO YES

Increment MONTH

month? (check if Set DAY =1
leap year)
MONTH YES Increment YEAR_LO
larger than Set MONTH = 1
122

YEAR_LO
larger than
99?

Increment YEAR_HI
Clear YEAR_LO

AIMEL -

Y)

AIMEL

4.5 Temperature calculation

4.6 Receive data from PC

AVR064

In this function the voltage over the NTC-thermistor will be measured and the

temperature calculated.

Figure 4-4. Temperature calculation

ADC_conversion

Run an Analog to
Digital Conversion.

!

Increment the
number of A-D
conversions

Measured
temperature 32
times?

NO

Calculate the voltage from
the ADC-value, and use it in
a formula to calulate the
corresponding temperature.

!

Find the difference between
the measured temperature
and the setpoint, and if
necessary, set heating or
cooling pin.

Start by doing an A/D conversion. The average of 32 ADC results is used in a formula
to calculate the corresponding temperature. The heating or cooling pin is set
depending on the difference between the calculated temperature and the temperature
set point. The temperature set point is selected by the user. The bigger the difference

is, the brighter the heating or cooling LED will shine.

These routines take care of data coming from the PC through the UART interface.

2529C-AVR-02/06

4.6.1 USART_RXC_interrupt

4.6.2 Store_Rx_data:

2529C-AVR-02/06

Figure 4-5. Receive packet from PC

__interrupt [USART_RXC_vect]
void USARTO_RXC_interrupt(void)

RXC interrupt

Read the UDRO-reg which
contains the received byte.

Preamble
received?

Store received byte in
receive buffer

Received
byte = 0x0D?
(ascii value for line feed,
end of packet)

Preamble received = FALSE
RX_Packet complete = TRUE

A

Return from
interrupt

Store_RX_data

RX_Packet
complete?
: There may be up to
+ three ASCII bytes to !
. get one HEX-byte

Byte in
receivebuffer = 0x0D
or 0x207? (end of
packet or new
byte)

Convert ASClI-byte
to HEX

P

Any byte
converted?

Store the HEX-byte
to SRAM

Byte in
receivebuffer =
0x0D?

NO

Set RX_Packet
complete = FALSE

AVR064

YES

A J

Return

Receiving data from the PC is done in the USART_RXC interrupt routine. It will
discard all data until the correct preamble bytes are received. Then it will store the
succeeding bytes in a receive buffer until the byte for Line Feed appears (ASCII
value: 0x0D) This indicates the end of the packet and RX_Packet_complete flag will

be set to TRUE.

The packet is then converted from ASCII to hexadecimal. One HEX-byte can contain
1-3 ASCII bytes. ASClII-bytes that belong to different HEX-bytes are separated by an

ATMEL

Y)

13

4.7 Transmit packet to PC

AVR064

AIMEL

ASClI-space (0x20). The converted HEX-bytes get continuously stored in the correct
place in SRAM until the Line-Feed byte appears, which is the end of the packet.

Table 4-1. Receive Packet from PC

Data Size

Preamble “STK502” 6 byte
ASCll-space (0x20) 1 byte
HOUR 2 byte
ASClIl-space (0x20) 1 byte
MINUTE 2 byte
ASCIl-space (0x20) 1 byte
SECOND 2 byte
ASCll-space (0x20) 1 byte
DATE 2 byte
ASClIl-space (0x20) 1 byte
MONTH 2 byte
ASCll-space (0x20) 1 byte
YEAR_HI 2 byte
ASCll-space (0x20) 1 byte
YEAR_LO 2 byte
ASClIl-space (0x20) 1 byte
SET_POINT 2 byte
ASCII-carriage return (0x0D) 2 byte
ASCllI-line feed (0x0A) 2 byte

Transferring the data in ASCII allows a standard terminal to be used on the PC.

These routines transmit the data from ATmega169(P) to the PC

2529C-AVR-02/06

2529C-AVR-02/06

Figure 4-6. Transmit packet to PC

Y

Send_TX_data

On-going
transmission?

Load Preamble bytes
in transmit-buffer

!

YES

Load 0x20,
ASCII: "space”
in transmit buffer.

!

Convert one
HEX-byte to

2-3 ASClI-bytes.

HEX-bytes
left to convert?

Load 0x0D,
ASCII:"line feed" in
the end of packet

!

Enable UDRE-
interrupt, that will
start the transfer.

interrupt [USARTO_UDRE_vect
void USARTO_UDRE_interrupt(void)

UDRE interrupt

Bytes left to
send?

AVR064

Y

Disable UDRE-
interrupt

Transmit one byte

A

Return from
interrupt

A transmit packet starts with the preamble bytes, and then the HEX-bytes that are to
be transmitted get converted to ASCII-bytes and loaded in the packet. Between each
HEX-byte that gets converted, an ASCII-byte for space (0x20) is inserted. At the end
of the packet, an ASCII-byte for Line Feed is added to indicate the end of frame. The
transmission starts by enabling the UDRE interrupt. When all bytes are transmitted
the UDRE interrupt gets disabled.

AIMEL

Y)

15

AVR064

AIMEL

Table 4-2. Transmit packet to PC

Data Size

Preamble “STK502” 6 byte
ASCll-space (0x20) 1 byte
HOUR 2 byte
ASCll-space (0x20) 1 byte
MINUTE 2 byte
ASCIl-space (0x20) 1 byte
SECOND 2 byte
ASCll-space (0x20) 1 byte
DATE 2 byte
ASClIl-space (0x20) 1 byte
MONTH 2 byte
ASCIl-space (0x20) 1 byte
YEAR_HI 2 byte
ASCll-space (0x20) 1 byte
YEAR_LO 2 byte
ASCIl-space (0x20) 1 byte
SET_POINT 2 byte
ASCll-space (0x20) 1 byte
TEMP_HIGHBYTE 2 byte
ASCll-space (0x20) 1 byte
TEMP_LOWBYTE 2 byte
ASClIl-space (0x20) 1 byte
OFFSET 2 byte
ASCIl-space (0x20) 1 byte
Firmware revision 2 byte
ASCllI-carriage return (0x0D) 2 byte
ASCIl-line feed (0x0A) 2 byte

2529C-AVR-02/06

4.8 STK500 switches

2529C-AVR-02/06

AVR064

Figure 4-7. CheckButtons

CheckButtons

Read buttons

Buttons
released from
last time?

No
Return

Yes Menu3 Yes
active?

Menu2
active?

Shift Activate Deactivate Shift Activate Deactivate Increase Decrease Deactivate
Menu1 Menu2 Menu1 Menu2 Menu3 Menu2 value value Menu3
Run Run Run
LCDsetupData LCDsetupData LCDsetupData

There are three switches that are used as inputs to the application. To do several
tasks with only three switches, a menu system is needed. Figure 4-7 shows three
menus in a hierarchy, which are used in this code. See Figure 2-1 for an overview of
the menus.

Figure 4-7 refers to Button A/B/C, in the application these buttons can be found at:
“ButtonA” is SW7 that is connected to PE7.

“ButtonB” is SW6 that is connected to PEG.

“ButtonC” is SW5 that is connected to PES.

Example:

After a RESET the LCD is set up to scroll a text. None of the three menus are active.
Pressing the SW7 will toggle between the alternatives in Menu1 (Clock, Date, Set
point, Temperature, Offset and Contrast)

To adjust the variable MINUTE: Press SW7 until “CLOCK” appears in the LCD-
display, and select this by pressing SW6 to activate Menu2 under “CLOCK”. Pressing
SW7 will now toggle between the alternatives in Menu2 (Hour, Minute and Second).
Press SW7 until the variable MINUTE is blinking in the LCD-display, and select this
by pressing SW6. Now Menu3 is activated (the colons should disappear). Pressing
SW7 will increase the variable MINUTE and SW6 will decrease. When desired value
has been selected, press SW5 to deactivate Menu3, and go back to Menu2. Press
SW5 once more to deactivate Menu2 and go back to Menu1.

The same procedure can be used to adjust the other variables as well.

AIMEL 17

Y)

AIMEL
49 LCD

Writing to the LCD requires an LCD driver. The driver used in this application is
described in the application note “AVR065: LCD Driver for the STK502LCD”.

4.9.1 LCD update
Figure 4-8. LCD_update

LCD_update

LCD_
updateComplete =
TRUE?

No

Set LCD_updateRequired
= FALSE

Write data
fromTransmit-
Buffer?

Scrolling No

text?

Clear all Enable all Set
specialsegments segments specialsegments if
‘ required

Go to ;

LCDscrolIMSG Load one byte from

function. transmitbuffer]
) Activate blinking if
Set LCD_updateComplete required
=FALSE
! Write the digit to
Set LCD_updateRequired LCD_displayBuffer
= TRUE
> Yes 6 digits No

written to
buffer?

This function will load data into the LCD_displayBuffer.

First check if the LCD has been updated with the data already in the
LCD_displayBuffer. If so, set the LCD_update required to FALSE. This will prevent
the LCD to be updated with incomplete data, if an LCD Start of Frame interrupt
should occur during this function.

If a text-string is to be scrolled, clear display and call the LCDscrolIMSG function. If no
text to scroll, check if there is data to write from the TransmitBuffer, and load the data
into the LCD_displayBuffer. Digits can be set to blink on the display. To do this the
digit will be loaded with either its data value or a ASClI-space (0x20), depending on
the variable LCD_BlIink.

18 AVR064

2529C-AVR-02/06

4.9.2 Scroll function

2529C-AVR-02/06

AVR064

After the LCD_displayBuffer has been updated, the LCD_updatedComplete will be
set to FALSE and LCD_updateRequired to TRUE. This will cause the
LCD_displayBuffer to be written to the LCD in the LCD Start of Frame interrupt.

Figure 4-9. LCDscrollMsg

LCDscrollMsg

String-pointer

Yes LCD-display Yes

at the end of empty?
string?
No No y
Write six characters Add one 'space' and write) Clear
from the String to the the remaining characters string-counter
LCD_displayBuffer from string to the ‘
LCD_displayBuffer .
If not set to infinite
Increment scrolling, decrement the
string pointer NumberOfScroll variable

Y

Return -

-t

This function shifts the six digits on the LCD one step to the left. The scroll function
uses a pointer to keep track of what characters to shift in and out of the LCD. When
all the six digits have been updated, the pointer gets incremented by one in order to
shift the text-string one step the next time this function is called.

If the pointer has reached the end of the string, the LCD has to be filled up with one
ASCll-space at the time until all of the six digits are blank. This will “fade” out the text
string.

AIMEL 19

Y)

4.9.3 LCD set-up data

5 Terminal

AVR064

AIMEL

Figure 4-10. LCDsetupData

LCDsetupData

Load Welcome
string and activate
infinite scrolling

Menu1
active?

Menu3
active?

Menu2 active?

Load a string
(depending on
Menu1) to be
scrolled once.

Enable Enable
colons colons

A
—>@

Disable
colons

If Menu1 isn’t active the welcome will scroll over the LCD. If Menu1 is active but not
Menu2, the corresponding string will be scrolled once over the LCD and then the
belonging data. If Menu2 is active but not Menu3, just enable the colons. And if
Menu3 is active, disable the colons to indicate that the current variable can now be

adjusted.

All temperature and time information is transmitted through the UART-interface. A
program on a PC can receive this data by connecting a serial-cable between the
“RS232 SPARE” on the STK500 and a com-port on the PC. A standard terminal can
be used, e.g. HyperTerminal. Set up the terminal with the settings shown in Figure 5-

1.

2529C-AVR-02/06

AVR064

Figure 5-1. Port Settings

Fort Setlings I

Bitz per zecond:

Drata bits: IE j
Parity: IN.:.ne j
Stop bits: |1 =l

Le

Eloww contral; INDne

Bestare Defaultz |

k. I Cancel | Spply |

Press the connect-button and the data from the ATmega169(P) should appear as in
Figure 5-2. The data is presented according to Table 5-1.

Table 5-1. Transmit Packet from ATmega169 according to Figure 5-2

Data Value
Preamble STK502
Hour 15
Minute 14
Second 22
Day 04
Month 11
Year high 20
Year low 02
Set point 25

°C high byte 25

°C low byte 14
Offset 00
Versions number 01

AIMEL 21

(G
2529C-AVR-02/06

22

AIMEL

Figure 5-2. HyperTerminal

#& STK502 - HyperTerminal

File Edit Wew call Transfer Help

=101 |

STE502

STES0Z

STE502

STES02Z

STE502

STES02Z

STES02Z

STKE502

STES02Z

d

15

15

15

15

15

15

15

15

15

STER0Z 15 14

14

14

14

14

14

14

14

14

14

STK50Z 15 14 2z

22

2z

22

22

22

22

22

22

2z

22

04
04
04
04
04
04
04
04
04
04

04
|

11

11

11

11

11

11

11

11

11

11

11

20

20

20

20

20

20

20

20

20

20

20

0z

0z

0z

02

0z

0z

0z

0z

0z

0z

0z

Z5

Z5

25

Z5

25

Z5

Z5

Z5

Z5

Z5

Z5

25

25

25

25

25

25

25

25

25

25

25

07

a7

07

14

14

14

14

14

14

14

05

0o

0o

0o

a0

0o

0o

0o

0o

0o

0o

01 [
01
01
01
01
01
01
01
01
01

|

5

|Disc0nnected

|Ars1

|3800 8-M-1

5RO

[caps

[rara

|Capture |Print echo A

One can also adjust the variables within the ATmega169(P) from the terminal. This
has to be done according to Table 4-1. E.g. write: "STK502 14 37 02 25 11 20 02 24”
in the terminal, and press enter to indicate end of frame. This will adjust the clock to
14h37m02s, the date to 25. November 2002, and the temperature set point will be

24°C.

AVR064

2529C-AVR-02/06

AVR064

6 Table of Contents

FRALUIES ..ot 1
LINTrOdUCTION .. e e e 1
2 APPLICAtION OVEIVIEW ... e e e e e eaanens 2
3 Hardware desSCriptionuciiiii e 4
3.1 ATMEGATBI(P) ..ttt e e e e e e e e s e e e ansae e e s nneeee s 4
B0 1 G 1 SRR 5

B 0y I B o 17 o) - OSSP 5
3.2 2 NTCANEIMISTION ...ttt et e e e e e e e e e e sneeeeeaneeeeen 5

3.3 Hardware configurationccceeiiiiiiiie i 6
4 ATMegalBO(P) firMWArEccccoiieeiecee e 8
o I 01 (=Y (B o €T U 1=T= o PPN 8
4.1.1 LCD Start Of FIAmMEcoiiiiii ettt et e e e e e et e e e e e anneeees 8
4.1.2 TImer/Counter2 OVEIIOWoeeiiuiieiiie et e e e e e snneeees 9
4.1.3 USARTO, RX COMPIELE........c.ceeeeiiiiieeeeeeeee e e 9
4.1.4 USARTO, Data Register EMPLYc..ooiiiiiiieiee e 9
V- 11 0 [T o I PPPPPPPPPPPRE 9
N [o1 F= 1 [P PPPPPPPPPPIRS 9
4.4 Time and date Updateoooiiiiiiiiiiiieeeeeeeeeeeeeeee et 11
4.5 Temperature calculation..............oooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 12
4.6 Receive data from PC ... 12
4.6.1 USART _RXC _INTEITUPL. ...ttt e e e e anr s 13
4.6.2 Store_ RX_data:cuueiiiiii e 13

4.7 Transmit packet to PC ... 14
4.8 STKS500 SWILCNES......uviiiiiie it e e e e e 17
e N I O] I SRR 18
491 LCD UPAALE oot 18
Ve 22 Tor o] | I8 18T (1) o SR 19
4.9.3LCD Set-UP datauuveiiiiiiiiiiieie et 20

B TermMINal ..o e ———— 20
6 Table Of CONtENTS.....ccii i e 23
DT ESYed P21 Y=Y PPN 24

AIMEL 23

(G
2529C-AVR-02/06

ATMEL

Atmel Corporation Atmel Operations
2325 Orchard Parkway Memory RF/AUtO,mOtlve
San Jose. CA 95131 USA 2325 Orchard Parkway Theresienstrasse 2
Tel: 1(40é) 441-031 1' San Jose, CA 95131, USA Postfach 3535
Fa>;' 1(408) 487-2600 Tel: 1(408) 441-0311 74025 Heilbronn, Germany
' Fax: 1(408) 436-4314 Tel: (49) 71-31-67-0
Regional Headquarters Microcontrollers Fax: (49) 71-31-67-2340
Europe §325 JorChaCrz gg:';)";’aﬁ A 1150 East Cheyenne Mtn. Blvd.
Atmel Sarl Talr'] 1°4S:é 441-031 1’ Colorado Springs, CO 80906, USA
Route des Arsenaux 41 e 1(o 8) s Tel: 1(719) 576-3300
Case Postale 80 ax: 1(408) 436- Fax: 1(719) 540-1759
CH-1705 Frib
Switzerlandn ourg La Chantrerie Biometrics/Imaging/Hi-Rel MPU/
Tel: (41) 26-426-5555 BP 70602 High Speed Converters/RF Datacom
Fa);' (41) 26-426-5500 44306 Nantes Cedex 3, France Avenue de Rochepleine
' Tel: (33) 2-40-18-18-18 BP 123
Asia Fax: (33) 2-40-18-19-60 38521 Saint-Egreve Cedex, France
Room 1219 Tel: (33) 4-76-58-30-00

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Fax: (33) 4-76-58-34-80

1150 East Cheyenne Mtn. Blvd.

Japan Colorado Springs, CO 80906, USA
9F, Tonetsu Shinkawa Bldg. Tel: 1(719) 576-3300
1-24-8 Shinkawa Fax: 1(719) 540-1759
Chuo-ku, Tokyo 104-0033
Japan Scottish Enterprise Technology Park
Tel: (81) 3-3523-3551 Maxwell Building
Fax: (81) 3-3523-7581 East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, AVR Studio® and
others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be
trademarks of others.

2529C-AVR-02/06

	Introduction
	Application overview
	Hardware description
	ATmega169(P)
	STK502
	LCD-display
	NTC-thermistor

	Hardware configuration

	ATmega169(P) firmware
	Interrupts used
	LCD Start of Frame
	Timer/Counter2 Overflow
	USART0, RX complete
	USART0, Data Register Empty

	Main loop
	Initialize
	Time and date update
	Temperature calculation
	Receive data from PC
	USART_RXC_interrupt
	Store_Rx_data:

	Transmit packet to PC
	STK500 switches
	LCD
	LCD update
	Scroll function
	LCD set-up data

	Terminal
	Table of Contents

