
  

 
 

AVR064: A Temperature Monitoring System with 
LCD Output 

Features 
• Presenting data on an LCD-display 
• Temperature measurement 
• Real Time Clock (RTC) 
• UART communication with a PC 
• PWM implementation 

1 Introduction 
The STK502 board is a top module designed to add ATmega169(P) support to the 
STK500 development board from Atmel. STK500 and STK502 provide all hardware 
needed to get started developing with the ATmega169(P). This application note is 
meant to be an example of how to use the ATmega169(P) and the STK502.  

It includes: 

• A complete ATmega169(P) code example written in C-code. 
• Flowcharts explaining the code. 
• Instruction on how to configure the STK502. 
• A pre-programmed ATmega169(P) including the example in this application note 

is shipped with each STK502 kit. 
• The source code is found on the “AVR Technical Library” CD shipped with the 

STK502 or on the Atmel AVR web site, http://www.atmel.com/products/avr/. 
 

Figure 1-1. The STK502 board 
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2 Application overview 
This application note describes how to get started with the ATmega169(P) 
microcontroller (MCU), the first AVR that has a built in LCD-controller/driver. This 
application is a temperature control application, including a Real Time Clock (RTC). It 
will monitor the temperature through a sensor, and regulate the temperature if a 
heating/cooling element is attached. 

Figure 2-1. Application overview 

 
The LCD starts with scrolling the text: “STK502 example application for 
ATmega169(P)”. It is required that the example code is programmed into the 
ATmega169(P) and the hardware is set up according to the section “Hardware 
Configuration” on page 6. 

Select a desired temperature set point. When the temperature goes below this set 
point value, the Heater I/O pin will go high, and a LED on STK500 will flash. When the 
temperature goes above the set point value, the Cooler I/O pin will go high, and 
another LED on the STK500 will flash. The duty cycle of the LED flashing will vary 
with the actual temperature deviation from the set point (the greater the deviation is, 
the brighter the LEDs will shine) The LCD will display time and temperature 
information. All data that is presented on the LCD will also be sent through the UART-
interface and can be received by etc a standard terminal. 

Pressing a button on the STK500 will shift between the different information on the 
LCD. This information is: 
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• CLOCK: RTC clock running on the ATmega169(P) 
• DATE: Calculated from the RTC-clock 
• SET POINT: Selected temperature 
• TEMPERATURE: Measured temperature 
• OFFSET: Difference between the measured temperature and the set point 
• CONTRAST: Shows all the segments available with the default hardware 

strapping. 
Adjusting the CLOCK, DATE, SET POINT or the CONTRAST can be done by using 
three of the SWITCHES on the STK500. Since these switches are used for different 
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Figure 2-2. Menu System 

lease see section “STK500 switches” on page 17, for more detailed information on 

POINT can also be adjusted from the UART interface. 

e used with the STK502 and the LCD-display that 

the STK502 LCD”. 

functions, there is a need for a menu system. See Figure 2-2 for an overview of how 
the menus are arranged in this application. 

 
P
how to use the menu system. 

The CLOCK, DATE and SET 
See section “Terminal” on page 20. 

The implementation is designed to b
is included in this starter-kit. For technical specifications and the LCD-bit mapping 
please refer to the “STK502 User Guide” found in the AVR Studio help system, and 
for more information on the LCD-driver see Application note “AVR065 - LCD driver for 
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3 Hardware description

3.1 ATmega169(P) 
e ATmega169(P) is an ultra low power AVR 8-bit RISC microcontroller. It includes 

16K of bytes self-programming Flash Program Memory, 1K bytes SRAM, 512 Byte 
EEPROM and 8 Channel 10-bit A/D-converter, JTAG interface for on-chip-debugging 

 

Th

and 4 X 25 Segment LCD Driver. It can do up to 1 MIPS throughput at 1 MHz  for 
ATmega169(P)V, or 4 MIPS throughput at 4 MHz for the ATmega169(P)L. 

The ATmega169(P) is an excellent choice for low power applications that requires 
user interaction (LCD + keyboard) and the possibility to interface analog sensors etc. 

Figure 3-1. ATmega169  

 
 

The ATmega169P has lower power consumption in power-down and power-save 
than ATmega169 revision E, but there are also other differences, e.g. oscillator. 

lease see application note AVR098 and the ATmega169(P) datasheets for more P
information. 
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3.2 STK502 
The STK502 board is a top module designed to add ATmega169(P) support to the 
STK500 development board from Atmel. 

The STK502 includes connectors and hardware allowing full utilization of the new 
features of the ATmega169(P) (including an LCD-display), while the Zero Insertion 
Force (ZIF) socket allows easy use of TQFP packages for prototyping. 

Figure 3-2. STK502 top module for STK500 (pin1 location marked) 

 
 

See the STK502 User Guide for more information about the STK502 

3.2.1 LCD-display 

Liquid Crystal Displays (LCDs) are categorized as non-emissive display devices. In 
that respect, they do not produce any form of light like a Cathode Ray Tube (CRT). 
LCDs are composed of a polarized liquid crystalline material in between two plates of 
glass. Typically, one plate is called the common or backplane, and the other is called 
a segment or frontplane. In a reflective LCD panel (one that has no back light) a 
voltage difference applied across the two electrodes will result in a polarization that 
will prevent the light from reflecting back to the observer. This will appear as a dark 
segment and is, therefore, considered ON. A lack of voltage difference will allow the 
light to reflect back and is considered OFF. 

For more information on the LCD-driver, see application note “AVR065: LCD driver 
for the STK502 LCD” 

3.2.2 NTC-thermistor 

Various types of sensors can be used to measure temperature. One of these is the 
thermistor, or temperature-sensitive resistor. Most thermistors have a negative 
temperature coefficient (NTC), meaning the resistance goes up as temperature goes 
down. Of all passive temperature measurement sensors, thermistors have the highest 
sensitivity (resistance change per degree of temperature change). Thermistors do not 
have a linear temperature/resistance curve.   

The NTC-thermistor used with this application has a resistance of 10kΩ at 25°C ( ), 
beta-value of 3450 and a tolerance of ±1%. The voltage over the NTC can be found 
using the A/D converter in the ATmega169(P). See the ATmega169(P) datasheets for 
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how to use the ADC. And by the use of Equation 3-1, the temperature can be 
calculated. 

Equation 3-1. Calculation of temperature from measured ADC values 

25°C) + (273°C298°K  = 
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3.3 Hardware configuration 
In order to make the example code work, it is required to set up the cables and 
switches in the correct order. Figure 3-3 and Figure 3-4 shows how to set up the 
cables and switches. 

Figure 3-3. Cable settings 
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Figure 3-4. Switch configuration 

 
 

• Connect PORTE on the STK502 to the SWITCHES-header on the STK500 with a 
10-pin cable. 

• Connect PB5/PB6 to LED5/LED6, PB4/PB7 to respectively Heating/Cooling 
element. If no heating/cooling element is available, just connect PORTB to the 
LEDS using a 10pins cable. 

• Connect PE0/PE1 on the STK500 to the RXD/TXD. 
• Connect the “Segment pins from ATmega169(P)” to the “STK502 LCD pins” with 

the 34pins cable. 
• Place a jumper on the 2pins header “19 24” 
• Insert the NTC-thermistor in the screw-terminal. 
• All of the three switches on the STK502 should be in the position towards the 

screw-terminal, i.e. the TOSC switch should be in the TOSC-position, the AREF 
switch should be in the VREF-position and the PF[1:0] should be in the SENSOR-
position. 

• Connect PG5 and RST with a jumper, on PORTG/RST. 
And most importantly insert the ATmega169(P) in the ZIF-socket. The ATmega169(P) 
that comes with the STK502 kit, is pre-programmed with the example code. If it is 
required to reprogram the ATmega169(P), see the STK502 User Guide for help on 
this topic. The AVR064.hex file that should be programmed into the ATmega169(P) 
can be found on the “AVR Software and Technical Library”-CD that comes with the 
STK502, and on the ATMEL web site (http://www.atmel.com/products/avr/). If the 
ATmega169(P) is reprogrammed, make sure the fuses are set up according to Figure 
3-5. 

http://www.atmel.com/products/avr/
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Figure 3-5. Fuse settings 

 
 

As Figure 3-5 describes, the only fuses that should be programmed is: 

• Brown-out detection disabled 
• JTAG Interface Enabled 
• Boot Flash section size = 1024 words 
• Int. RC Osc.; Start-up time 6CK + 65 ms 

4 ATmega169(P) firmware 
This section contains information about the source code and functions. The firmware 
can be downloaded from the Atmel website: http://www.atmel.com/products/AVR/. 
For compiler info and settings, device settings, target setup info and comprehensive 
source documentation please see the readme.html file included with the source. 

The timing related functions are written for an ATmega169(P) running at 1Mhz 
(except the RTC-clock and the LCD-frame rate that is clocked from an external 32kHz 
crystal), and the prescaler for the system clock is therefore set to 1/8. Please note 
that the ATmega169 revision B runs at 4 MHz, so the communication speed of the 
UART will be reduced from 9,600 to 4,800 baud, but otherwise will be ok. 

4.1 Interrupts used 

4.1.1 LCD Start of Frame 

In this interrupt the data from the LCD_displayData buffer is latched to the LCD Data 
Registers. The variable LCD_Blink toggles every time this interrupt occurs. The 
interrupt is dependent of the external 32kHz crystal. 

 

http://www.atmel.com/products/AVR/
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4.1.2 Timer/Counter2 Overflow 

This interrupt is used to increment the variable SECOND, which the whole RTC-clock 
builds on. Timer/Counter2 is clocked asynchronous from the 32kHz and is therefore 
independent of the clock frequency. 

4.1.3 USART0, RX complete 

This interrupt takes care of incoming data from the UART interface. 

4.1.4 USART0, Data Register Empty 

This interrupt transmits data out through the UART interface. 

4.2 Main loop 
Figure 4-1 shows the main loop. 

Figure 4-1. Main loop 

Store data from
receive-buffer

Send data from
transmit-buffer

Temperature
calculation

Time and date update

Initialize

Check status on
STK500 buttons

Update LCD

 

4.3 Initialize 
After a reset the firmware will initialize the ATmega169(P) and its integrated 
peripherals. The initialization runs only one time after a reset. 
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Figure 4-2. Initialize 
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display. Scrolling text.

Initialization

Return
 

 
PORTB is set as output and should be connected to the LEDS on STK500. PB5 
(OC1A) and PB6 (OC1B) show the offset between measured temperature and 
selected temperature set point. PB4 and PB7 are heating and cooling pins 
respectively. Connect a heating and cooling element to these pins.  

DDRE is set as input and should be connected to the SWITCHES on the STK500. 
PE7, PE6 and PE5 are used to select what information should be displayed on the 
LCD and adjusting time/date, temperature set point and the LCD contrast. 

Timer/Counter1 is set up with PWM to use on the OC1A/OC1B (PB5/PB6) pins. 

Enable Timer/Counter2 with asynchronous operation, for the RTC. By using an 
external 32kHz crystal the RTC can run independently of the ATmega169(P) system 
clock, and will also run during sleep. 

Set up the UART with both RX and TX enable, baud rate 9600 @ 1 MHz, 
asynchronous operation, 8 bit character size, 1 stop bit and disable parity mode. 

Set up the ADC in single-ended mode. (Differential mode can be selected by setting 
ADC_init(Differential) instead of ADC_init(SingleEnded) in the source code). Disable 
digital input on PORTF and run a dummy ADC conversion. 
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Enable all segment pins on the ATmega169(P). Select the 32kHz as clock source for 
the LCD, and set the prescaler bits thereafter. Select 1/4 duty cycle and 1/3 bias. Set 
up Timer/Counter0 Compare Match interrupt to give the required delays for the 
scrolling and blinking speed of the information on the LCD-display. 

Start scrolling the initial string over the LCD-display. 

4.4 Time and date update 
This routine updates the clock and date according to the variable SECOND that gets 
incremented every second in the Timer/Counter2 Overflow interrupt routine. The 
whole update routine is self-explaining from the flow-chart. 

Figure 4-3. Time and date update 
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4.5 Temperature calculation 
In this function the voltage over the NTC-thermistor will be measured and the 
temperature calculated. 

Figure 4-4. Temperature calculation 
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Start by doing an A/D conversion. The average of 32 ADC results is used in a formula 
to calculate the corresponding temperature. The heating or cooling pin is set 
depending on the difference between the calculated temperature and the temperature 
set point. The temperature set point is selected by the user. The bigger the difference 
is, the brighter the heating or cooling LED will shine. 

4.6 Receive data from PC 
These routines take care of data coming from the PC through the UART interface. 
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Figure 4-5. Receive packet from PC 
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4.6.1 USART_RXC_interrupt 

Receiving data from the PC is done in the USART_RXC_interrupt routine. It will 
discard all data until the correct preamble bytes are received. Then it will store the 
succeeding bytes in a receive buffer until the byte for Line Feed appears (ASCII 
value: 0x0D) This indicates the end of the packet and RX_Packet_complete flag will 
be set to TRUE. 

4.6.2 Store_Rx_data: 

The packet is then converted from ASCII to hexadecimal. One HEX-byte can contain 
1-3 ASCII bytes. ASCII-bytes that belong to different HEX-bytes are separated by an 
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ASCII-space (0x20). The converted HEX-bytes get continuously stored in the correct 
place in SRAM until the Line-Feed byte appears, which is the end of the packet. 

 

Table 4-1. Receive Packet from PC 
Data Size  

Preamble “STK502” 6 byte 

ASCII-space (0x20) 1 byte 

HOUR  2 byte 

ASCII-space (0x20) 1 byte 

MINUTE 2 byte 

ASCII-space (0x20) 1 byte 

SECOND 2 byte 

ASCII-space (0x20) 1 byte 

DATE 2 byte 

ASCII-space (0x20) 1 byte 

MONTH 2 byte 

ASCII-space (0x20) 1 byte 

YEAR_HI 2 byte 

ASCII-space (0x20) 1 byte 

YEAR_LO 2 byte 

ASCII-space (0x20) 1 byte 

SET_POINT 2 byte 

ASCII-carriage return (0x0D) 2 byte 

ASCII-line feed (0x0A) 2 byte 
 

Transferring the data in ASCII allows a standard terminal to be used on the PC. 

4.7 Transmit packet to PC 
These routines transmit the data from ATmega169(P) to the PC 
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Figure 4-6. Transmit packet to PC 
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A transmit packet starts with the preamble bytes, and then the HEX-bytes that are to 
be transmitted get converted to ASCII-bytes and loaded in the packet. Between each 
HEX-byte that gets converted, an ASCII-byte for space (0x20) is inserted. At the end 
of the packet, an ASCII-byte for Line Feed is added to indicate the end of frame. The 
transmission starts by enabling the UDRE interrupt. When all bytes are transmitted 
the UDRE interrupt gets disabled. 
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Table 4-2. Transmit packet to PC 
Data  Size  

Preamble “STK502” 6 byte 

ASCII-space (0x20) 1 byte 

HOUR 2 byte 

ASCII-space (0x20) 1 byte 

MINUTE 2 byte 

ASCII-space (0x20) 1 byte 

SECOND 2 byte 

ASCII-space (0x20) 1 byte 

DATE 2 byte 

ASCII-space (0x20) 1 byte 

MONTH 2 byte 

ASCII-space (0x20) 1 byte 

YEAR_HI 2 byte 

ASCII-space (0x20) 1 byte 

YEAR_LO 2 byte 

ASCII-space (0x20) 1 byte 

SET_POINT 2 byte 

ASCII-space (0x20) 1 byte 

TEMP_HIGHBYTE 2 byte 

ASCII-space (0x20) 1 byte 

TEMP_LOWBYTE 2 byte 

ASCII-space (0x20) 1 byte 

OFFSET 2 byte 

ASCII-space (0x20) 1 byte 

Firmware revision 2 byte 

ASCII-carriage return (0x0D) 2 byte 

ASCII-line feed (0x0A) 2 byte 
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4.8 STK500 switches 
Figure 4-7. CheckButtons 
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There are three switches that are used as inputs to the application. To do several 
tasks with only three switches, a menu system is needed. Figure 4-7 shows three 
menus in a hierarchy, which are used in this code. See Figure 2-1 for an overview of 
the menus. 

Figure 4-7 refers to Button A/B/C, in the application these buttons can be found at: 

“ButtonA” is SW7 that is connected to PE7. 

“ButtonB” is SW6 that is connected to PE6. 

“ButtonC” is SW5 that is connected to PE5. 

Example: 

After a RESET the LCD is set up to scroll a text. None of the three menus are active. 
Pressing the SW7 will toggle between the alternatives in Menu1 (Clock, Date, Set 
point, Temperature, Offset and Contrast) 

To adjust the variable MINUTE: Press SW7 until “CLOCK” appears in the LCD-
display, and select this by pressing SW6 to activate Menu2 under “CLOCK”. Pressing 
SW7 will now toggle between the alternatives in Menu2 (Hour, Minute and Second). 
Press SW7 until the variable MINUTE is blinking in the LCD-display, and select this 
by pressing SW6. Now Menu3 is activated (the colons should disappear). Pressing 
SW7 will increase the variable MINUTE and SW6 will decrease. When desired value 
has been selected, press SW5 to deactivate Menu3, and go back to Menu2. Press 
SW5 once more to deactivate Menu2 and go back to Menu1.  

The same procedure can be used to adjust the other variables as well. 
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4.9 LCD 
Writing to the LCD requires an LCD driver. The driver used in this application is 
described in the application note “AVR065: LCD Driver for the STK502LCD”. 

4.9.1 LCD update 

Figure 4-8. LCD_update 
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This function will load data into the LCD_displayBuffer.  

First check if the LCD has been updated with the data already in the 
LCD_displayBuffer. If so, set the LCD_update required to FALSE. This will prevent 
the LCD to be updated with incomplete data, if an LCD Start of Frame interrupt 
should occur during this function.  

If a text-string is to be scrolled, clear display and call the LCDscrollMSG function. If no 
text to scroll, check if there is data to write from the TransmitBuffer, and load the data 
into the LCD_displayBuffer. Digits can be set to blink on the display. To do this the 
digit will be loaded with either its data value or a ASCII-space (0x20), depending on 
the variable LCD_Blink.  
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After the LCD_displayBuffer has been updated, the LCD_updatedComplete will be 
set to FALSE and LCD_updateRequired to TRUE. This will cause the 
LCD_displayBuffer to be written to the LCD in the LCD Start of Frame interrupt. 

4.9.2 Scroll function 

Figure 4-9. LCDscrollMsg 

 
This function shifts the six digits on the LCD one step to the left. The scroll function 
uses a pointer to keep track of what characters to shift in and out of the LCD. When 
all the six digits have been updated, the pointer gets incremented by one in order to 
shift the text-string one step the next time this function is called. 

If the pointer has reached the end of the string, the LCD has to be filled up with one 
ASCII-space at the time until all of the six digits are blank. This will “fade” out the text 
string.  
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4.9.3 LCD set-up data 

Figure 4-10. LCDsetupData 
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If Menu1 isn’t active the welcome will scroll over the LCD. If Menu1 is active but not 
Menu2, the corresponding string will be scrolled once over the LCD and then the 
belonging data. If Menu2 is active but not Menu3, just enable the colons. And if 
Menu3 is active, disable the colons to indicate that the current variable can now be 
adjusted. 

5 Terminal 
All temperature and time information is transmitted through the UART-interface. A 
program on a PC can receive this data by connecting a serial-cable between the 
“RS232 SPARE” on the STK500 and a com-port on the PC. A standard terminal can 
be used, e.g. HyperTerminal. Set up the terminal with the settings shown in Figure 5-
1. 
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Figure 5-1. Port Settings 

 
 
Press the connect-button and the data from the ATmega169(P) should appear as in 
Figure 5-2. The data is presented according to Table 5-1. 

Table 5-1. Transmit Packet from ATmega169 according to Figure 5-2 
Data  Value  

Preamble STK502 

Hour 15 

Minute 14 

Second 22 

Day 04 

Month 11 

Year high 20 

Year low 02 

Set point 25 

ºC high byte 25 

ºC low byte 14 

Offset 00 

Versions  number 01 
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Figure 5-2. HyperTerminal 

 
 
One can also adjust the variables within the ATmega169(P) from the terminal. This 
has to be done according to Table 4-1. E.g. write: ”STK502 14 37 02 25 11 20 02 24” 
in the terminal, and press enter to indicate end of frame. This will adjust the clock to 
14h37m02s, the date to 25. November 2002, and the temperature set point will be 
24°C. 
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